JPS62123512A - Hot and cold water mixing valve device - Google Patents

Hot and cold water mixing valve device

Info

Publication number
JPS62123512A
JPS62123512A JP26321185A JP26321185A JPS62123512A JP S62123512 A JPS62123512 A JP S62123512A JP 26321185 A JP26321185 A JP 26321185A JP 26321185 A JP26321185 A JP 26321185A JP S62123512 A JPS62123512 A JP S62123512A
Authority
JP
Japan
Prior art keywords
temperature
hot water
switching
water supply
supply valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26321185A
Other languages
Japanese (ja)
Inventor
Osamu Tsutsui
修 筒井
Hidehiko Kuwabara
桑原 英彦
Hirohiko Yasuda
保田 裕彦
Hirobumi Takeuchi
博文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP26321185A priority Critical patent/JPS62123512A/en
Publication of JPS62123512A publication Critical patent/JPS62123512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize both the overshoot and undershoot and also to prevent previously the hunting phenomenon by resetting the switching temperature to its original level in case the temperature difference between the tepid water detecting and setting means is kept within a fixed range for a fixed period of time. CONSTITUTION:A temperature difference monitor means 26 contains a timer which is started by the generation of the switch signal SW. Then the reset signal RS is produced and the output set value of a switching temperature setting/changing means 25 is reset to the initial values a1 and -a1 as long as the output temperature difference DELTAT of a comparator means 23 is kept within a reference temperature range for a fixed period of time after the timer is started. Therefore a memory control means 27 usually reads a low-speed characteristic curve out of a ROM 28. However this low-speed characteristic curve is changed to a high-speed characteristic curve when the difference T between the real temperature TA and the set temperature TO exceeds the 1st switching temperature a1. For this purpose, an address changing action is carried out. Then the switching temperature set value (a) is changed to the 2nd set value a2. The means 27 can produce a prescribed address by using the value a2 as the data.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、所定温度の湯と水とを連動するバルブを介し
て混合し、制御手段を用いてその混合割合を制御し所望
の設定温度の湯をカランに供給し得る湯水混合バルブ装
置に係り、特に当該制御手段における改善に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention involves mixing hot water at a predetermined temperature with water via an interlocking valve, controlling the mixing ratio using a control means, and adjusting the temperature to a desired set temperature. The present invention relates to a hot water mixing valve device capable of supplying hot water to a boiler, and particularly relates to an improvement in the control means.

(従来の技術) 所定温度の湯の通過量を制御する給湯バルブ及びこの給
湯バルブと連動し水の通過量を制御する給水バルブを備
え、各バルブを通過する湯並びに水を混合水管で混合し
、この混合割合を制御することにより、設定手段によっ
て定めた所定温度の湯をカランに供給する′JA置は各
積卸られている。
(Prior art) A hot water supply valve that controls the amount of hot water passing through at a predetermined temperature, and a water supply valve that operates in conjunction with the hot water supply valve to control the amount of water that passes through, is provided, and the hot water and water passing through each valve are mixed in a mixing water pipe. By controlling this mixing ratio, each JA unit is loaded and unloaded, which supplies hot water at a predetermined temperature determined by the setting means to the boiler.

この場合、給湯パイプ又は給水パイプなどから圧力変動
に伴い設定温度とカランへ供給する湯の温度(以下、「
実温度」とする)との差が大きく変動し、オーバーシュ
ート又はアンダシュートが発生するおそれがある。この
場合、通常は設定温度への復帰を速めるべく前述のバル
ブ開閉速度を速める。同様の状態は、カランから初めて
湯を出そうとする時点での、いわゆるコールドスタート
時にも生ずる。
In this case, the temperature of the hot water supplied from the hot water supply pipe or water supply pipe to the set temperature and the temperature of the hot water supplied to the cooker (hereinafter referred to as "
(actual temperature)) may fluctuate significantly, leading to overshoot or undershoot. In this case, the aforementioned valve opening/closing speed is usually increased in order to speed up the return to the set temperature. A similar situation occurs during a so-called cold start, when hot water is first started from the pot.

この種の制御を実行する従来の制御手段のバルブ開閉速
度制御ユニー/ )は、例えば第7図に示すようである
。すなわち、ユニットは、混合水管内の実温度Tを検出
する湯温検出手段(71)、所望の湯温を設定するため
の湯温設定手段(72)、湯温検出手段(71)の検出
した実温度T^と湯温設定手段(72)の設定温度To
との差ΔTを演算する比較手段(73)、比較手段(7
3)の出力ΔTに応じてメモリ(ROM)(75)から
の読出しを行うためのアドレスを発生するメモリ制御手
段(74)、及び前述のROM (75)などを備えて
いる。ROM(75)は1例えば第8図に示すような実
温度TAと設定温度To との温度差ΔTに応じて決定
されるバルブの開閉作動速度Hに関する特性曲線(80
)を記憶している。すなわち、制御手段は、設定温度T
oと実温度T^との温度差ΔTに応じて、メモリ(75
)からバルブの開閉作動速度Rを順次読出し、第8図の
特性曲線(80)のように制御する。この場合、温度差
ΔTがある値aより大きいときは、バルブ作動速度Rは
上限速度RMで応答し、温度差ΔTがこの値aより小さ
くなるとバルブ作動速度Rも次第に小さくなる。
A conventional valve opening/closing speed control unit/) for executing this type of control is as shown in FIG. 7, for example. That is, the unit includes a hot water temperature detecting means (71) for detecting the actual temperature T in the mixing water pipe, a hot water temperature setting means (72) for setting a desired hot water temperature, and a hot water temperature detecting means (71) for detecting the actual temperature T in the mixing water pipe. Actual temperature T^ and set temperature To of hot water temperature setting means (72)
Comparison means (73) for calculating the difference ΔT between
3), a memory control means (74) for generating an address for reading from a memory (ROM) (75) in accordance with the output ΔT, and the aforementioned ROM (75). The ROM (75) has a characteristic curve (80
) is remembered. That is, the control means controls the set temperature T
The memory (75
), the valve opening/closing operation speed R is sequentially read out and controlled as shown in the characteristic curve (80) in FIG. In this case, when the temperature difference ΔT is larger than a certain value a, the valve operating speed R responds at the upper limit speed RM, and when the temperature difference ΔT becomes smaller than this value a, the valve operating speed R also gradually decreases.

