JPS62123995A - Wind power-generator - Google Patents

Wind power-generator

Info

Publication number
JPS62123995A
JPS62123995A JP60262906A JP26290685A JPS62123995A JP S62123995 A JPS62123995 A JP S62123995A JP 60262906 A JP60262906 A JP 60262906A JP 26290685 A JP26290685 A JP 26290685A JP S62123995 A JPS62123995 A JP S62123995A
Authority
JP
Japan
Prior art keywords
wind
rotation speed
output
rated
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262906A
Other languages
Japanese (ja)
Inventor
Ikuo Watanabe
郁夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP60262906A priority Critical patent/JPS62123995A/en
Publication of JPS62123995A publication Critical patent/JPS62123995A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To acquire energy effectively by conducting variable speed control, through which a wind-mill is operated by the number of revolution corresponding to inputs, in an operation region up to the rated number of revolution from the starting of the wind-mill. CONSTITUTION:With a wind-mill 1 driving an induction machine 2, the pitch angle of a blade is kept constant up to the rated number of revolution, and the pitch angle is controlled so that the number of revolution of the wind-mill reaches rated one in an operation region of the rated number of revolution or more. A comparator 32 transmits a deviation between an output command signal PREF corresponding to the number of revolution N of the wind-mill 1 and an output signal P over a compensation circuit 33. A deviation between a signal obtained by F/V converting the number of revolution N and an output from the compensation circuit 33 is inputted to an exciting-frequency command circuit 36, and the circuit 36 transmits an exciting-frequency command over a converter 30 so that the ratio of generator voltage/operation frequency is kept constant up to the rated number of revolution and so that generator voltage is kept constant at the rated number of revolution or more.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、風力エネルギーを軸動力に変換する風車と、
この軸動力を電力に変換する動力−電力変換器を用いた
風力発電装置に関し、無電源地区での電源装置として、
また、省エネルギーを目的とした離島等でのジーぜル発
電装置とのハイブリッド用として、また、系統連系にお
けるピークカット用としての発電装置として利用に適す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a wind turbine that converts wind energy into shaft power,
Regarding wind power generation equipment using a power-to-power converter that converts this shaft power into electric power, it is used as a power supply device in areas without power supply.
It is also suitable for use as a hybrid power generator with a diesel power generator on remote islands for the purpose of energy conservation, and as a power generator for peak cut in grid connection.

(従来技術) 従来から風力発電装置において風車の軸動力を電力に変
換する手段(発電′gM)として同期機、直流機あるい
は誘導機等が用いられている。
(Prior Art) Conventionally, a synchronous machine, a DC machine, an induction machine, or the like has been used in a wind power generator as a means for converting shaft power of a wind turbine into electric power (power generation 'gM).

ところが、一般に、同期機、直流機を用いたものは、風
車の定格出力が得られる定格風速から、風車の運転を中
止し発電を停止する発電停止1@速までの主運転域にお
いて、風車ブレードのピッヂコントロールによって回転
数を一定とする定回転数制御を行なっている。このため
、後述するごとく、風車の最大効率を発生し得る出力特
性、゛すなわち、風車の周速度に対する風速で定まる[
周速比」を一定とした運転とはならず、エネルギーの有
効取得がなされているとは言えなかった。しかも、上記
のごとく定回転数制御運転では風況の急激な変化により
大きなトルク変動を受けることになり、これに耐えるた
めには構造、材質を整量なものとしなければならず、コ
スト上昇の原因ともなっていた。
However, in general, when using a synchronous machine or a DC machine, the wind turbine blades do not move in the main operating range from the rated wind speed at which the wind turbine's rated output is obtained to the power generation stop speed 1@ at which the wind turbine operation is stopped and power generation is stopped. The pidge control provides constant rotation speed control. For this reason, as will be explained later, the output characteristics that can generate the maximum efficiency of the wind turbine are determined by the wind speed relative to the circumferential speed of the wind turbine.
It was not possible to operate with a constant circumferential speed ratio, and it could not be said that energy was being acquired effectively. Moreover, as mentioned above, constant rotation speed control operation is subject to large torque fluctuations due to sudden changes in wind conditions, and in order to withstand this, the structure and materials must be of uniform quality, which increases costs. It was also the cause.

一方、誘導機を用いたものは、既存の電力系統と接続さ
れて運転されているものが多く、運転制御手段に風速を
用いたものが一般的である。この場合、発電機と風速を
計測する地点が異なるため、粘度の高い制御が困難にな
り、時には誘導機が発電機として作動せず電動機として
作動するような事態も起こり得ることになり、また、系
統直結を図るため、50/60Hz近傍の運転となり、
定回転数制御に等しい状況になり、上述と同様の問題を
有していた。
On the other hand, many of those using induction motors are operated by being connected to the existing power system, and those that use wind speed as the operation control means are common. In this case, since the generator and the wind speed are measured at different points, it becomes difficult to control high viscosity, and sometimes a situation may occur where the induction motor does not operate as a generator but as an electric motor. In order to connect directly to the grid, it will operate at around 50/60Hz,
This resulted in a situation equivalent to constant rotation speed control, and had the same problems as described above.

