JPS62124143A - Sealing resin for semiconductor - Google Patents

Sealing resin for semiconductor

Info

Publication number
JPS62124143A
JPS62124143A JP26276585A JP26276585A JPS62124143A JP S62124143 A JPS62124143 A JP S62124143A JP 26276585 A JP26276585 A JP 26276585A JP 26276585 A JP26276585 A JP 26276585A JP S62124143 A JPS62124143 A JP S62124143A
Authority
JP
Japan
Prior art keywords
filler
resin
particles
semiconductor
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26276585A
Other languages
Japanese (ja)
Other versions
JPH0635517B2 (en
Inventor
Jiro Fukushima
二郎 福島
Toshinobu Banjo
番條 敏信
Osamu Nakagawa
治 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60262765A priority Critical patent/JPH0635517B2/en
Publication of JPS62124143A publication Critical patent/JPS62124143A/en
Publication of JPH0635517B2 publication Critical patent/JPH0635517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor sealant resin usable to (very) large scale integrated circuit, etc., without causing the malfunction of a chip nor lowering the reliability, productivity and yield of the chip, by compounding a filler produced by mixing a large spherical particles with fine particles. CONSTITUTION:A sealant resin matrix (e.g. epoxy resin, silicone resin, etc.) is compounded with 30-90wt%, preferably 50-80wt% filler (e.g. silica, alumina, etc.) produced by mixing spherical coarse particles of >=20mum in diameter and crushed fine particles of <20mum in diameter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高密度集積回路(以下、LSIという)や超高
密度集積回路〈以下、VLSIという)などの半導体装
置を封止するための封止樹脂に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a seal for sealing semiconductor devices such as high-density integrated circuits (hereinafter referred to as LSI) and ultra-high-density integrated circuits (hereinafter referred to as VLSI). Regarding resin stopper.

[従来の技術およびその問題点コ 半導体装置の樹脂封止は半導体チップ(以下、チップと
いう)を外部からの機械的衝撃や湿気、ごみ、熱などか
ら保護するために従来よりなされているが、近年半導体
装置の樹脂封止の方法はエポキシ樹脂やシリコーン樹脂
を用いた低圧1〜ランスフアー成型法が主流となってき
ており、前記低圧トランスファー成型法に用いられる封
止用樹脂には、チップとチップを搭載するリードフレー
ムとの熱膨張係数の差によって生じる成形応力を緩和さ
せるため、あるいは封止樹脂の機械的、熱的特性を向上
させるためにシリカやアルミナなどの無機粉末がフィラ
ーとして添加されている。
[Prior art and its problems] Resin encapsulation of semiconductor devices has traditionally been done to protect semiconductor chips (hereinafter referred to as chips) from external mechanical shocks, moisture, dust, heat, etc. In recent years, the mainstream method for resin encapsulation of semiconductor devices has been low-pressure 1-transfer molding using epoxy resins and silicone resins. Inorganic powders such as silica and alumina are added as fillers to alleviate molding stress caused by the difference in thermal expansion coefficient with the lead frame on which the lead frame is mounted, or to improve the mechanical and thermal properties of the sealing resin. There is.

ところが、最近のチップ表面に形成される各種素子やア
ルミ配線などの超微細加工技術の大幅な躍進により、L
SIやVLSIが超微細化あるいは^集積化なされる結
果、これらの半導体装置は外部の刺激に一層鋭敏となり
、従来はとんど何の影響も与えなかった樹脂に含まれて
いるフィラーの角から生じるストレスがチップ表面の素
子や配線に変形やミクロクランクなどのダメージを与え
、チップの機能に悪影響をおよぼすという問題が発生し
てきている。
However, with recent significant advances in ultra-fine processing technology for various elements formed on chip surfaces and aluminum wiring, L
As SI and VLSI have become ultra-miniaturized or integrated, these semiconductor devices have become more sensitive to external stimuli. Problems have arisen in that the resulting stress causes damage such as deformation and micro-cranking to elements and wiring on the surface of the chip, adversely affecting the functionality of the chip.