(発明が解決しようとする問題点) この第8図のような特性曲線(80)を有する制御手段
によれば、上限速度Rを相当の値に設定しておくと温度
差ΔT=a以下での応答かにぶくなり、また上限速度R
Mを充分高いものとすると温度差a以下での応答は迅速
なものとなるが、圧力変動や初期コールドスタートに伴
って、設定温度を犬きく上回るオーバーシュートや、下
回るアンダシュートを引き起こし易くなり、ひいてはこ
れらの変動を繰替えずハンチングが生じ易くなる。
(Problem to be Solved by the Invention) According to the control means having the characteristic curve (80) as shown in FIG. The response becomes sharper, and the upper limit speed R
If M is set high enough, the response will be quick when the temperature difference is less than a, but pressure fluctuations and initial cold starts will easily cause overshoot or undershoot below the set temperature. As a result, these fluctuations are not repeated and hunting is likely to occur.

このハンチングを防止するため、第7図の構成にハンチ
ング検知手段(76)を設け、ROM (75)に第9
図に示すような2種類の特性曲線(90)、(91)を
記憶させておくものが提案されている。これは、ハンチ
ングが生じた場合にバルブの作動速度の変化率を小さく
するように、ROM(75)の特性曲線を曲線(90)
から曲線(91)に切換えるようにしたものである。し
かし、この制御は、ハンチングが生じてからの対応であ
りオーバーシュート並びにアンダシュートを最小とし、
又はハンチングを防止するものではなかった。
In order to prevent this hunting, hunting detection means (76) is provided in the configuration shown in FIG.
It has been proposed to store two types of characteristic curves (90) and (91) as shown in the figure. This changes the characteristic curve of the ROM (75) to the curve (90) so as to reduce the rate of change of the valve actuation speed when hunting occurs.
In this example, the curve is switched from the curve (91) to the curve (91). However, this control is a response after hunting occurs and minimizes overshoot and undershoot.
Or, it did not prevent hunting.

従って、本発明は1以上の従来技術の欠点を除去しよう
として成されたものであり、圧力変動及び初期コールド
スタートのいずれにあっても。
Accordingly, the present invention seeks to obviate one or more of the drawbacks of the prior art, both in pressure fluctuations and initial cold starts.

オーバーシュート並びにアンダシュートを最小とし、又
はハンチングを未然に防止し得る湯水混合バルブ装置を
提供することを目的とする。
It is an object of the present invention to provide a hot water mixing valve device that can minimize overshoot and undershoot or prevent hunting.

(問題点を解決するための手段並びに作用)この目的を
達成するため1本発明によれば、制御手段の特性曲線を
少なくとも2種類設け、前記温度差が特定の切換温度を
越える場合に、一方の特性曲線から他方の特性曲線へ移
行するように制御するが、この移行のための切換温度を
複数設けるようにし、また温度差が正及び負の基準温度
を特定し正の基準温度を越えた時には負側の切換温度を
変更し、負の基準温度を越えた時には正側の切換温度を
変更し、このくり返しを行う度毎に当該切換温度を変更
するようにし、且つこの結果前記温度差が一定範囲に一
定時間あるときは、切換温度を初期状態の切換温度に復
帰させるようにする。このような構成とすることにより
、一度移行を行う毎に急速度特性への移行を順次しにく
くするようにでき、圧力変動に伴うオーバーシュート及
びアンダシュートを抑制でき、また安定後に初期状態に
戻すことにより初期コールドスタート時のオーバーシュ
ート及びアンダシュートに対応することができるように
なる。
(Means and operations for solving the problem) To achieve this object, according to the present invention, at least two types of characteristic curves of the control means are provided, and when the temperature difference exceeds a specific switching temperature, one type of characteristic curve is provided. Control is performed so that the characteristic curve shifts from one characteristic curve to the other, but multiple switching temperatures are provided for this transition, and the temperature difference is specified as positive and negative reference temperatures, and when the temperature difference exceeds the positive reference temperature. Sometimes, the switching temperature on the negative side is changed, and when the negative reference temperature is exceeded, the switching temperature on the positive side is changed, and each time this is repeated, the switching temperature is changed, and as a result, the temperature difference is When the temperature remains within a certain range for a certain period of time, the switching temperature is returned to the initial state. With this configuration, it is possible to make the transition to the rapid characteristic sequentially difficult each time the transition is performed, suppress overshoot and undershoot due to pressure fluctuation, and return to the initial state after stabilization. This makes it possible to deal with overshoot and undershoot at the initial cold start.