また、一般に平均風速は低いことから、風力発電装置は
低風速域において、効果的な発電をし得る構成とするこ
とが望まれていた。
Furthermore, since average wind speeds are generally low, it has been desired that wind power generators be configured to be able to generate power effectively in a low wind speed range.

(発明の目的) 本発明は、上記問題点に鑑みてなされたもので、風車ブ
レードのピッチ角を風車回転数に応じて所定状態とし、
風車を入力に応じた回転数で運転する可変速制御を行な
うことにより、風況の急激な変化によるトルク変動を吸
収し、構造、材質面でのコスト上昇を抑えるとともに低
風速において効果的に発電し、低コストで大ぎなエネル
ギーを回生でき、しかも制御のために風速情報でなく風
車の回転数情報を用い風車を効率の良い出力特性にて運
転することにより、精度の高い一定の周速比での制御が
可能となり、エネルギーの有効取得および信頼性の向上
を図ることができる風力発電装置を提供することを目的
とする。
(Object of the Invention) The present invention has been made in view of the above problems, and includes setting the pitch angle of the wind turbine blades to a predetermined state according to the wind turbine rotation speed, and
By performing variable speed control that operates the wind turbine at a rotation speed according to the input, it absorbs torque fluctuations caused by sudden changes in wind conditions, suppresses increases in costs in terms of structure and materials, and effectively generates electricity at low wind speeds. It is possible to regenerate a large amount of energy at low cost, and by using wind turbine rotation speed information instead of wind speed information for control and operating the wind turbine with efficient output characteristics, it is possible to achieve a highly accurate constant circumferential speed ratio. It is an object of the present invention to provide a wind power generation device that can be controlled in a controlled manner, and can effectively obtain energy and improve reliability.

(発明の構成) 本発明は、ブレードのピッチ角が制御可能な風力エネル
ギーを動力に変換する風車と、この動力により駆動され
る誘導機と、上記誘導機が発電機として作用し上記風車
の回転数の3乗に比例した発電機出力が得られ、かつ、
発電開始回転数から定格出力を発生する回転数までは発
電n電圧/運転周波数の比が一定どなり、定格出力を発
生する回転数以上において発電機電圧が一定となるよう
に上記誘導機をすべり周波数制御する変換器とからなり
、風車の起動から定格回転数までの運転域において上記
ブレードのピッチ角を一定とし、定格回転数以上の運転
域において風車回転数が設定回転数範囲内に収まるよう
に上記ブレードのピッチ角を制御するようにした風力発
電装置である。
(Structure of the Invention) The present invention provides a wind turbine that converts wind energy into power with a controllable pitch angle of the blades, an induction machine driven by this power, and an induction machine that acts as a generator to rotate the wind turbine. A generator output proportional to the cube of the number can be obtained, and
The ratio of generation voltage/operating frequency remains constant from the rotation speed at which power generation starts to the rotation speed at which the rated output is generated, and the sliding frequency of the induction motor is adjusted so that the generator voltage remains constant at the rotation speed at which the rated output is generated or higher. The pitch angle of the blades is constant in the operating range from the start of the wind turbine to the rated rotation speed, and the wind turbine rotation speed is within the set rotation speed range in the operating range above the rated rotation speed. This is a wind power generation device in which the pitch angle of the blades is controlled.

この構成により、風速に対応した風車の回転数(回転速
度)での可変速制御運転がなされ、風況の変化によるト
ルク変動をイナーシャとして吸収し、また、風車の出力
特性に合った風車の回転数の3乗に比例した出力電力が
制御され、以下に述べる理由により、一定の周速比での
運転制御を行なうことができ、エネルギーの最大限の有
効数1りが可能となる。
With this configuration, variable speed control operation is performed at the number of rotations (rotational speed) of the wind turbine that corresponds to the wind speed, absorbing torque fluctuations due to changes in wind conditions as inertia, and rotating the wind turbine according to the output characteristics of the wind turbine. The output power is controlled in proportion to the cube of the number, and for the reasons described below, operation control can be performed at a constant circumferential speed ratio, and the maximum effective number of energy can be 1.

以下に、風速に合った回転数制御をfjなうことにより
、一定の周速比制御が可能でエネルギーの有効取得を図
ることができる理由を説明する。
The reason why it is possible to control the circumferential speed ratio at a constant level and effectively acquire energy by controlling the rotation speed fj in accordance with the wind speed will be explained below.

