JPS62123340A - Fruit/vegetable ripeness sensor - Google Patents

Fruit/vegetable ripeness sensor

Info

Publication number
JPS62123340A
JPS62123340A JP26146085A JP26146085A JPS62123340A JP S62123340 A JPS62123340 A JP S62123340A JP 26146085 A JP26146085 A JP 26146085A JP 26146085 A JP26146085 A JP 26146085A JP S62123340 A JPS62123340 A JP S62123340A
Authority
JP
Japan
Prior art keywords
fruit
measured
vegetable
elastic body
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26146085A
Other languages
Japanese (ja)
Inventor
Ryusuke Abe
安部 隆介
Makoto Shimizu
信 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26146085A priority Critical patent/JPS62123340A/en
Publication of JPS62123340A publication Critical patent/JPS62123340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inspect the ripeness of fruit and vegetable in a dry and non- destructive manner without using water, by providing a microwave transmitter and its receiver to put an elastic body with the dielectric constant almost the same as an object to be measured tight on fruit and vegetable. CONSTITUTION:An object to be measured (fruit and vegetable) 1 is pinched without clearance with elastic bodies 7 and 8 having the dielectric constant almost the same as the object being measured. In the elastic bodies 7 and 8, microwave transmitter 2 and microwave receiver 3 are built at relative positions centered on the object being measured. The elastic bodies 7 and 8 herein used is rubber with addition of carbon powder or the like or those worked like a sponge and can be opened or closed mechanically in the direction of the arrow. To match changes in the outer diameter (b) of the object being measured, the outer diameter (d) is measured beforehand and on this data, a sensor interval L is controlled and further the measured values are softwarily corrected. According to this system, the scattering and diffraction of microwaves can be controlled, thereby enabling accurate measurement of attenuation of the object being measured. So, equal effect can be expected when water is used as measuring medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は果菜熟度センサに係り、特に果菜の糖度の検定
を果菜に悪影響を与えずに、高精度で非破壊的に行いう
る果菜熟度センサに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fruit vegetable ripeness sensor, and in particular to a fruit vegetable ripeness sensor that can perform the sugar content test of fruit vegetables in a highly accurate and non-destructive manner without adversely affecting the fruit vegetables. Regarding the degree sensor.

〔従来の技術〕[Conventional technology]

近年食生活の向上により野菜果実の生産量の伸びは著る
しく、これに伴い生産地での果菜の選別設備は大型化し
ている。この大型化に対し、省力化、品質の安定化を計
る為現在自動化が進められている。特に日本人の固有の
果物に対する高級指向により(メロン、桃、e tc)
より高品質化が要求され、単に外観だけでなく美味など
も選別の中に導入される必要性も生じている。
In recent years, the production of vegetables and fruits has increased significantly due to improvements in dietary habits, and as a result, the size of fruit and vegetable sorting equipment in production areas has increased. In response to this increase in size, automation is currently being promoted to save labor and stabilize quality. Especially due to the Japanese people's preference for high quality fruits (melons, peaches, etc.)
Higher quality is required, and there is also a need to include not only appearance but also taste in sorting.

例えば果実について云えば、選果場における検査項目は
、重量、大きさ、形状、色、つや、傷、疾病などがあげ
られる。
For example, when it comes to fruit, inspection items at fruit sorting plants include weight, size, shape, color, gloss, blemishes, and diseases.

このうち重量、大きさ、による選別は階級選別と呼ばれ
選果場での機械化の対象として容易なものである。
Among these, sorting based on weight and size is called class sorting, and is easy to mechanize at fruit sorting plants.

これらの例としては公開特許公報昭56−28683゜
同昭55−1828’5.同昭55−87002.同昭
53−81348゜同昭53−136864.  同昭
59−11740.等であり国内外での選果場でも使用
されている。
Examples of these include Japanese Patent Publication No. 56-28683゜Sho 55-1828'5. 1972-87002. 1973-81348゜136864. 1974-11740. etc., and is also used at fruit sorting plants both in Japan and abroad.