すなわち、今日超微細化あるいは^集積化されたLSI
やVLSIの配線幅は約1〜3−程度であるのに対し、
第1図に示すように封止樹脂中に存在するフィラー(4
)の粒径は最大でストークス径に換算したばあい、15
0〜200ρ程度にも達しくただし、金型のゲートの開
口寸法以上、すなわち粒径が約20−以上の粒子は存在
しない)、シかも角ばった形状を有しているので、その
角がチップ表面の微細な各種素子や配線を保護している
パッシベーション膜に接触したばあい、該フィラー粒子
の角は周囲のマトリックス樹脂の成形収縮により、チッ
プの表面へ強く押し出されるので、その応力がこの角に
集中し、とくにフィラーの粒子の粒径が大きいばあい、
その応力は著しく大きくなり、非常に薄いパッシベーシ
ョン膜を破壊したりあるいは圧縮、せん断による応力が
、素子や配線を切断したり、変形させるなどのダメージ
を与え、チップの誤作動や耐湿不良などの問題を生起す
る。
In other words, today's ultra-miniaturized or integrated LSI
Whereas the wiring width of VLSI and VLSI is about 1 to 3-
As shown in Figure 1, the filler (4
) has a maximum particle size of 15 when converted to Stokes diameter.
(However, there are no particles with a particle size larger than the opening size of the mold gate, that is, about 20μ or more). When the filler particles come into contact with the passivation film that protects various microscopic elements and wiring on the surface, the corners of the filler particles are strongly pushed toward the chip surface due to molding shrinkage of the surrounding matrix resin, and the stress is applied to these corners. especially when the particle size of the filler particles is large.
The stress becomes extremely large, and can destroy the extremely thin passivation film, or the stress caused by compression and shearing can cause damage such as cutting or deforming elements and wiring, leading to problems such as chip malfunction and poor moisture resistance. occurs.

上記のようなエツジストレスを緩和するためには、フィ
ラーの粒子の粒径を小さくしたり、あるいはフィラーの
粒子の形状を丸くするなどの方法が有効である。
In order to alleviate the above edge stress, it is effective to reduce the particle size of the filler particles or to round the shape of the filler particles.

しかしながら、封止樹脂の熱膨張係数を低減させたり、
機械的、熱的特性を向上させるためには多伍のフィラー
を充填させる必要があり、そのためには大きな粒子から
非常に小さな粒子まで幅広い粒度分布を有するフィラー
が好ましく、またそのようなフィラーを含有する封止樹
脂は成形時における流動性も良好でまた金型のエアベン
トからの樹脂の流出によるパリの生成の防止などにも有
効である。したがってこのばあい当然大きな粒径を有す
る粒子を含有することとなるので、コスト面、実用面を
も含めて上記した種々のメリットを有する従来のフィラ
ーでも、LSIヤVLSIなとの半導体の封止樹脂とし
ては適用することができない。
However, reducing the thermal expansion coefficient of the sealing resin,
In order to improve mechanical and thermal properties, it is necessary to fill a large number of fillers, and for this purpose, fillers with a wide particle size distribution from large particles to very small particles are preferable, and materials containing such fillers are preferred. The sealing resin has good fluidity during molding and is also effective in preventing the formation of paris due to the resin flowing out from the air vent of the mold. Therefore, in this case, it naturally contains particles with a large particle size, so even if the conventional filler has the various advantages mentioned above, including cost and practical aspects, it is not suitable for sealing semiconductors such as LSI and VLSI. It cannot be used as a resin.

そこでフィラーのエツジストレスを緩和するためにフィ
ラー粒子を丸くする方法が考えられるが、とくに微粒子
のばあい、きわめて技術的に困難であり、コスト面およ
び実用性の面で大きな問題がある。
Therefore, a method of rounding filler particles has been considered in order to alleviate the edge stress of the filler, but this is extremely technically difficult, especially in the case of fine particles, and poses major problems in terms of cost and practicality.