プロペラ型の風車による出力の基本特性は次式%式% ρ:空気密度、■:風速、Cp:パワー係数、R:プロ
ペラ半径、ω:角速度 パワー係数Cp=2P/ρπR2V3・・・(2)周速
比TSR=ωR/v・(3) ここに、風車として最大の効率を得るには、パワー係数
Cpの最高値を常に保つ制御を行なえばよく、これによ
りエネルギーの最大有効取得が可能となる。
The basic characteristics of the output from a propeller-type wind turbine are as follows: % ρ: air density, ■: wind speed, Cp: power coefficient, R: propeller radius, ω: angular velocity power coefficient Cp=2P/ρπR2V3...(2) Circumferential speed ratio TSR=ωR/v・(3) Here, in order to obtain the maximum efficiency as a wind turbine, it is sufficient to perform control to always maintain the maximum value of the power coefficient Cp, which makes it possible to obtain the maximum effective energy. Become.

風車のパワー係数Cp特性は、第2図に示すように、風
車ブレードのピッチ角βによって、その最大点を有し、
しかも周速比TSRの関数となる。
As shown in Fig. 2, the power coefficient Cp characteristic of the wind turbine has its maximum point depending on the pitch angle β of the wind turbine blades,
Moreover, it is a function of the circumferential speed ratio TSR.

したがって、風車ブレードのピッチ角βをある値に設定
した場合、パワー係数cpが最大となる周速比TSRは
定まる。
Therefore, when the pitch angle β of the wind turbine blades is set to a certain value, the circumferential speed ratio TSR at which the power coefficient cp becomes maximum is determined.

ところが、周速比TSRは上記(3)式から判る通り、
角速麿ωと風速■によって定まるから、周速比TSRを
一定にしようとすると、風速Vが変化した場合、回転数
も変化しなければならない。
However, as can be seen from the above equation (3), the circumferential speed ratio TSR is
Since it is determined by the angular speed ω and the wind speed ■, if the circumferential speed ratio TSR is to be kept constant, if the wind speed V changes, the rotational speed must also change.

したがって、風車ブレードのピッチ角βを固定して風況
に合ったエネルギー取得を最大にしようとすると、風速
に合った回転数制御つまり、定周速比制御を行なえばよ
いことになる。
Therefore, if the pitch angle β of the wind turbine blades is fixed to maximize energy acquisition in accordance with the wind conditions, it is sufficient to perform rotational speed control in accordance with the wind speed, that is, constant circumferential speed ratio control.

いま、パワー係数Cpが最大となる周速比TSRをΩと
すると、風車の出力Pは次のように回転数Nの関数とし
て表わされる。
Now, assuming that the circumferential speed ratio TSR at which the power coefficient Cp is maximum is Ω, the output P of the wind turbine is expressed as a function of the rotation speed N as follows.

Ω−ωR/v・・・(4) ■=ωR/Ω・・・(4゛) ω−2πN/60・・・(5) ただしN:III車回転回転数pH1)(5)、(4’
)式にすv=R/Ω・πN/30・・・(6)(1)、
(6)式よりP=y2P7CR2Cp max  (R
πN/30Ω)3=1.8x10−3ρR5Cpmax
(1/Ω3)N3・・・(7) この(7)式より、風車の出力Pは回転数Nの3乗に比
例することが判り、回転数Nを情報として定周速比制御
を行なえばよいことが判る。
Ω-ωR/v...(4) ■=ωR/Ω...(4゛) ω-2πN/60...(5) However, N: III car rotational speed pH1) (5), (4 '
) Formula v=R/Ω・πN/30...(6)(1),
From formula (6), P=y2P7CR2Cp max (R
πN/30Ω)3=1.8x10-3ρR5Cpmax
(1/Ω3)N3...(7) From equation (7), it can be seen that the output P of the wind turbine is proportional to the cube of the rotation speed N, and constant circumferential speed ratio control can be performed using the rotation speed N as information. It turns out to be a good thing.

これら風車のパワー係数Cp、出力P、トルク下の回転
数Nに対する特性を第3図に丞す。同図において、横軸
には回転数Nを、縦軸には各風速■1〜■7におけるパ
ワー係数Cp  (実線)、出力P(ttJ線)、トル
クT(一点鎖線)の特性曲線を示し、ラインP、は定格
負荷を示す。同図から判るように各風速■1〜v7にお
けるパワー係数Cpの最大値(Cpmax)が得られる
回転数Nにおいて出力Pは最大値を示し、したがって、
CplaXを保つことにより出力Pは曲線(イ)の特性
が得られ、その時のトルクTは曲線(ロ)の特性となる
。つまり、パワー係数Cpを最大値に保つことにより、
風車の回転数Nによって出力Pのレベルは一義的に定ま
ることになる。したがって、この回転数Nに応じて定ま
った所定の出力Pが11Iられるように動力〜電力変換
器を制御すればエネルギー取得を有効に行なうことがで
きる。
Figure 3 shows the characteristics of these wind turbines with respect to power coefficient Cp, output P, and rotational speed N under torque. In the figure, the horizontal axis shows the rotation speed N, and the vertical axis shows the characteristic curves of the power coefficient Cp (solid line), output P (ttJ line), and torque T (dotted chain line) at each wind speed ■1 to ■7. , line P indicates the rated load. As can be seen from the figure, the output P shows the maximum value at the rotation speed N where the maximum value (Cpmax) of the power coefficient Cp is obtained at each wind speed 1 to v7, and therefore,
By maintaining CplaX, the output P has the characteristics of the curve (A), and the torque T at that time has the characteristics of the curve (B). In other words, by keeping the power coefficient Cp at its maximum value,
The level of the output P is uniquely determined by the rotation speed N of the wind turbine. Therefore, if the power-to-power converter is controlled so that a predetermined output P determined according to the rotational speed N is generated, energy can be obtained effectively.