又形状、色、内部品質などによる選別は等級選別と呼ば
れ、選果場での機械化はまだ十分実用化のレベルに達し
ておらず、はとんど目視検査で行なわれている。このた
めの人員は大きなミカン選果場で20〜30人に達し、
1日1人あたり2〜3万個ものミカンを処理している為
判定にバラツキが発生し易い。ちなみに全国には447
7ケ所の選果場があり、このうち機械式2372ケ所、
手作業2105ケ所(昭和52年統計)ある。
Also, sorting based on shape, color, internal quality, etc. is called grading, and mechanization in fruit sorting plants has not yet reached a level of practical use, so it is mostly done by visual inspection. The number of people involved in this process reached 20 to 30 people at a large mandarin fruit sorting plant.
Since 20,000 to 30,000 mandarin oranges are processed per person per day, variations in judgment are likely to occur. By the way, there are 447 nationwide.
There are 7 fruit sorting stations, of which 2,372 are mechanical;
There are 2,105 manual jobs (1972 statistics).

この等級選別の機械化の例としては、公開特許公報間5
2−72289.同昭53−117552.  同昭5
4−144662、  NET r C社カタ0 り、
 富士時98 (第52巻、第8号、 P31)に見ら
れる如< ITVによる画像処理、光の反射率などの光
学的手法に頼っている為、全て外皮からの推定量であり
果実内部そのものの品質を計測できなかった。これは果
実を取り扱う農協、流通機構のニーズ調査の結果からも
明白で、果実の熟度(糖度)を非破壊的に計測する手段
が強く望まれており、この手法が確立された場合果菜の
流通機構が変わるとまで云われている。
As an example of mechanization of this grade sorting, there is
2-72289. 1975-117552. Dosho 5
4-144662, NET r C company catalog 0,
As seen in Fujiji 98 (Volume 52, No. 8, P31) < Because it relies on optical methods such as image processing by ITV and light reflectance, all estimates are from the outer skin and the inside of the fruit itself. It was not possible to measure the quality of This is clear from the results of a needs survey of agricultural cooperatives and distribution organizations that handle fruit, and there is a strong desire for a means to non-destructively measure the ripeness (sugar content) of fruit. It is even said that the distribution system will change.

このニーズに応えて鶴岡(日立製作所、中央研究所)は
マイクロ波が、被測定物を通過する際のインピーダンス
(抵抗)つまりマイクロ波の減衰量が糖度(厳密にはシ
ョ糖)と相関性のあることを確認した。これは昭和56
年11月計測学会論文集843頁〜849頁、昭和56
年11月電気学会資料、資料番号rM−81−30によ
り発表された。この発明の熟度センサの概念図を第4図
に示す。
In response to this need, Tsuruoka (Hitachi, Ltd., Central Research Laboratory) has developed a system in which the impedance (resistance), or attenuation of microwaves, when they pass through a measured object is correlated with sugar content (strictly speaking, sucrose). I confirmed that there is. This is Showa 56
Proceedings of the Metrology Society of Japan, November 2008, pp. 843-849, 1972.
Published in November 2015 as a material by the Institute of Electrical Engineers of Japan, document number rM-81-30. A conceptual diagram of the ripeness sensor of this invention is shown in FIG.

全熟度(糖度)を測定しようとする果実1を水中に置く
、マイクロ波発生装置4で発生したマイクロ波は発信器
2より水中を進行し、果実1を透過し受信器3で受信さ
れる。マイクロ波が果実1を通過するときの減衰量はマ
イクロ波発生装置4と受信装置5での電波の強さの差と
して解析装置6に入力され、果実の内部の糖度が算出さ
れる。
A fruit 1 whose total ripeness (sugar content) is to be measured is placed in water.Microwaves generated by a microwave generator 4 travel through the water from a transmitter 2, pass through the fruit 1, and are received by a receiver 3. . The amount of attenuation when the microwave passes through the fruit 1 is inputted to the analyzer 6 as the difference in radio wave strength between the microwave generator 4 and the receiver 5, and the sugar content inside the fruit is calculated.