一方、大きな粒子を除去し、微粒子のフィラーを用いる
方法は、フィラーの封止樹脂中への分散が困難であり、
また流動性の大幅な低下、金型のエアーベントからの成
型樹脂の流出によるパリの生成による生産性、歩留りの
低下、すなわち金型に付着したパリの除去の際に要する
むだな時間やパリの除去が不完全なばあい、つぎのショ
ットのときにパリをかみ、外観不良になるなどの大きな
問題を生起する。
On the other hand, in the method of removing large particles and using fine particle filler, it is difficult to disperse the filler into the sealing resin.
In addition, there is a significant decrease in fluidity, and a decrease in productivity and yield due to the formation of paris due to the outflow of molding resin from the air vent of the mold. If the removal is incomplete, the particles will be chewed during the next shot, causing major problems such as poor appearance.

[発明が解決しようとする問題点] そこで本発明者らはかかる問題点を解決しうる半導体封
止樹脂をうるべく鋭意研究を重ねたところ、丸い形状を
有する大きな粒子と通常の破砕により生じた細かい粒子
とを混合し調製したフィラーを含有する封止樹脂を用い
て半導体を封止したばあい、チップの誤作動、耐湿不良
などの信頼性の低下や生産性、歩留りの低下のない優れ
た半導体封止樹脂かえられることを見出し、本発明を完
成するに至った。
[Problems to be Solved by the Invention] Therefore, the present inventors conducted intensive research to find a semiconductor encapsulating resin that could solve these problems, and found that large particles with round shapes and normal crushing caused When semiconductors are encapsulated using a encapsulating resin containing a filler prepared by mixing fine particles, it is possible to achieve excellent results without reducing reliability such as chip malfunction or poor moisture resistance, and without reducing productivity or yield. They discovered that the semiconductor encapsulating resin could be replaced and completed the present invention.

[問題点を解決するための手段] 本発明は20.a以上は球状の粗粒子群と、20如未満
は破砕状の微粒子群でなるフィラー系を含有することを
特徴とする半導体封止樹脂に関する。
[Means for solving the problems] The present invention is based on 20. A and more relate to a semiconductor encapsulating resin characterized by containing a filler system consisting of a group of spherical coarse particles and a group of less than 20 particles a group of crushed fine particles.

[作用および実施例] 本発明に用いる樹脂のフィラーは20通以上のばあい球
状の粗粒子を、また20!未満のばあい、破砕した通常
の形状を有する微粒子を使用する。
[Function and Examples] The filler of the resin used in the present invention contains spherical coarse particles when the number is 20 or more, and 20! If the amount is less than 100%, use crushed microparticles having a normal shape.

通常の形状を有する粗粒子の最小粒径が20p以上であ
るばあい、LSIやVLSIを樹脂封止したときに非常
に薄いパッシベーション膜を破壊したり、圧縮、せん断
による応力が素子や配線を切断したり、変形させるなど
のダメージを与え、チップの誤作動や耐湿不良などの問
題を生起するので好ましくない。
If the minimum particle size of coarse particles with a normal shape is 20p or more, it may destroy the very thin passivation film when LSI or VLSI is encapsulated with resin, or stress due to compression or shear may cut elements or wiring. This is undesirable because it causes damage such as bending or deformation, and causes problems such as malfunction of the chip and poor moisture resistance.

したがって20ρ以上のフィラーを用いるばあい、その
粒子の形状は球状に近いも−を用いる必要がある。
Therefore, when using a filler with a particle size of 20 ρ or more, it is necessary to use particles whose shape is close to spherical.

また該フィラーは従来使用されているフィラーと同様に
流動性、成型性の点から、幅広い粒度分布を有している
ものを使用するのが好ましいが、使用するフィラーの最
大粒径は、成型金型のゲートの開口寸法から200−程
度であるのが好ましい。
In addition, it is preferable to use a filler that has a wide particle size distribution from the viewpoint of fluidity and moldability, as with conventionally used fillers, but the maximum particle size of the filler used is It is preferable that the size is about 200 mm based on the opening size of the gate of the mold.