なお、第3図において、N  は発電を開始す C るカットイン風速(■o)に対応するカットイン回転数
、NVLは風車の定格出力が出る定格・風速V[に対応
する定格回転数である。
In Fig. 3, N is the cut-in rotation speed corresponding to the cut-in wind speed (■o) at which power generation starts, and NVL is the rated rotation speed corresponding to the rated wind speed V [at which the rated output of the wind turbine is generated. be.

(実施例) 第1図は本発明装置の構成例を示す。同図において、1
はブレードピッチ角のメカニカルピッチコントロール部
を持つプロペラ型〇−タと、ローフの動力を誘¥J礪2
へ伝達する機能を備えた風車、3は電力の変換器で、こ
の変換器3は上記風車1の動力により駆動される誘導機
2を誘導発電機として機能させるための励磁機能と、回
転数検出器4にて検出した上記風車の回転数の3乗に比
例した発電を行なわせる制御機能を持ち、かつ、発電開
始回転数から定格出力を発生する回転数までは発電橢電
圧/運転周波数の比が一定となり、定格出力を発生する
回転数以上において発電機電圧が一定となるように上記
誘導機をすべり周波数制御する機能を右する。また、こ
の構成例では、変換器3は発電された交流電力を直流電
力に変換する機能をも右し、変換器3の出力端には発電
したエネルギーを蓄電するバッテリー5と、このバッテ
リー5に貯えられた電気エネルギーを系統6と同1!1
1を取り系統6に送り出す第2の変換器7を備える。
(Example) FIG. 1 shows an example of the configuration of the apparatus of the present invention. In the same figure, 1
It is a propeller-type rotor with a mechanical pitch control part for the blade pitch angle, and a loaf power is generated.
3 is a power converter, and this converter 3 has an excitation function to make the induction machine 2 driven by the power of the windmill 1 function as an induction generator, and a rotation speed detection function. It has a control function that generates power proportional to the cube of the rotation speed of the wind turbine detected by the wind turbine 4, and the ratio of power generation voltage/operating frequency from the rotation speed at the start of power generation to the rotation speed at which the rated output is generated. is constant, and the function is to control the slip frequency of the induction machine so that the generator voltage is constant above the rotation speed that generates the rated output. In this configuration example, the converter 3 also has the function of converting the generated AC power into DC power, and the output end of the converter 3 is equipped with a battery 5 that stores the generated energy, and a battery 5 that stores the generated energy. The stored electrical energy is shared with grid 6 1!1
1 and sends it to the system 6.

次に、上記風力発電゛装置の制御チャートを第4図によ
り説明する。同図において、横軸に風速■を、縦軸に出
力P、回転数Nを示し、Vsは風車が回転を始める起1
FIll風速、■oは発電を開始するカットイン風速、
■LG、を風車の定格出力が得られる定格風速、■co
は風車の運転を中止しフェザリングじ風のエネルギーを
逃がすカットアウト風速、Pl−は風力発電装置として
の定格出力、NVCはカットイン回転数、NvLは定格
回転数で、この回転数までの運転域ではブレードのピッ
チ角を一定とし、これ以−ヒの回転数の運転域では風車
回転数が所定回転数範囲内に収まるようにブレードのピ
ッチ角を制御している。NNは風車の無負荷設定回転数
、NN上10%はピッチ制御によりコン1〜ロールする
制御回転数範囲であり、曲線PRはロスパワーであって
、VS〜vo間は発電機の機械損とギヤの伝達ロス(2
乗カーブ)、■o時4よ発電機の励磁1員が加わり、v
 NVL間は励磁鵡と纏械損、VL〜VCO間は発電機
励磁損と機械損(はぼ一定)でなる。
Next, a control chart of the above-mentioned wind power generation device will be explained with reference to FIG. In the figure, the horizontal axis shows the wind speed ■, the vertical axis shows the output P and the rotation speed N, and Vs is the moment when the wind turbine starts rotating.
Fill wind speed, ■o is cut-in wind speed at which power generation starts,
■LG is the rated wind speed at which the rated output of the wind turbine can be obtained, ■co
is the cut-out wind speed at which wind turbine operation is stopped and the energy of the feathering wind is released, Pl- is the rated output as a wind power generator, NVC is the cut-in rotation speed, NvL is the rated rotation speed, and the operation up to this rotation speed is In the range, the pitch angle of the blade is kept constant, and in the operating range of the rotation speed from this point onwards, the pitch angle of the blade is controlled so that the wind turbine rotation speed falls within a predetermined rotation speed range. NN is the no-load set rotation speed of the wind turbine, the upper 10% of NN is the control rotation speed range that is controlled from 1 to roll by pitch control, the curve PR is the loss power, and the period between VS and vo is the mechanical loss of the generator and the gear transmission loss (2
(squared curve), ■ o time 4, one member of the generator is excited, and v
Between NVL is excitation loss and total mechanical loss, and between VL and VCO is generator excitation loss and mechanical loss (almost constant).