第5図はプリンスメロンのマイクロ波の減衰量と破壊検
査により測定された糖度の関係を示すが、本図よりほぼ
2つの間に相関関係があることが分る。第5図で実線は
球状の容器にショ糖液を入れた場合でほぼ減衰量に比例
している。
FIG. 5 shows the relationship between the amount of microwave attenuation of prince melon and the sugar content measured by destructive inspection, and it can be seen from this figure that there is almost a correlation between the two. In FIG. 5, the solid line is approximately proportional to the amount of attenuation when a sucrose solution is placed in a spherical container.

メロンの実測値は点線で示す範囲でバラツキがありこれ
が測定精度となる。
The actual measured values for melons vary within the range shown by the dotted line, and this is the measurement accuracy.

ここで測定媒体に水を使用している理由は、(1)水と
被測定物が性質的に似ており、均質な空間中を電波が伝
播する状態を作っている(2)水のマイクロ波に対する
減衰能が被測定物より大きい為直進する電波以外の回折
を防いでいる、の2点である。
The reason why water is used as the measurement medium here is that (1) water and the object to be measured are similar in nature, creating a condition in which radio waves propagate in a homogeneous space (2) microorganisms of water The two points are that the attenuation ability for waves is greater than that of the object to be measured, so it prevents diffraction of radio waves other than those traveling straight.

第6図に媒体として水を使った場合と、水を使わない場
合のマイクロ波の受信強度を示す。
Figure 6 shows the microwave reception intensity when water is used as the medium and when no water is used.

果実に相当する石英ガラスで作った球の中に水を入れ、
送信アンテナからマイクロ波を送信した場合、球の反対
側での受信電波の強度を媒体が空気と水の場合比較する
と、空気の場合はほぼOdBで電波は被測定物を通過す
るより外側を回折して、来る。水の場合は約5dBと減
衰し、被測定物を通過したことによる減衰と見ることが
できる。
Water is poured into a sphere made of quartz glass, which corresponds to a fruit.
When microwaves are transmitted from a transmitting antenna, comparing the strength of the received radio waves on the opposite side of the sphere when the medium is air and water, it is approximately OdB in the case of air, and the radio waves diffract on the outside rather than passing through the object to be measured. Then come. In the case of water, the attenuation is about 5 dB, which can be seen as attenuation due to passing through the object to be measured.

つまりこの方式による熟度測定では水を測定媒体社用い
ることにより被測定物のみを透過したマイクロ波の減衰
量から糖度を測定できることが分る。
In other words, it can be seen that when measuring ripeness using this method, by using water as a measurement medium, sugar content can be measured from the amount of attenuation of microwaves transmitted only through the object to be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、市場調査の結果では、選果、流通過程に
おいて水を使用することは次の理由で不可とされている
However, according to the results of market research, it is impossible to use water in the fruit sorting and distribution process for the following reasons.

つまり日本では湿度が高い為に果皮に水分が残っている
とカビの発生を招き売れなくなる。
In other words, Japan has high humidity, so if there is any moisture left on the skin, mold will develop and the fruit will become unsaleable.

又この水分を取る為に乾燥工程を入れると鮮度が落ち値
が下ると共に長持ちしなくなる。この2つの理由により
本方式における水の使用は全く考えられず、水に替る方
法が必要となった。
Also, if a drying process is added to remove this moisture, the freshness will drop, the value will drop, and it will not last long. For these two reasons, the use of water in this method was completely unthinkable, and an alternative method to water was needed.

本発明はマイクロ波を利用した果菜の熟度測定において
、マイクロ波の回折現象を発生させず、被測定物と均質
な空間を形成するような、水に替る乾式の熟度センサを
提供するにある。
The present invention provides a dry-type ripeness sensor that does not cause microwave diffraction and forms a homogeneous space with the object to be measured in the ripeness measurement of fruits and vegetables using microwaves. be.