例えば、本発明の実施例に係る湯水混合バルブ装置グに
よれば、所定温度の湯の通過(−を制御する給湯バルブ
(3)と、水の通過量を制御する給水バルブ(4)を1
輛で駆動するかあるいはそれぞれ連動して2軸で駆動す
る駆動手段と、前記給湯バルブ(3)を通過する所定量
の湯と前記給水/ヘルプ(4)を通過する所定量の水と
を混合してカラン(6)へ導く混合水管(5)と、この
混合水管(5)内のン易温及び流量をそれぞれ検出する
温度検出手段(8)及びがj−ft検出手段(7)と、
この温度検出手段(8)の検出温度T^と希望する設定
温度To との温度差ΔTに基づき一定の特性曲線に従
って前記給湯バルブ(3)及び前記給水バルブ(4)の
開閉速度を決定する/ヘルプ開閉速度制御ユニットを有
する制御手段とを備え、前記制御り段のバルブ開閉速度
制御ユニットは、少なくとも2つの特性曲線(A、B)
を有し、前記給湯バルブ(3)並びに前記給水バルブ(
4)の開閉速度を決定する一方の特性曲線から他方の特
性曲線へ移行する複数の切換温度(at、a2.a3.
−al、−a2.−a3)を設定し、前記温度差ΔTが
前記切換温度(al、a2,3a、−al、−a2.−
a3)を越えた場合に前記移行を実行し、且つ前記温度
差ΔTが正及び負の基準温度(b、−b)を特定し、正
の基準温度(b)を越えた時には負側の切換温度を変更
し、負の基準温度(−b)を越えた時には正側の切換温
度を変更し、このくり返しを行う度毎に前記切換温度(
al、a2.a3.−al、−a2.−a3)を順次変
更(al+a2−+a3)、(−al−+−a2 +−
a3)するように制御し、前記温度差ΔTが一定時間所
定範囲にあるときは前記切換温度を初期状態の切換温度
(al)に復帰させるように制御するようにする。
For example, according to the hot water mixing valve device according to the embodiment of the present invention, the hot water supply valve (3) that controls the passage of hot water at a predetermined temperature (-) and the water supply valve (4) that controls the amount of water passing through are connected to one
A drive means driven by a vehicle or driven by two shafts in conjunction with each other, mixes a predetermined amount of hot water passing through the hot water supply valve (3) and a predetermined amount of water passing through the water supply/help (4). a mixing water pipe (5) that leads to a flow rate and a flow rate, a temperature detection means (8) and a j-ft detection means (7) for detecting the temperature and flow rate in this mixing water pipe (5), respectively;
The opening/closing speed of the hot water supply valve (3) and the water supply valve (4) is determined according to a certain characteristic curve based on the temperature difference ΔT between the temperature T^ detected by the temperature detection means (8) and the desired set temperature To. control means having a help opening/closing speed control unit, the valve opening/closing speed control unit of the control stage having at least two characteristic curves (A, B);
The hot water supply valve (3) and the water supply valve (
4) A plurality of switching temperatures (at, a2.a3.
-al, -a2. -a3), and the temperature difference ΔT is the switching temperature (al, a2, 3a, -al, -a2.-
Execute the transition when the temperature difference ΔT exceeds a3), specify positive and negative reference temperatures (b, -b), and switch to the negative side when the temperature difference ΔT exceeds the positive reference temperature (b). When the temperature is changed and the negative reference temperature (-b) is exceeded, the positive switching temperature is changed, and each time this process is repeated, the switching temperature (
al, a2. a3. -al, -a2. -a3) sequentially changed to (al+a2-+a3), (-al-+-a2 +-
a3), and when the temperature difference ΔT is within a predetermined range for a certain period of time, the switching temperature is controlled to return to the initial state switching temperature (al).

また1例えば、本発明の実施例に係る湯水混合バルブ装
着によれば、前記制御手段のバルブ開閉速度制御ユニッ
トは、前記切換温度の変更の度毎に前記切換温度のうち
正側は低いものから高いものへ負側は高いものから低い
ものへと変更させるように制御する。
For example, according to the hot water mixing valve installation according to the embodiment of the present invention, the valve opening/closing speed control unit of the control means changes the switching temperature from the positive side to the lower one every time the switching temperature is changed. The negative side is controlled to change from high to low.

更に、例えば、本発明の実施例に係る湯水混合バルブ装
置によれば、前記制御手段の前記バルブ開閉速度制御ユ
ニットが有する前記一方の特性曲線は急速度曲線であり
、前記他方の特性曲線は緩速度曲線であるようにする。
Furthermore, for example, according to the hot water mixing valve device according to the embodiment of the present invention, the one characteristic curve of the valve opening/closing speed control unit of the control means is a rapid curve, and the other characteristic curve is a slow curve. Let it be a velocity curve.

また更に、例えば、本発明の実施例に係る湯水混合バル
ブ装置によれば、前記制御手段の初期状態の切換温度は
複数の切換温度のうち最も低い温度のものである。
Furthermore, for example, according to the hot water mixing valve device according to the embodiment of the present invention, the switching temperature in the initial state of the control means is the lowest temperature among the plurality of switching temperatures.

(発明の実施例) 以下、添付図面に従って本発明の詳細な説明する。なお
、各図において回−の符号は同様の対象を示すものとす
る。
(Embodiments of the Invention) The present invention will be described in detail below with reference to the accompanying drawings. It should be noted that in each figure, the numeral ``-'' indicates the same object.