この第4図において運転状況としては次の通りである。The operating conditions in FIG. 4 are as follows.

■待機:風速O〜■5の間は発電Vず上記変換器3も運
転をしない。
■Standby: When the wind speed is between O and ■5, no power is generated and the converter 3 does not operate.

■起動:J憬速■5〜V cの間は風のエネルギーが風
車を回転させるだけのエネルギーとして利用できる。
■Start-up: J speed ■ Between 5 and Vc, wind energy can be used as energy to rotate the windmill.

■カットイン:風力発電装置として発電を開始可能な状
態となり誘導機2に励磁を与える。
■Cut-in: The wind power generator becomes ready to start generating electricity, and the induction machine 2 is excited.

■0荷制御領域:風速V  −VLの闇は、第3図で説
明した出力最大制御を行なう。つまり、各風速の状況に
合った回転数になるように発電電力の制御を行なう。こ
れにより出力Pは風速(回転数)の3乗に比例した出力
特性を示し、各回転数での最大出力制御がなされる。
(2) Zero-load control region: In the darkness of the wind speed V-VL, the maximum output control explained in FIG. 3 is performed. In other words, the generated power is controlled so that the rotational speed matches each wind speed situation. As a result, the output P exhibits an output characteristic proportional to the cube of the wind speed (number of rotations), and maximum output control is performed at each number of rotations.

回転数Nは、Vsから立上り、風車の持つ慣性モーメン
トとバランスしながら立上がり、VC以後は風速に比例
して運転される。なお、回転数が上昇する過程と、風が
弱くなって回転数が下がってくる過程は矢印で示したよ
うにヒステリシス特性を示す。
The rotation speed N rises from Vs and rises while being balanced with the moment of inertia of the wind turbine, and after VC it is operated in proportion to the wind speed. Note that the process in which the rotational speed increases and the process in which the rotational speed decreases as the wind becomes weaker exhibit hysteresis characteristics as shown by the arrows.

■負仙固定領域:風速V 1 ”” V coの間は出
力Pを一定に保持し、入力される風のエネルギーをメカ
ニカルなピッチコンl−ロールで逃がし、回転数NをN
N上10%の範囲に制御する。
■Negative fixed region: During the wind speed V 1 "" V co, the output P is held constant, the input wind energy is released by the mechanical pitch control l-roll, and the rotation speed N is
N is controlled within a range of 10%.

■待機:風速■。。以上の風況においては、装置能力以
上の風力エネルギーとなるため、メカニカルガバナーに
よってフェザ−にし、エネルギーを逃がし風車を安全な
状態に維持する。
■Standby: Wind speed■. . In the above wind conditions, the wind energy exceeds the capacity of the equipment, so a mechanical governor is used to feather the wind turbine to release the energy and maintain the wind turbine in a safe state.

次に上述した第1図での変換器3による誘導機2の励磁
および制御、つまり、誘導発電機の運転について、第5
図とともに説明する。第5図は誘導機の特性を示し、モ
ータ領域を正、発電領域を負とし、横軸に励磁周波数を
示し、実線の各曲線は各励磁周波数における出力特性、
鎖線の各曲線はトルク特性を示す。発電機としての運転
領域aとしては、風車のカットイン回転数N からNN
C +ΔNとし、3φ(相)4P(極)の誘導機を利用する
ために、風車の定格回転数NvLを誘導機の電気周波数
601−1 zになるように増速機の増速比を決定づる
Next, regarding the excitation and control of the induction machine 2 by the converter 3 in FIG. 1 described above, that is, the operation of the induction generator, the fifth
This will be explained with figures. Figure 5 shows the characteristics of an induction machine, with the motor region being positive and the power generation region being negative, the horizontal axis showing the excitation frequency, and each solid curve representing the output characteristics at each excitation frequency.
Each dashed line curve represents torque characteristics. The operating range a as a generator is the cut-in rotation speed of the wind turbine from N to NN.
C + ΔN, and in order to use a 3φ (phase) 4P (pole) induction machine, determine the speed increase ratio of the speed increaser so that the rated rotation speed NvL of the wind turbine becomes the electrical frequency of the induction machine 601-1 z. Zuru.