〔問題点を解決するための手段〕[Means for solving problems]

現在考えられている測定方法で水の果している役割を考
えたとき(1)果菜と均質(誘電率がほぼ等しい)(2
)ある程度の電波の減衰能を有する(3)被測定物に密
着(空間を作らない)しているの3点が上げられる。こ
れらの役割を果し、かつ乾式との条件から、果菜熟度セ
ンサにおいて誘電率が被測定物とほぼ等しい材質の弾性
体を果菜に密着させるか、あるいは受発信器を電波減衰
能の高い弾性体で包み込むことにより測定媒体として水
を用いた場合と同等の効果を期待できることが分った。
When considering the role of water in the currently considered measurement methods, (1) it is homogeneous with fruits and vegetables (the dielectric constant is almost the same) (2)
) It has a certain degree of radio wave attenuation ability, and (3) It is in close contact with the object to be measured (without creating a space). In order to fulfill these roles and be dry, the fruit ripeness sensor should be made of an elastic body made of a material with a dielectric constant that is approximately the same as that of the object to be measured, or the receiver and transmitter should be made of an elastic body that has a high radio wave attenuation ability. It was found that by wrapping the sample in the body, the same effect as using water as the measurement medium can be expected.

〔作用〕[Effect]

したがって、本発明の果菜熟度センサにおいては、マイ
クロ波発信器と受信器の間が被測定物とほぼ均質となり
、マイクロ波の散乱、回折が押さえられ、あるいはマイ
クロ波の減衰能が高く被測定物をバイパスする電波が吸
収されるために、被測定物による電波の減衰のみを正確
にとらえることができる。
Therefore, in the fruit and vegetable ripeness sensor of the present invention, the space between the microwave transmitter and the receiver is almost homogeneous with the measured object, suppressing microwave scattering and diffraction, or having a high microwave attenuation ability. Since the radio waves that bypass the object are absorbed, only the attenuation of the radio waves by the object to be measured can be accurately captured.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

第1図は被測定物と均質の弾性体を有する熟度センサを
示すものである。
FIG. 1 shows a ripeness sensor having an elastic body homogeneous with the object to be measured.

被測定物(果実、野菜)lはその誘電率が被測定物とほ
ぼ同一の弾性体7,8により間隙がない状態に挟み込ま
れている。上記弾性体7゜8中には被測定物を中心に相
対する位置にマイクロ波発信器2、同受信器3が内蔵さ
れている。
An object to be measured (fruit, vegetable) l is sandwiched between elastic bodies 7 and 8 whose dielectric constant is almost the same as that of the object to be measured, with no gap between them. A microwave transmitter 2 and a microwave receiver 3 are built into the elastic body 7.8 at positions facing each other with the object to be measured at the center.

上記弾性体7.8は機械的に矢印方向に開閉され被測定
物を挟み込むことができる。
The elastic body 7.8 can be mechanically opened and closed in the direction of the arrow to sandwich the object to be measured.

上記弾性体としては被測定物1の誘電率に近ければ良い
(例えばメロン等ではε−80程度)。
The elastic body may have a dielectric constant close to that of the object to be measured 1 (for example, about ε-80 for melon, etc.).

そこで弾性体としてはカーボン粉、チタン酸バリウム粉
等をゴムに添加したもの、あるいはスポンジ状に加工し
たものが用いられる。なお、弾性体の形状としては、果
菜の当接する部分に果菜の種類、大きさに応じた凹所を
設けてお(等、予め密着しやすい形に成形しておく。
Therefore, the elastic material used is one in which carbon powder, barium titanate powder, or the like is added to rubber, or one processed into a sponge shape. The shape of the elastic body is such that a recess corresponding to the type and size of the fruit is provided in the part where the fruit comes into contact with the fruit (or the like), and the elastic body is formed in advance into a shape that makes it easy to adhere to the fruit.