第1図は本発明の実施例に係る湯水混合バルブ装置の全
体的構成図を示す。図において、(1)は所定温度の湯
を供給するための給湯管、(2)は水を供給するための
給水管、(3)は給湯管(1)により供給される湯の通
過量を制御する給湯バルブ、(4)はこの給湯バルブ(
3)と連動し給水管(2)により供給される水の通過量
を制御する給水バルブ、(5)は給湯バルブ(3)を通
過する所定量の湯と給水バルブ(4)を通過する所定t
の水とを混合してカラン(8)へ導く混合水管、(6)
は希望温度の湯を出すカラン、(7)は混合水管(5)
を流れる混合水の流rMを計量する流量センサ、(8)
は混合水管(5)を流れる混合水の温度を計量するサー
モスタンドなどの温度センサ、(9)は装置をオンオフ
しまた供給を希望する湯の温度並びに量を設定するなど
の操作を行う操作設定手段、(10)は操作設定−L段
(9)の設定内容に基づき2つのバルブ(3)、(4)
を開閉作動させる開閉作動指令信号CCを形成する演算
制御手段、(11)は演算制御手段(10)の指令信号
CCによりバルブ(3)、(4)を駆動する駆動回路や
駆動用モータを含む駆動手段である。
FIG. 1 shows an overall configuration diagram of a hot water mixing valve device according to an embodiment of the present invention. In the figure, (1) is a water supply pipe for supplying hot water at a predetermined temperature, (2) is a water supply pipe for supplying water, and (3) is the amount of hot water supplied by hot water pipe (1). The hot water supply valve to be controlled, (4) is this hot water supply valve (
3) is a water supply valve that controls the amount of water that passes through the water supply pipe (2), and (5) is a water supply valve that controls the amount of water that passes through the water supply valve (3) and a predetermined amount of hot water that passes through the water supply valve (4). t
mixing water pipe (6) that mixes water with water and leads it to Karan (8);
(7) is the water pipe that provides hot water at the desired temperature (5)
(8) a flow rate sensor for measuring the flow rM of the mixed water flowing through the
(9) is a temperature sensor such as a thermostand that measures the temperature of the mixed water flowing through the mixing water pipe (5), and (9) is an operation setting that turns the device on and off and sets the temperature and amount of hot water desired to be supplied. Means, (10) is the operation setting - two valves (3), (4) based on the setting contents of L stage (9)
Arithmetic control means (11) forms an opening/closing operation command signal CC for opening/closing operation, and (11) includes a drive circuit and a drive motor that drive the valves (3) and (4) by the command signal CC of the arithmetic control means (10). It is a driving means.

すなわち、この実施例によれば、波量センサ(7)及び
温度センサ(8)の検出信号に基づき、演算制御手段(
10)は、カラン(6)において設定量及び設定温度の
湯が得られるように指令信号CCを形成し、駆動手段(
11)を介してバルブ(3)、(4)を作動させる。従
って、演算制御手段(10)は、流量制御ユニットと、
給湯温度を制御するためにバルブの開閉速度を制御する
バルブ開閉速度制御ユニットとを有する。本発明は後者
に係るものであす、本発明の実施例に係るバルブ開閉速
度制御ユニットは第2図に示すようである。図において
、(21)は前述の温度センサ(8)を含み実温度TA
に対応する電気信号を形成する湯温検出手段、(22)
は前述の操作設定手段(3)のうち希望する湯の温度に
対応する電気信号Tol形成する湯温設定手段、(23
)は湯温検出手段(21)及び湯温設定手段(22)の
各出力信号T^、Toの差を演算し実温度T^と設定温
度Toとの差温度Δ丁に対応する電気信号を形成する比
較手段、 (24)は前記温度差ΔTが一定値aより大
きいか小さいかを判断し後述のメモリの内容を切換える
ための切換信号SWを形成する切換指令手段、 (25
)は切換指令手段(24)の切換温度aを設定する切換
温度設定手段、(2B)は温度差ΔTが基準温度範囲内
に一定時間(例えば、10秒)維持されるかどうかを判
断する温度差監視手段、(27)は信号ΔT、SWに基
づいてメモリ(ROM)(2B)から読出す内容を決定
し所定のアドレスを発生させるメモリ制御手段、(28
)はバルブ(3)、(4)を駆動するため、第3図で示
す急速度特性曲線A及び緩速度特性曲線Bを記憶してい
るメモリである。
That is, according to this embodiment, the calculation control means (
10) forms a command signal CC so that hot water of a set amount and temperature is obtained in the run (6), and drives the drive means (
11) to operate valves (3) and (4). Therefore, the calculation control means (10) includes a flow rate control unit,
The valve opening/closing speed control unit controls the opening/closing speed of the valve to control the hot water temperature. The present invention relates to the latter, and a valve opening/closing speed control unit according to an embodiment of the present invention is shown in FIG. In the figure, (21) includes the aforementioned temperature sensor (8) and the actual temperature TA
(22) hot water temperature detection means for forming an electrical signal corresponding to;
Of the aforementioned operation setting means (3), the hot water temperature setting means (23) generates an electric signal Tol corresponding to the desired hot water temperature;
) calculates the difference between the output signals T^ and To of the hot water temperature detection means (21) and the hot water temperature setting means (22), and generates an electric signal corresponding to the difference temperature Δc between the actual temperature T^ and the set temperature To. (24) is a switching command means that determines whether the temperature difference ΔT is larger or smaller than a constant value a and forms a switching signal SW for switching the contents of the memory (to be described later); (25)
) is a switching temperature setting means for setting the switching temperature a of the switching command means (24), and (2B) is a temperature for determining whether the temperature difference ΔT is maintained within the reference temperature range for a certain period of time (for example, 10 seconds). The difference monitoring means (27) is a memory control means (28) which determines the content to be read from the memory (ROM) (2B) based on the signals ΔT and SW and generates a predetermined address.
) is a memory that stores a rapid speed characteristic curve A and a slow speed characteristic curve B shown in FIG. 3 in order to drive the valves (3) and (4).