該フィラーの材質としては従来がら使用されているもの
を用いることができるが、その具体例としてはシリカ、
アルミナ、マグネシア、チッ化ホウ素、炭化ケイ素など
があげられ、これらのなかでもとくにシリカは純度、コ
ストの点で優れているので好ましい。
As the material of the filler, conventionally used materials can be used, and specific examples thereof include silica,
Examples include alumina, magnesia, boron nitride, and silicon carbide. Among these, silica is particularly preferred because it is excellent in terms of purity and cost.

また上記のような粒径が20−以上の比較的大きな粒子
であるフィラーの形状を球状とするためには、高温のプ
ラズマ中を落下させるなどの従来の方法をそのまま使用
しうるので、フィラー製造上何ら問題はなく、また封止
樹脂としてもその流動性、金型の摩耗についても従来の
フィラーよりも優れたものかえられる。
In addition, in order to make the filler, which is a relatively large particle with a particle size of 20 mm or more, into a spherical shape, conventional methods such as dropping it into high-temperature plasma can be used as is, so filler manufacturing There is no problem with the above, and it can also be used as a sealing resin with better fluidity and mold abrasion than conventional fillers.

また本発明に用いる封止樹脂母材としては従来より使用
されているエポキシ樹脂やシリコーン樹脂などを使用し
うるが、該樹脂中にはフィラーが30〜90重量%、と
くに50〜80重量%含重量ているのが好ましい。
Furthermore, as the sealing resin base material used in the present invention, conventionally used epoxy resins, silicone resins, etc. can be used, but the resin contains filler in an amount of 30 to 90% by weight, particularly 50 to 80% by weight. Weight is preferred.

つぎに本発明の半導体封止樹脂を実施例に基づいてさら
に詳細に説明するが、本発明はかかる実施例のみに限定
されるものではない。
Next, the semiconductor encapsulating resin of the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1〜2および比較例1〜3 従来の低圧トランスファー成形法に用いられている樹脂
封止半導体装置用エポキシ封止樹脂のフィラーとして第
1表の実施例および比較例に示す各々のフィラーを含有
するエポキシ封止樹脂を用イT 256KDRAHのD
IP(Dual 1n−1ine oackaae)を
試作し、その動作テストを行なった。このときの動作不
良発生率を第1表に示す。
Examples 1 to 2 and Comparative Examples 1 to 3 Each filler shown in the Examples and Comparative Examples in Table 1 was used as a filler for an epoxy sealing resin for a resin-sealed semiconductor device used in a conventional low-pressure transfer molding method. Using epoxy sealing resin containing T 256KDRAH D
We prototyped an IP (Dual 1n-1ine Oackaae) and conducted an operation test. Table 1 shows the malfunction occurrence rate at this time.

[以下余白] −8,ノ 第  1  表 [注]■:従来のフィラーとは、すべての粒子が破砕状
であるものをいう。
[Margins below] -8, No. 1 Table 1 [Note] ■: Conventional filler refers to one in which all particles are in the form of crushed particles.

第1表の結果から、本発明の半導体封止樹脂は、該封止
樹脂中のフィラーによるエツジストレスなどの問題がな
く、かつ成形性、生産性、歩留り、コストなど実用上非
常に優れたものであることがわかる。
From the results in Table 1, the semiconductor encapsulation resin of the present invention has no problems such as edge stress due to fillers in the encapsulation resin, and has excellent practical properties in terms of moldability, productivity, yield, and cost. It can be seen that it is.