この方式において被測定物の外径dの変化に対しては、
予め外径dを計測し、このデータによりセンサ間隔りを
制御し、更にソフト的に計測値を補正する。
In this method, for changes in the outer diameter d of the object to be measured,
The outer diameter d is measured in advance, the sensor spacing is controlled using this data, and the measured value is further corrected using software.

本方式によればマイクロ波発信器と受信器の間は被測定
物とほぼ均質となり、マイクロ波の散乱、回折が押えら
れ名ことにより、被測定物による電波の減衰を正確に測
定できる。
According to this method, the space between the microwave transmitter and the receiver is almost homogeneous with the object to be measured, suppressing scattering and diffraction of microwaves, and thereby making it possible to accurately measure the attenuation of radio waves by the object to be measured.

第2図はマイクロ波の減衰能の大なる弾性体を有する熟
度センサを示すものである。
FIG. 2 shows a ripeness sensor having an elastic body with a large ability to attenuate microwaves.

被測定物1はマイクロ波の減衰能の高い材料から成る弾
性体9,10により挟まれている。この弾性体の内側に
はマイクロ波の発信器2.受信器3が被測定物を中心に
相対して被測定物に接する位置に設けられている。
The object to be measured 1 is sandwiched between elastic bodies 9 and 10 made of a material with high microwave attenuation ability. Inside this elastic body is a microwave transmitter 2. A receiver 3 is provided at a position opposite to the object to be measured and in contact with the object to be measured.

上記弾性体としてはフェライト粉をゴムに添加したもの
、あるいはスポンジに添付したものが挙げられる。この
場合フェライトの電波吸収能が高いためこの方式での果
菜の外径の変化に対しては第1回方式と同じ方法で対処
できる。
Examples of the above-mentioned elastic body include one in which ferrite powder is added to rubber, or one in which ferrite powder is added to a sponge. In this case, since ferrite has a high radio wave absorption ability, changes in the outer diameter of fruits and vegetables in this method can be dealt with in the same manner as in the first method.

本方式によればマイクロ発信器から発せられたマイクロ
波は弾性体の部分ではほぼ吸収され、被測定物を透過し
た電波のみ受信器に到達する。
According to this method, the microwave emitted from the micro oscillator is almost absorbed by the elastic body, and only the radio waves that have passed through the object to be measured reach the receiver.

つまり発信器と受信器間で被測定物をバイパスする電波
を吸収し、被測定物の正確な減衰量を把握できる。
In other words, radio waves that bypass the object under test are absorbed between the transmitter and the receiver, allowing accurate attenuation of the object to be measured.

第3図は弾性膜と流体または、粉体で構成される弾性状
センサを示すものである。
FIG. 3 shows an elastic sensor composed of an elastic membrane and fluid or powder.

本図では被測定物1は弾性膜11.12により隙−間の
ない状態に挟み込まれている。このとき弾性膜11.1
2は枠組13.14、に接着されており流体供給口15
より供給される流体により弾性膜11゜12が充たされ
、被測定物との間隙を零にする。
In this figure, the object to be measured 1 is sandwiched between elastic membranes 11, 12 without gaps. At this time, the elastic membrane 11.1
2 is glued to the framework 13, 14, and has a fluid supply port 15.
The elastic membranes 11 and 12 are filled with the fluid supplied from the elastic membranes 11 and 12, and the gap with the object to be measured is reduced to zero.

この状態で被測定物lを中心にして相対して設けられた
マイクロ波発信器2より、マイクロ波受信器3に電波を
送り減衰を測定する。
In this state, a microwave transmitter 2 placed opposite the object to be measured 1 sends a radio wave to a microwave receiver 3 to measure attenuation.