誘導機の制御としては、第5図において、カッ1〜イン
回転数Nvcから定格回転数Nv1−までを誘導刷の入
力電圧V/局波敢f=一定とした運転を行/、′にい、
定格回転数”vl−以上では入力電圧V=一定とした運
転を行なう。すなわち、カットイン回転数N から定格
回転数”vLの間は入力に児合ったC 出力制御を行なう負荷制御域すで、出力およびトルクが
曲F11(ハ)および(ニ)で示すように回転数の上昇
に伴い上昇するように制御し、定格回転viNVLから
風車のピッヂコントロール制御範1111 NN±ΔN
の問は、定出力制御を行なう負拘固定域Cで、出力が曲
線(ハ)で示すように一定、トルクが曲線(ニ)で示す
ように回転数に反比例するように制御する。
To control the induction machine, as shown in Fig. 5, an operation is performed with the input voltage V/station wave f = constant for the induction machine from the cut-in rotation speed Nvc to the rated rotation speed Nv1-. ,
At the rated rotation speed "vl-" or higher, operation is performed with the input voltage V = constant.In other words, from the cut-in rotation speed N to the rated rotation speed "vL", the load control range where C output control is performed in accordance with the input is already in place. , the output and torque are controlled to increase as the rotation speed increases as shown in songs F11 (C) and (D), and the wind turbine pitch control control range 1111 NN±ΔN is controlled from the rated rotation viNVL.
The problem is in the fixed load range C where constant output control is performed, the output is constant as shown by curve (c), and the torque is controlled in inverse proportion to the rotational speed as shown by curve (d).

このような制御のためには風車の回転数に応じた誘導機
(発電機)側の周波数が同期周波rIl(tべりが零)
に、第5図に示すような出力、トルク特性を出す、すべ
り周波数を加えた周波数になるような[すべり周波数制
御] (すべりが負に大ぎくなれば出力が大きくなる)
を行なえばよい。
For such control, the frequency on the induction machine (generator) side, which corresponds to the rotation speed of the wind turbine, must be the synchronous frequency rIl (t error is zero).
[Slip frequency control] such that the output and torque characteristics as shown in Figure 5 are added, and the frequency becomes the sum of the slip frequency (the more negative the slip, the greater the output)
All you have to do is

上記制御を実行するための具体構成例を第6図に示す。FIG. 6 shows an example of a specific configuration for executing the above control.

同図において、30は上記変換器3(第1図)の本体構
成としてのコンバータ、31は回転数検出器4による風
車の検出回転数を、予め定められた回転数とパワーの関
係(例えば回転数の3乗カーブ)で出力信号PREFに
変換する回転数−バワー変換回路、32は上記回転数−
パワー変換回路31とコンバータ30の出力Pとを比較
する比較手段、33は上記比較手段32の出力が入力さ
れ系の特性を合わせるための補償回路、34は回転数検
出″a4の出力を受1ノ周波数−電圧の変換を行なうF
/V変換器、35は上記補償回路33とF/V変換器3
4の出力とを比較する比較手段、36は上記比較手段3
5の出力に基き、励磁周波数指令信号を発生する指令回
路であり、これらにより上記変換器3の制御部が構成さ
れている。
In the same figure, 30 is a converter as the main body structure of the converter 3 (FIG. 1), and 31 is a converter that detects the rotation speed of the wind turbine by the rotation speed detector 4 based on a predetermined relationship between the rotation speed and power (for example, rotation speed). 32 is the rotation speed-power conversion circuit which converts the output signal PREF into the output signal PREF using the cube of the number
Comparison means for comparing the output P of the power conversion circuit 31 and the converter 30; 33 is a compensation circuit to which the output of the comparison means 32 is inputted to match the characteristics of the system; 34 is a compensation circuit for receiving the output of the rotation speed detection "a4; F that performs frequency-voltage conversion
/V converter, 35 is the above-mentioned compensation circuit 33 and F/V converter 3
Comparison means for comparing the output of No. 4 with the output of No. 4, 36 is the comparison means 3
This is a command circuit that generates an excitation frequency command signal based on the output of the converter 5, and these constitute the control section of the converter 3.