[発明の効果] 本発明の半導体封止樹脂を用いたばあいチップの誤作動
、耐湿不良などの信頼性の低下や生産性、歩留りの低下
がないなどの優れた特性を有する樹脂封止半導体装置が
えられるという効果を奏する。
[Effects of the Invention] When the semiconductor encapsulation resin of the present invention is used, a resin-encapsulated semiconductor having excellent characteristics such as no reduction in reliability such as malfunction of the chip or poor moisture resistance, and no decrease in productivity or yield can be obtained. This has the effect that the equipment can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の封止樹脂を用いて樹脂封止したDIP中
のフィラーの分布状態を説明するための断面図を示す。 (図面の符号) (1)二半導体チップ (a :ダイスパッド 、  (3]  :封止樹脂 (4):フィラー (5)、(6):金線 (刀、(8):リード 代  理  人       大  岩   増  雄
1:半導体チップ 4ニフイラ− 5,6:金線 7.8 : リード 手続補正書(自発) 昭和  年  月  日
FIG. 1 shows a cross-sectional view for explaining the distribution state of filler in a DIP resin-sealed using a conventional sealing resin. (Drawing codes) (1) Two semiconductor chips (a: die pad, (3): sealing resin (4): filler (5), (6): gold wire (sword), (8): lead agent Masuo Oiwa 1: Semiconductor chip 4 Nifiler 5, 6: Gold wire 7.8: Lead procedure amendment (voluntary) Showa year, month, day

Claims (1)

【特許請求の範囲】[Claims] (1)20μm以上は球状の粗粒子群と、20μm未満
は破砕状の微粒子群でなるフィラー系を含有することを
特徴とする半導体封止樹脂。
(1) A semiconductor encapsulation resin characterized by containing a filler system consisting of spherical coarse particles with a diameter of 20 μm or more and crushed fine particles with a diameter of less than 20 μm.
JP60262765A 1985-11-22 1985-11-22 Semiconductor encapsulation resin Expired - Lifetime JPH0635517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262765A JPH0635517B2 (en) 1985-11-22 1985-11-22 Semiconductor encapsulation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262765A JPH0635517B2 (en) 1985-11-22 1985-11-22 Semiconductor encapsulation resin

Publications (2)

Publication Number Publication Date
JPS62124143A true JPS62124143A (en) 1987-06-05
JPH0635517B2 JPH0635517B2 (en) 1994-05-11

Family

ID=17380275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262765A Expired - Lifetime JPH0635517B2 (en) 1985-11-22 1985-11-22 Semiconductor encapsulation resin

Country Status (1)

Country Link
JP (1) JPH0635517B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102361A (en) * 1977-02-18 1978-09-06 Toray Silicone Co Ltd Thermosetting resin composition
JPS60124647A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Low-radiation epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102361A (en) * 1977-02-18 1978-09-06 Toray Silicone Co Ltd Thermosetting resin composition
JPS60124647A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Low-radiation epoxy resin composition

Also Published As

Publication number Publication date
JPH0635517B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US6054222A (en) Epoxy resin composition, resin-encapsulated semiconductor device using the same, epoxy resin molding material and epoxy resin composite tablet
US4931852A (en) High thermal conductivity/low alpha emission molding compound containing high purity semiconductor filler and integrated circuit package
JP2000208540A (en) Method for airtightly sealing thin semiconductor chip scale package
JP3310557B2 (en) Liquid resin composition for flow stop frame and semiconductor device using the same
JP5086945B2 (en) Manufacturing method of semiconductor device
JPH04192446A (en) Resin-sealed semiconductor device
JP2825332B2 (en) Resin-sealed semiconductor device, method for manufacturing the device, and resin composition for semiconductor encapsulation
JP2649632B2 (en) Resin-sealed semiconductor device
JPS62124143A (en) Sealing resin for semiconductor
JP2685138B2 (en) Resin composition and resin-sealed electronic device using the composition
JPH08162573A (en) Semiconductor device
JPS62261161A (en) Resin sealed semiconductor device
JPS60171750A (en) Semiconductor device
JP2633856B2 (en) Resin-sealed semiconductor device
JPS62240313A (en) Resin for use in semiconductor sealing
JPS6296538A (en) Inorganic filler and resin composition
JPS5922349A (en) Semiconductor device
JPH10270606A (en) Structure of packaged semiconductor device
US6194779B1 (en) Plastic mold type semiconductor device
JPS63108021A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP4634083B2 (en) Manufacturing method of tablets for semiconductor encapsulation
JP2702401B2 (en) Resin-sealed semiconductor device and its manufacturing method
JPS63104455A (en) Filler for filling sealing resin and its manufacture
JP2001244388A (en) Semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device