本図は被測定物と同程度の誘電率、例えば水、の流体を
入れた場合、つまり均質な空間を作る場合を示している
が発信器、受信器を弾性膜の内側に設け、流体に減衰能
の大なる流体、例えばフェライトの粉を添加したゼリー
状流体、を用いて、第5図に示した方式の効果を持たせ
ることも可能である。
This figure shows a case where a fluid with a dielectric constant similar to that of the object to be measured, such as water, is introduced, that is, a homogeneous space is created. It is also possible to provide the effect of the method shown in FIG. 5 by using a fluid with a large damping capacity, such as a jelly-like fluid to which ferrite powder is added.

〔発明の効果〕 本発明によれば果実、野菜の熟度を水を用いず乾式で被
破壊的に検査できるので、果実、野菜の生産現場、流通
機構での品質の安定化に貢献する。又水を用いない為果
実の品質の維持、測定の自動化等に効果がある。
[Effects of the Invention] According to the present invention, the ripeness of fruits and vegetables can be inspected in a dry and non-destructive manner without using water, which contributes to quality stabilization at fruit and vegetable production sites and distribution systems. Also, since no water is used, it is effective in maintaining fruit quality and automating measurement.

又従来抜取りで破壊検査を行っていた分については本方
式により全く不要となる。
In addition, the present method eliminates the need for destructive inspection, which was conventionally performed by sampling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明になる弾性体を用いた
熟度センサ、第、4図は従来の水を用いた熟度センサの
概略図、第5図はマイクロ波を用いた熟度センサの測定
例、第6図は測定媒体の違いによる電波強度の変化を示
す。 1・・・被測定物、2・・・マイクロ波発信器、3・・
・マイクロ波受信器、4・・・マイクロ波発生装置、5
・・・マイクロ波受信装置、6・・・解析装置、7・・
・弾性体、8・・・弾性体、9・・・弾性体、10・・
・弾性体、11・・・弾性膜、12・・・弾性膜、13
・・・枠組、14・・・枠組、15・・・塊法供給口、
P・・・流体。 代理人 弁理士 平 木 祐 輔 第1図 第2図 第5図 7′ 第6図
Figures 1, 2, and 3 are schematic diagrams of a ripeness sensor using an elastic body according to the present invention, Figures 4 are schematic diagrams of a conventional ripeness sensor using water, and Figure 5 is a schematic diagram of a ripeness sensor using a microwave. FIG. 6, an example of measurement using the ripeness sensor used, shows changes in radio field intensity due to differences in measurement media. 1... Object to be measured, 2... Microwave transmitter, 3...
・Microwave receiver, 4...Microwave generator, 5
...Microwave receiving device, 6...Analysis device, 7...
・Elastic body, 8...Elastic body, 9...Elastic body, 10...
・Elastic body, 11... Elastic membrane, 12... Elastic membrane, 13
... Framework, 14... Framework, 15... Block method supply port,
P...Fluid. Agent Patent Attorney Yusuke Hiraki Figure 1 Figure 2 Figure 5 Figure 7' Figure 6

Claims (1)