以上の構成要素のうち重要なものを更に詳述する。切換
指令手段(24)は、温度差信号ΔTをそのまま通過さ
せるが、これに併せて温度差ΔTが切換温度設定値aを
越えているがどうかを監視し、ΔTeaである場合には
、切換信号SWを送出する。この切換信号SWの発生す
る前は、第3図の変化率の小ざい緩速度特性曲線Bに対
応するデータをROM (28)から読出し、相当する
制御を実行する。また、切換信号SWの発生後は、第3
図の変化率の大きい急速度特性曲線Aに切換え、対応す
るデータをROM (28)から読出し、相当する制御
を実行する。八T≦aである場合には緩速度特性曲線B
で制御する。
Among the above components, important ones will be explained in further detail. The switching command means (24) passes the temperature difference signal ΔT as is, but also monitors whether the temperature difference ΔT exceeds the switching temperature set value a, and if it is ΔTea, transmits the switching signal. Send SW. Before the switching signal SW is generated, data corresponding to the slow speed characteristic curve B with a small rate of change in FIG. 3 is read from the ROM (28), and corresponding control is executed. Also, after the switching signal SW is generated, the third
Switching is made to the rapidity characteristic curve A shown in the figure, which has a large rate of change, the corresponding data is read from the ROM (28), and the corresponding control is executed. 8 If T≦a, slow speed characteristic curve B
Control with.

ところで、このような切換温度設定値aは、切換温度設
定変更手段(25)によって与えるものであり、この切
換温度設定変更手段(25)は例えば、第1、第2)第
3の3つの切換温度設定値(al、a2 。
By the way, such a switching temperature setting value a is given by a switching temperature setting changing means (25), and this switching temperature setting changing means (25) is configured to control three switching temperatures, for example, first, second) and third. Temperature set value (al, a2.

a3)(at(a2(a3)を正側及び負側に準備する
。この設定値(al、a2 、 a3)は、切換指令手
段(24)の切換信号SWが送出されるタイミング毎に
、すなわち正側及び負側基準温度を越える毎に、設定値
aを正側はd1→a2→a3と負側は−al→−a2→
−a3 と変更させる。
a3)(at(a2(a3)) is prepared on the positive side and the negative side. These set values (al, a2, a3) are set at each timing when the switching signal SW of the switching command means (24) is sent out, that is, Each time the positive side and negative side reference temperatures are exceeded, the set value a is changed to d1 → a2 → a3 on the positive side and -al → -a2 → on the negative side.
-a3.

また、温度差監視手段(28)は、切換信号SWの発生
で起動するタイマを備えており、タイマの起動時から一
定時間(例えば、10秒間)比較手段(23)の出力温
度差ΔTは基準温度範囲内に維持されていれば、前述の
切換温度設定変更手段(25)をリセット信号R5を発
生し切換温度設定変更手段(25)の出力設定値を初期
値すなわち(at、−al))に戻す。
Further, the temperature difference monitoring means (28) is equipped with a timer that is started upon generation of the switching signal SW, and the output temperature difference ΔT of the comparison means (23) is set for a certain period of time (for example, 10 seconds) from the time when the timer is started. If the temperature is maintained within the range, a reset signal R5 is generated to reset the switching temperature setting changing means (25), and the output setting value of the switching temperature setting changing means (25) is set to the initial value ((at, -al)). Return to

従って、メモリ制御手段(27)は、通常の場合はメモ
リ(28)から緩速度特性曲線Bを読出すように制御す
るが、実温度T^と設定温度Toとの温度差Δ丁が第1
切換温度(al)を越えるときは、この切換温度(al
)で急速度特性曲線Aに移行するように、アドレスを変
更する。また、この後前述のように切換温度設定値aは
第2の設定値(a2)に変更されるため、メモリ制御手
段(27)はこの設定値(a2)をデータとして入力さ
れ所定のアドレスを発生させることができるようになっ
ている0以上の説明で明らかであるが、本発明によれば
、緩速度特性曲線Bから急速度特性曲線Aへの移行を切
換温度温度差(at、−al)から出発して、正側及び
負側基準温度を越える度毎に順次変更するものであり、
複数箇所で同時に移行を可能とするものではない。なお
、−0,5≦ΔT≦+0.5の範囲は、実温度T^が設
定温度Toにあるとして許容できるものとして、バルブ
を作動させない、いわば不感領域である。
Therefore, the memory control means (27) normally controls the slow speed characteristic curve B to be read from the memory (28), but if the temperature difference Δc between the actual temperature T^ and the set temperature To is the first
When the switching temperature (al) is exceeded, this switching temperature (al
), the address is changed so as to shift to the rapidity characteristic curve A. Further, since the switching temperature set value a is subsequently changed to the second set value (a2) as described above, the memory control means (27) receives this set value (a2) as data and inputs the predetermined address. According to the invention, the transition from the slow speed characteristic curve B to the fast speed characteristic curve A is made possible by the switching temperature temperature difference (at, -al ), and are changed sequentially each time the positive and negative reference temperatures are exceeded.
It is not possible to migrate to multiple locations at the same time. Note that the range of -0.5≦ΔT≦+0.5 is a so-called dead area in which the actual temperature T^ is considered to be acceptable as being at the set temperature To, and the valve is not operated.