そして、上述した通り、風車の回転数に基づき、パワー
係数Cp max点をとる風車の出力は定まることから
、風車の回転数から回転数−パワー変換回路31により
出力信号PREFに変換し、この出力信号P  とコン
バータ30からの出力PとをR[F 比較し、さらに上記補償回路33を通って風車の回転数
すなわちF/V変換器34の出力との比較により、励磁
周波数指令回路36にて励磁周波数at(l Illつ
まり、すべり周波数制御を行なう。なJ3、この励磁周
波数指令回路36により、上述の通り定格回転まで発電
機電圧(励磁電圧)/運転周波数=一定の制御を行ない
、定格回転以上の範囲は発電機電圧(励磁電圧)−一定
とした制御が行なわれ、これにより誘導機2の磁気飽和
などが発生することを防止して、良好な出力特性を維持
し得る。
As described above, since the output of the wind turbine that takes the power coefficient Cp max point is determined based on the rotation speed of the wind turbine, the rotation speed of the wind turbine is converted into the output signal PREF by the rotation speed-power conversion circuit 31, and this output By comparing the signal P with the output P from the converter 30 and the rotation speed of the wind turbine through the compensation circuit 33, that is, the output of the F/V converter 34, the excitation frequency command circuit 36 In other words, the excitation frequency command circuit 36 controls the generator voltage (excitation voltage)/operating frequency = constant until the rated rotation as described above, and maintains the rated rotation. In the above range, the generator voltage (excitation voltage) is controlled to be constant, thereby preventing magnetic saturation of the induction machine 2 and maintaining good output characteristics.

このように風車の回転数Nの3乗に比例した出力信号に
よりコンバータ30でもって、誘導Ia2をすべり周波
数制御211させ、その出力電力を制御することにより
、風車の出力特性に合った制御となり、風車は可変速で
定周速比制御され、最大の有効エネルギー取得が可能と
なる。
In this way, the converter 30 performs slip frequency control 211 on the induction Ia2 using an output signal proportional to the cube of the rotation speed N of the wind turbine, and by controlling its output power, control is achieved that matches the output characteristics of the wind turbine. The wind turbine has variable speed and constant circumferential speed ratio control, making it possible to obtain maximum effective energy.

また、風車を可変速にて、かつ、風車のブレードピッチ
角を風速に応じて上述のごとく所定状態に制御すること
により、平均風速の低い風況下においても、有効に発電
し、エネルギーの回生を行なうことが可能で、特に、誘
導機を用いた小型の゛発電装置としての汎用性の向上が
図れる。
In addition, by controlling the wind turbine at variable speed and the blade pitch angle of the wind turbine to a predetermined state according to the wind speed, even in wind conditions with low average wind speed, power can be effectively generated and energy can be regenerated. In particular, it is possible to improve the versatility as a small power generation device using an induction machine.

(発明の効果) 以上のように本発明によれば゛、誘導機を発電機として
作用させるとともに、風車の回転数の3乗に比例した発
ff1lfi出力が得られるように変換器にてすべり周
波数制御するようにしたことにより、風車は入力に応じ
た回転数で運転される可変速制御で、しかも定周速比制
御運転がなされ、効率良く大ぎなエネルギーを回生ずる
ことができると同時に、風況の急激な変化によるトルク
の変動を吸収し、構造材質面でのコスト上昇を防ぎ、か
つ信頼性の向上を図ることができ、さらに、低風速域に
て有効に発電し得る構成とすることが容易で、誘導機を
用いた発電装置の汎用性の向上を図ることができる。
(Effects of the Invention) As described above, according to the present invention, the induction motor acts as a generator, and the converter adjusts the slip frequency so that an output of ff1lfi proportional to the cube of the number of rotations of the wind turbine is obtained. By controlling the wind turbines, the wind turbines are operated with variable speed control that operates at a rotation speed according to the input, and are also operated with constant circumferential speed ratio control, making it possible to efficiently regenerate a large amount of energy and at the same time To absorb torque fluctuations caused by sudden changes in conditions, to prevent cost increases in terms of structural materials, to improve reliability, and to have a configuration that can effectively generate power in low wind speed ranges. is easy, and the versatility of a power generation device using an induction machine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の風力発電装置の一例を示す構成図、第
2図は本発明を説明するための風車におりる周速比に対
するパワー係数の特性図、第3図は同様に風車の回転数
に対するパワー係数、出力。 1〜ルクの特性図、第4図は同装置の制御を説明するた
めの制御チト一ト図、第5図は同装置の作用を説明する
ための励磁周波数に対する発電機の出力、トルクの特性
図、第6図は同装置の具体例を示す構成図である。 1・・・風車、2・・・誘導機、3・・・変換器、30
・・・コンバータ、31・・・回転数−パワー変換回路
、36・・・励磁周波数指令回路。 特許出願人     へ7マハ発動別株式会社fi  
2  図 −側′L九T5尺
Fig. 1 is a configuration diagram showing an example of the wind power generation device of the present invention, Fig. 2 is a characteristic diagram of the power coefficient with respect to the circumferential speed ratio of the wind turbine to explain the present invention, and Fig. 3 is a diagram showing the power coefficient of the wind turbine as well. Power coefficient and output relative to rotational speed. Fig. 4 is a control diagram to explain the control of the device, and Fig. 5 is a characteristic diagram of generator output and torque with respect to excitation frequency to explain the action of the device. FIG. 6 is a configuration diagram showing a specific example of the device. 1...Windmill, 2...Induction machine, 3...Converter, 30
Converter, 31 Rotation speed-power conversion circuit, 36 Excitation frequency command circuit. Patent Applicant: To7 Maha Motion Co., Ltd. fi
2 Figure-side 'L9 T5 shaku