【特許請求の範囲】 1、糖度を測定しようとする果菜をマイクロ波発信器と
受信器の間に置き、マイクロ波が果菜を通過する際の減
衰量あるいは位相のずれにより果菜中の糖度を検定する
果菜熟度センサにおいて、測定媒体がマイクロ波の発信
器、受信器を内蔵し、誘電率が果菜とほぼ同等であり、
果菜に密着しうるような変形可能な弾性体から構成され
る果菜熟度センサ。 2、糖度を測定しようとする果菜をマイクロ波発信器と
受信器の間に置き、マイクロ波が果菜を通過する際の減
衰量あるいは位相のずれにより果菜中の糖度を検定する
果菜熟度センサにおいて、マイクロ波の発信器、受信器
を被測定物に接する位置に配し、その周囲を電磁波吸収
材から成り、果菜に密着しうるような変形可能な弾性体
で構成した果菜熟度センサ。 3、弾性体がゴム状あるいはスポンジ状材料で一体的に
構成されていることを特徴とする特許請求の範囲第1項
又は第2項記載の果菜熟度センサ。 4、弾性体が、外殻を形成する弾性膜と、その中に充填
された、果菜とほぼ同等の誘電率を有する粉体あるいは
流体から成ることを特徴とする特許請求の範囲第1項記
載の果菜熟度センサ。 5、弾性体が、外殻を有する弾性膜と、その中に充填さ
れた、電磁波吸収材からなる粉体あるいは流体から成る
ことを特徴とする特許請求の範囲第2項記載の果菜熟度
センサ。 6、粉体あるいは流体を流量調整することにより、被測
定物への密着度を調節しうるようにしたことを特徴とす
る特許請求の範囲第4項又は第5項記載の果菜熟度セン
サ。
[Scope of Claims] 1. Place fruit vegetables whose sugar content is to be measured between a microwave transmitter and a receiver, and test the sugar content in the fruit vegetables based on the amount of attenuation or phase shift when the microwave passes through the fruit vegetables. In the fruit and vegetable ripeness sensor, the measurement medium has a built-in microwave transmitter and receiver, and has a dielectric constant almost equal to that of fruits and vegetables.
A fruit ripeness sensor composed of a deformable elastic body that can come into close contact with fruit vegetables. 2. In a fruit vegetable ripeness sensor that places the fruit vegetable whose sugar content is to be measured between a microwave transmitter and a receiver, and tests the sugar content in the fruit vegetable by the amount of attenuation or phase shift when the microwave passes through the fruit vegetable. A fruit vegetable ripeness sensor, in which a microwave transmitter and a receiver are placed in contact with an object to be measured, and the surrounding area is made of an electromagnetic wave absorbing material and is made of a deformable elastic body that can be brought into close contact with the fruit vegetables. 3. The fruit ripeness sensor according to claim 1 or 2, wherein the elastic body is integrally formed of a rubber-like or sponge-like material. 4. Claim 1, characterized in that the elastic body is composed of an elastic membrane forming an outer shell, and a powder or fluid filled therein and having a dielectric constant substantially equivalent to that of fruits and vegetables. fruit and vegetable ripeness sensor. 5. The fruit ripeness sensor according to claim 2, wherein the elastic body is composed of an elastic membrane having an outer shell and a powder or fluid made of an electromagnetic wave absorbing material filled therein. . 6. The fruit ripeness sensor according to claim 4 or 5, wherein the degree of adhesion to the object to be measured can be adjusted by adjusting the flow rate of the powder or fluid.
JP26146085A 1985-11-22 1985-11-22 Fruit/vegetable ripeness sensor Pending JPS62123340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26146085A JPS62123340A (en) 1985-11-22 1985-11-22 Fruit/vegetable ripeness sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26146085A JPS62123340A (en) 1985-11-22 1985-11-22 Fruit/vegetable ripeness sensor

Publications (1)

Publication Number Publication Date
JPS62123340A true JPS62123340A (en) 1987-06-04

Family

ID=17362202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26146085A Pending JPS62123340A (en) 1985-11-22 1985-11-22 Fruit/vegetable ripeness sensor

Country Status (1)