次に、この実施例の動作を第4図のフローチャート及び
第5図の実温度変化特性図を参照しつつ説明する。以下
の説明において、(40)〜(49)の番号はフローチ
ャート中の各ブロックの符号に対応する。また(43−
Y) 、(43−N)などの符号は判断ブロック(43
)の判断がそれぞれ肯定的及び否定的であることを表す
、更に、切換温度(al、a2.a3)はそれぞれ3℃
、5.5℃、8℃の2.5℃間隔でとり)1(べ(温度
すは本実施例では第1の切換温度a1と同じ3℃にとっ
であるとする。
Next, the operation of this embodiment will be explained with reference to the flowchart of FIG. 4 and the actual temperature change characteristic diagram of FIG. 5. In the following explanation, numbers (40) to (49) correspond to the symbols of each block in the flowchart. Also (43-
The codes such as Y) and (43-N) are the judgment block (43
) represent positive and negative judgments, respectively.Furthermore, the switching temperatures (al, a2.a3) are each 3°C.
, 5.5°C, and 8°C at intervals of 2.5°C) 1 (in this embodiment, the temperature is set at 3°C, which is the same as the first switching temperature a1).

平常に装置が起動すると(40)、切換温度設定手段(
25)(7)設定aを第1の切換温度(al)(−3°
C)とすへく、CPUなとの主制御装置(図示せず)は
切換温度設定変更手段(25)の係数m、nをそれぞれ
1とする(41.42) 。
When the device starts normally (40), the switching temperature setting means (
25) (7) Set the setting a to the first switching temperature (al) (-3°
C) The main controller (not shown) such as the CPU sets the coefficients m and n of the switching temperature setting changing means (25) to 1 (41.42).

ここで、圧力変動により実温度T^がト昇1゜始め、設
定温度To との差ΔTがa1=3℃を越えたとすると
、切換指令手段(24)では、T^〉To +alがチ
ェックされているため(43)、この判断が成立しく 
43−Y)切換指令手段(24)は切換信号SWを送出
し、メモリ(28)が急速度特性曲線Aを選択するよう
にメモリ制御手段(27)を作動させる。また、同時に
基準温度b=3°Cを越えるために切換温度設定変更手
段(25)にこの切換信号SWを与え、係数値を1つ進
めてn=2としく44)、切換温度の設定値−a2を準
備する。このことにより、アンダシュート側への制御を
緩慢にしアンダシュートの発生を抑制している。
Here, if the actual temperature T^ starts to rise by 1° due to pressure fluctuation and the difference ΔT from the set temperature To exceeds a1 = 3°C, the switching command means (24) checks T^>To +al. (43), this judgment does not hold.
43-Y) The switching command means (24) sends out the switching signal SW and operates the memory control means (27) so that the memory (28) selects the rapidity characteristic curve A. At the same time, in order to exceed the reference temperature b=3°C, this switching signal SW is given to the switching temperature setting changing means (25), and the coefficient value is advanced by one to set n=2 (44), and the switching temperature setting value - Prepare a2. This makes the control toward the undershoot side slow and suppresses the occurrence of undershoot.

しかし、アンダシュートが生じた場合には、切換指令手
段(24)で、T^<To−a2がチェックされている
ため、この判断が成立し切換指令手段(24)は切換信
号SWを送出し、メモリ(28)が急速度特性曲線Aを
選択するようにメモリ制御手段(27)を作動させる。
However, if undershoot occurs, the switching command means (24) has checked that T^<To-a2, so this judgment is established and the switching command means (24) sends out the switching signal SW. , actuating the memory control means (27) such that the memory (28) selects the rapidity characteristic curve A.

また、これより先に基準温度b=−3℃を越えるためT
^≦To −bが成立しく45−Y)切換温度設定変更
手段(25)にこの切換信号SWを与え、係数値を1つ
すすめてm=2としく4B)、切換温度の設定値(a2
)を準備する。このことにより、オーバーシュート側へ
の制御を緩慢にしオーバーシュートの発生を抑制してい
る。この実施例によれば、同様の変更が切換温度(a3
)(m=3.n、=3)まで行われる。
Also, since the reference temperature b=-3℃ is exceeded earlier than this, T
Since ^≦To -b is established, 45-Y) Give this switching signal SW to the switching temperature setting change means (25), advance the coefficient value by one, set m=2, and set the switching temperature setting value (a2).
) to prepare. This makes the control toward the overshoot side slow and suppresses the occurrence of overshoot. According to this example, a similar modification is made at the switching temperature (a3
) (m=3.n,=3).

ところで、オーバ−シュート又はアンダシュートが制御
されて平常状態に復帰するときは、温度差ΔTは一定の
範囲に納まる。このチェックを温度差監視手段(26)
が行う、すなわち、温度差監視手段(26)は、To−
b≦T^≦To+bを監視しく47)、この判断が成立
する場合には(47−Y)、自己のタイマをセットして
(48)監視を続行する(4El)。
By the way, when the overshoot or undershoot is controlled and the normal state is restored, the temperature difference ΔT falls within a certain range. This check is performed by the temperature difference monitoring means (26).
In other words, the temperature difference monitoring means (26)
It monitors b≦T≦To+b (47), and if this judgment is established (47-Y), it sets its own timer (48) and continues monitoring (4El).

この結果、タイマの設定時間(例えば、10秒)終了ま
でTo−b≦T^≦TO+bが維持されれば(49−Y
)、切換温度設定変更手段(25)の係数値を初期値m
=l、n=1に戻し、切換温度を、第1の温度(al)
とする、このように圧力変動に伴うオーバ−シュート及
びアンダシュートの抑圧後に、切換温度を初期状態に戻
しておくことにより、初1υlコールドスタート時のオ
ーバーシュート及びアンダシュートを抑制できる。
As a result, if To-b≦T^≦TO+b is maintained until the end of the timer setting time (for example, 10 seconds), then (49-Y
), the coefficient value of the switching temperature setting change means (25) is set to the initial value m
= l, n = 1, and the switching temperature is set to the first temperature (al).
By returning the switching temperature to the initial state after suppressing overshoot and undershoot due to pressure fluctuations, overshoot and undershoot at the initial 1υl cold start can be suppressed.