Claims (1)

【特許請求の範囲】[Claims] 1、ブレードのピッチ角が制御可能な風力エネルギーを
動力に変換する風車と、この動力により駆動される誘導
機と、上記誘導機が発電機として作用し上記風車の回転
数の3乗に比例した発電機出力が得られ、かつ、発電開
始回転数から定格出力を発生する回転数までは発電機電
圧/運転周波数の比が一定となり、定格出力を発生する
回転数以上において発電機電圧が一定となるように上記
誘導機をすべり周波数制御する変換器とからなり、風車
の起動から定格回転数までの運転域において上記ブレー
ドのピッチ角を一定とし、定格回転数以上の運転域にお
いて風車回転数が設定回転数範囲内に収まるように上記
ブレードのピッチ角を制御するようにしたことを特徴と
する風力発電装置。
1. A windmill that converts wind energy into power with a controllable pitch angle of the blades, an induction machine driven by this power, and an induction machine that acts as a generator and is proportional to the cube of the rotation speed of the windmill. When generator output is obtained, the ratio of generator voltage/operating frequency is constant from the rotation speed at which power generation starts to the rotation speed at which rated output is generated, and the generator voltage remains constant at or above the rotation speed at which rated output is generated. It consists of a converter that controls the slip frequency of the induction machine so that the pitch angle of the blades is constant in the operation range from the start of the wind turbine to the rated rotation speed, and the wind turbine rotation speed is kept constant in the operation range above the rated rotation speed. A wind power generation device characterized in that the pitch angle of the blades is controlled so as to fall within a set rotation speed range.
JP60262906A 1985-11-22 1985-11-22 Wind power-generator Pending JPS62123995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262906A JPS62123995A (en) 1985-11-22 1985-11-22 Wind power-generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262906A JPS62123995A (en) 1985-11-22 1985-11-22 Wind power-generator

Publications (1)

Publication Number Publication Date
JPS62123995A true JPS62123995A (en) 1987-06-05

Family

ID=17382247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262906A Pending JPS62123995A (en) 1985-11-22 1985-11-22 Wind power-generator

Country Status (1)

Country Link
JP (1) JPS62123995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274198A (en) * 1988-09-09 1990-03-14 Akaho Yoshio Generator by natural energy utilization
JP2006500888A (en) * 2002-09-20 2006-01-05 ソイル マシン ダイナミックス リミテッド A device that generates power from tidal water movement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274198A (en) * 1988-09-09 1990-03-14 Akaho Yoshio Generator by natural energy utilization
JP2006500888A (en) * 2002-09-20 2006-01-05 ソイル マシン ダイナミックス リミテッド A device that generates power from tidal water movement
JP4698224B2 (en) * 2002-09-20 2011-06-08 ソイル マシン ダイナミックス リミテッド System for generating electric power from tidal water movement and method for converting tidal water movement into electric power energy and supplying it to a power grid

Similar Documents

Publication Publication Date Title
Muljadi et al. Power quality issues in a hybrid power system
US9450416B2 (en) Wind turbine generator controller responsive to grid frequency change
JP5320311B2 (en) Variable speed generator and control method thereof
EP2306001A2 (en) Multi-use energy storage for renewable sources
Poddar et al. Sensorless variable-speed controller for existing fixed-speed wind power generator with unity-power-factor operation
JP2009531011A (en) Variable speed wind turbine with exciter and power converter not connected to the grid
Jayadev Power: Windmills stage a comeback:‘Born again’amid the search for fossil-fuel alternatives, wind-generated electricity now makes technical and economic sense
JP2001512804A (en) Variable speed wind turbine generator
US11962262B2 (en) Wind turbine with virtual synchronous generator and DC link control
Gish et al. An adjustable speed synchronous machine for hydroelectric power applications
JP2515750B2 (en) Wind power generator control method
EP4009468A1 (en) System and method for controlling a wind turbine
US9739264B2 (en) Method of operating a wind turbine
JPH0736718B2 (en) Wind power generator
JPS62123995A (en) Wind power-generator
JPS62123999A (en) Wind power generator
JPS62123998A (en) Wind power-generator
Mishra et al. Modeling and control of standalone PMSG WECS for grid compatibility at varying wind speeds
JPS62123994A (en) Wind power generator
JPS62123992A (en) Wind power-generator
JPS62123996A (en) Wind power-generator
JPS62123993A (en) Wind power-generator
RU2742889C1 (en) Method of electric power supply for autonomous consumers by wind power devices
JPS61277880A (en) Pumping plant using wind mill
JPS62277030A (en) Independent electric source