Country Link
JP (1) JPS62123340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248843U (en) * 1988-09-30 1990-04-04
JPH0534335A (en) * 1991-07-31 1993-02-09 Wakayama Pref Gov Nondestructive method for inspection of quality of fruits
WO2011080371A3 (en) * 2009-12-29 2011-09-29 Universidad Politécnica De Valencia Method of discrimination of pieces of fruit according to their maturity, calibration procedure of said method and device that carries out said discrimination
CN103901049A (en) * 2014-04-17 2014-07-02 北京大学 Device and method for carrying out microwave nondestructive measurement on characters of fruit and vegetable
JP2016202070A (en) * 2015-04-22 2016-12-08 Tdk株式会社 Growth condition diagnostic apparatus and growth condition diagnostic method for plants
JP2017153406A (en) * 2016-02-29 2017-09-07 国立大学法人 千葉大学 Real-time photosynthesis meter
WO2023232817A1 (en) * 2022-06-01 2023-12-07 Vertigo Technologies B.V. Method for determining an internal quality of a fruit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248843U (en) * 1988-09-30 1990-04-04
JPH0534335A (en) * 1991-07-31 1993-02-09 Wakayama Pref Gov Nondestructive method for inspection of quality of fruits
WO2011080371A3 (en) * 2009-12-29 2011-09-29 Universidad Politécnica De Valencia Method of discrimination of pieces of fruit according to their maturity, calibration procedure of said method and device that carries out said discrimination
ES2382268A1 (en) * 2009-12-29 2012-06-06 Universidad Politecnica De Valencia Method for the discrimination of pieces of fruit according to their maturity degree, process for the calibration of said method and device carrying out said discrimination
CN103901049A (en) * 2014-04-17 2014-07-02 北京大学 Device and method for carrying out microwave nondestructive measurement on characters of fruit and vegetable
CN103901049B (en) * 2014-04-17 2016-07-06 北京大学 A kind of microwave nondestructive measures measurement apparatus and the measuring method thereof of fruit and vegerable characteristic
JP2016202070A (en) * 2015-04-22 2016-12-08 Tdk株式会社 Growth condition diagnostic apparatus and growth condition diagnostic method for plants
JP2017153406A (en) * 2016-02-29 2017-09-07 国立大学法人 千葉大学 Real-time photosynthesis meter
WO2023232817A1 (en) * 2022-06-01 2023-12-07 Vertigo Technologies B.V. Method for determining an internal quality of a fruit
NL2032045B1 (en) * 2022-06-01 2023-12-12 Vertigo Tech B V Method for determining an internal quality of a fruit

Similar Documents

Publication Publication Date Title
EP0511184B1 (en) Method and device for infrared analysis, especially with regard to food
Kato Electrical density sorting and estimation of soluble solids content of watermelon
CA1122813A (en) Method for quantitatively determining fat in a fat-containing sample
O'Toole et al. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement
CA2339922A1 (en) Device and method for non-invasively measuring and determining moisture content and density of loose and packaged tobacco
Vasighi-Shojae et al. Ultrasonic based determination of apple quality as a nondestructive technology
JPS62123340A (en) Fruit/vegetable ripeness sensor
Hickling et al. Studies of sound transmission in various types of stored grain for acoustic detection of insects
Trabelsi et al. Microwave sensing technique for nondestructive determination of bulk density and moisture content in unshelled and shelled peanuts
Povey et al. Application of ultrasonic pulse‐echo techniques to egg albumen quality testing: A preliminary report
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
CN107238611A (en) Analysis of moisture content method, device and drimeter and measuring method
IWAMOTO et al. Rapid prediction of chemical compositions for wheat, soybean, pork and fresh potatoes by near infrared spectrophotometric analysis
Kraszewski et al. Determination of moisture content and bulk density of shelled corn by measurement of microwave parameters
WO1988003269A3 (en) Process and device for collecting measurement samples from a flow of bulk materials
Mizrach et al. Ultrasonic evaluation of some ripening parameters of autumn and winter-grown ‘Galia’melons
AU770854B2 (en) Apparatus and method for detection of foreign bodies in products
Simpson Relationship between speed of sound and moisture content of red oak and hard maple during drying
Trabelsi et al. Influence of nonequilibrated water on microwave dielectric properties of wheat and related errors in moisture sensing
Bellon et al. Ripeness sensor development based on nuclear magnetic resonance
Gaddam et al. Segregation of feijoa fruit using acoustic impulse response
Khairurrahman et al. The Evaluation of Adulteration in Milk Using The Propagation of Ultrasonic Waves
Narayanan et al. FREE‐SPACE MICROWAVE MEASUREMENT of LOW MOISTURE CONTENT IN POWDERED FOODS
SU1693495A1 (en) Method of determining moisture content of gas-liquid flow
Finney Jr Engineering Techniques for Nondestructive Quality Evaluation of Agricultural Products1