なお、第5図中の時間軸tの下の符号A、Bは、当該制
御を実行する特性曲線A、Bの別を示している。また、
図中「0」はタイマの起動時点を示している。
Note that the symbols A and B below the time axis t in FIG. 5 indicate different characteristic curves A and B for executing the control. Also,
In the figure, "0" indicates the starting point of the timer.

本発明は、以−Lの実施例及び変形例に限定されるもの
でなく、本発明の技術的範囲内において、各種の他の実
施態様及び変形態様が可能であり、また同等の構成要素
の交換が可能であることは、当業者にとって明らかであ
る。例えば、切換温度の設定数は3点に限らず更に多く
してもよいのはもちろんのことである、また、初期状態
に復帰させるためのタイマの起動時点も、許容温度範囲
に実温度が進入する時点のみでなく適宜定めることがで
きる。更に、特性曲線も傾斜の異なる2つの特性曲線A
、Hに限らず、第6図に示すように、互いに平行な特性
曲線C,Dを用いてもよい。
The present invention is not limited to the following embodiments and modifications, and various other embodiments and modifications are possible within the technical scope of the present invention, and equivalent components may be used. It will be clear to those skilled in the art that interchangeability is possible. For example, the number of switching temperature settings is not limited to three, but it is possible to set a larger number.Also, the timing at which the timer is activated to return to the initial state is determined when the actual temperature enters the allowable temperature range. It is possible to determine not only the point in time but also as appropriate. Furthermore, there are two characteristic curves A with different slopes.
, H, but as shown in FIG. 6, characteristic curves C and D that are parallel to each other may be used.

(発明の効果) 本発明によれば、以上のように制御手段のバルブ速度制
御ユニットに、緩速度及び急速度の少なくとも2種類の
特性曲線を備え、緩速度から急速度へ移行するための切
換温度を複数設け、正及び負側基準温度を越える度毎に
この切換温度を変更するようにし、且つこの結果前記温
度差が一定時間一定範囲にあるときは、切換温度を初期
状態の切換温度に復帰させるようにすることにより、正
常給湯中の圧力変動並びに初期コールドスタートに伴う
オーバーシュート並びにアンダシュートを最小とし、ま
たハンチングを未然に防止し得る湯水混合バルブ装置を
得ることができる。
(Effects of the Invention) According to the present invention, as described above, the valve speed control unit of the control means is provided with at least two types of characteristic curves of slow speed and rapid speed, and the switching for transition from slow speed to rapid speed is provided. A plurality of temperatures are provided, and this switching temperature is changed each time the positive and negative side reference temperatures are exceeded, and as a result, when the temperature difference remains within a certain range for a certain period of time, the switching temperature is changed to the initial state switching temperature. By restoring the temperature, it is possible to obtain a hot water mixing valve device that can minimize pressure fluctuations during normal hot water supply as well as overshoot and undershoot caused by an initial cold start, and can also prevent hunting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の全体系統図、第2図は本発明
の実施例の要部であるバルブ開閉速度制御ユニットの系
統図、第3図は発明の実施例のメモリの構成図、第4図
は本発明の実施例の動作を説明するためのフローチャー
ト、第5図は本発明の実施例の動作を説明するための特
性図、第6図は本発明の他の実施例のメモリ構成図、第
7図乃至第9図は従来装置の説明図である。 図面中(3)は給湯バルブ、(4)は給水バルブ、(5
)は混合水管、(6)はカラン、(7)は流量検出手段
、(8)は温度検出手段、(8)は操作設定1段、(1
0)は演算制御手段である。
Fig. 1 is an overall system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of a valve opening/closing speed control unit which is a main part of an embodiment of the invention, and Fig. 3 is a configuration diagram of a memory of an embodiment of the invention. , FIG. 4 is a flow chart for explaining the operation of the embodiment of the present invention, FIG. 5 is a characteristic diagram for explaining the operation of the embodiment of the present invention, and FIG. 6 is a flowchart for explaining the operation of the embodiment of the present invention. The memory configuration diagrams of FIGS. 7 to 9 are explanatory diagrams of the conventional device. In the drawing, (3) is the hot water supply valve, (4) is the water supply valve, and (5) is the water supply valve.
) is the mixing water pipe, (6) is the ring, (7) is the flow rate detection means, (8) is the temperature detection means, (8) is the first stage of operation setting, (1
0) is an arithmetic control means.

Claims (4)

【特許請求の範囲】[Claims] (1)所定温度の湯の通過量を制御する給湯バルブと、
水の通過量を制御する給水バルブとを1軸で駆動するか
あるいはそれぞれ連動して2軸で駆動する駆動手段と、
前記給湯バルブを通過する所定量の湯と前記給水バルブ
を通過する所定量の水とを混合してカランへ導く混合水
管と、この混合水管内の湯温及び流量をそれぞれ検出す
る温度検出手段及び流量検出手段と、この温度検出手段
の検出温度と希望する設定温度との温度差に基づき一定
の特性曲線に従って前記給湯バルブ及び前記給水バルブ
の開閉速度を決定するバルブ開閉速度制御ユニットを有
する制御手段とを備えた湯水混合バルブ装置において、 前記制御手段のバルブ開閉速度制御ユニットは、少なく
とも2つの特性曲線を有し、前記給湯バルブ並びに前記
給水バルブの開閉速度を決定する一方の特性曲線から他
方の特性曲線へ移行する複数の切換温度を設定し、前記
温度差が前記切換温度を越えた場合に前記移行を実行し
、且つ前記温度差が正及び負の基準温度を特定し正の基
準温度を越えた時には負側の切換温度を変更し、負の基
準温度を越えた時には正側の切換温度を変更し、このく
り返しを行う度毎に前記切換温度を順次変更するように
制御し、前記温度差が一定時間所定範囲にあるときは前
記切換温度を初期状態の切換温度に復帰させるように制
御することを特徴とする湯水混合バルブ装置。
(1) A hot water supply valve that controls the amount of hot water passing through at a predetermined temperature;
A driving means for driving a water supply valve that controls the amount of water passing through one shaft or two shafts in conjunction with each other;
A mixing water pipe that mixes a predetermined amount of hot water passing through the hot water supply valve and a predetermined amount of water that passes through the water supply valve and guides the mixture to the water supply valve; a temperature detection means that detects the temperature and flow rate of the hot water in the mixing water pipe; Control means having a flow rate detection means and a valve opening/closing speed control unit that determines the opening/closing speed of the hot water supply valve and the water supply valve according to a certain characteristic curve based on the temperature difference between the temperature detected by the temperature detection means and a desired set temperature. In the hot water mixing valve device, the valve opening/closing speed control unit of the control means has at least two characteristic curves, and the one characteristic curve that determines the opening/closing speed of the hot water supply valve and the water supply valve determines the opening/closing speed of the hot water supply valve and the water supply valve. A plurality of switching temperatures are set for transition to a characteristic curve, the transition is executed when the temperature difference exceeds the switching temperature, and reference temperatures at which the temperature difference is positive and negative are identified, and a positive reference temperature is set. When the negative reference temperature is exceeded, the negative side switching temperature is changed, and when the negative reference temperature is exceeded, the positive side switching temperature is changed, and each time this is repeated, the switching temperature is controlled to be sequentially changed, and the temperature is A hot water mixing valve device characterized in that the switching temperature is controlled to return to the initial state switching temperature when the difference remains within a predetermined range for a certain period of time.
(2)特許請求の範囲第1項記載の装置において、前記
制御手段のバルブ開閉速度制御ユニットは、前記切換温
度の変更の度毎に前記切換温度のうち正側は低いものか
ら高いものへ負側は高いものから低いものへと変更させ
るように制御することを特徴とする湯水混合バルブ装置
(2) In the device according to claim 1, the valve opening/closing speed control unit of the control means is arranged such that each time the switching temperature is changed, the positive side of the switching temperature is changed from lower to higher. A hot water mixing valve device characterized in that the side is controlled to change from a high side to a low side.
(3)特許請求の範囲第2項記載の装置において、前記
制御手段の前記バルブ開閉速度制御ユニットが有する前
記一方の特性曲線は急速度曲線であり、前記他方の特性
曲線は緩速度曲線であることを特徴とする渇水混合バル
ブ装置。
(3) In the device according to claim 2, the one characteristic curve of the valve opening/closing speed control unit of the control means is a rapid speed curve, and the other characteristic curve is a slow speed curve. A drought mixing valve device characterized by:
(4)特許請求の範囲第3項記載の装置において、前記
制御手段の初期状態の切換温度は複数の切換温度のうち
正側は最も低い温度のものであり、負側は最も高い温度
のものであることを特徴とする湯水混合バルブ装置。
(4) In the device according to claim 3, the switching temperature in the initial state of the control means is such that among the plurality of switching temperatures, the positive side is the lowest temperature, and the negative side is the highest temperature. A hot water mixing valve device characterized by:
JP26321185A 1985-11-22 1985-11-22 Hot and cold water mixing valve device Pending JPS62123512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26321185A JPS62123512A (en) 1985-11-22 1985-11-22 Hot and cold water mixing valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26321185A JPS62123512A (en) 1985-11-22 1985-11-22 Hot and cold water mixing valve device

Publications (1)

Publication Number Publication Date
JPS62123512A true JPS62123512A (en) 1987-06-04

Family

ID=17386323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26321185A Pending JPS62123512A (en) 1985-11-22 1985-11-22 Hot and cold water mixing valve device

Country Status (1)

Country Link
JP (1) JPS62123512A (en)

Similar Documents

Publication Publication Date Title
EP1321836B1 (en) Controller, temperature controller and heat processor using same
JP2011149441A (en) Flow compensation for turbine control valve test
JP2002130602A (en) Method for controlling number of boilers
JP2816134B2 (en) Temperature control method in food storage chamber
JPS62123512A (en) Hot and cold water mixing valve device
JPH08114145A (en) Method and equipment for adjusting idling of internal combustion engine
JPH0572603B2 (en)
JP2005098445A (en) Automatic transmission and hydraulic controller of automatic transmission
JP3890355B2 (en) Boiler control device
JPH0742828A (en) Clutch engagement control device
JPH0650451B2 (en) Hot water mixing device
JPS63210502A (en) Controller for boiler system
JP2000240939A (en) On-off control of burner in combustion equipment
KR0180395B1 (en) Turbine axis&#39;s rotation frequency learning control apparatus of auto-transmission
JPH03186102A (en) Method for controlling boiler
JP2707594B2 (en) Hot water mixing control device
JPS62123510A (en) Hot and cold water mixing valve device
JP2707593B2 (en) Hot water mixing control device
JPH0849803A (en) Automatic control method of number of operation of boiler
JP2000055399A (en) Combustion control method for hot water boiler
JP2009085063A (en) Electronic governor for engine
JP2765683B2 (en) Water flow control method in water heater
JPS6128732A (en) Method of controlling number of idle revolutions of engine
JPH0752368B2 (en) Hot water mixing device
JPH01184305A (en) Control for number of boilers for multiboiler facility