JPS621232Y2 - - Google Patents

Info

Publication number
JPS621232Y2
JPS621232Y2 JP1982105152U JP10515282U JPS621232Y2 JP S621232 Y2 JPS621232 Y2 JP S621232Y2 JP 1982105152 U JP1982105152 U JP 1982105152U JP 10515282 U JP10515282 U JP 10515282U JP S621232 Y2 JPS621232 Y2 JP S621232Y2
Authority
JP
Japan
Prior art keywords
manifold
chamber
solution
liquid
solution supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982105152U
Other languages
Japanese (ja)
Other versions
JPS5912870U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982105152U priority Critical patent/JPS5912870U/en
Publication of JPS5912870U publication Critical patent/JPS5912870U/en
Application granted granted Critical
Publication of JPS621232Y2 publication Critical patent/JPS621232Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【考案の詳細な説明】 本考案は、新規な隔膜式電解槽のマニホルドの
構造に関する。主としてアルカリ金属ハロゲン化
物、特に塩化ナトリウム、塩化カリウムの水溶液
の電解により、苛性アルカリ並びに塩素等のハロ
ゲンガス及び水素を得るための装置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manifold structure for a novel diaphragm electrolytic cell. This is an apparatus for obtaining caustic alkali, halogen gas such as chlorine, and hydrogen by electrolyzing an aqueous solution of an alkali metal halide, especially sodium chloride and potassium chloride.

従来、アルカリ金属ハロゲン化物の電解方法
は、よく知られており、一般に隔膜式電解槽が用
いられる。該電解槽としては、フイルタープレス
型とプール型が使用されるが、プール型にあつて
は、例えばダイヤモンドシヤムロツク社、フーカ
ーケミカル社、日本曹達社などが開発した電解槽
であつて、陰極液又は陽極液のいずれか一方は共
通のプール内に存在し、他方は、少なくとも通電
面を隔膜で区画構成された陽極室(又は陰極室)
内に存在する如く構成されているため、該極室
は、一般にその両面をプール内の液と接する構造
となるため、これを有効に使うには単極式が有利
となる。本考案は、上記プール型の電解槽に用い
られるマニホルドに関し、新規な構造を提案する
もので本考案でいうマニホルドとは隔膜式電解槽
のほぼ全長に及んで電解槽上部に存在し、各陽極
室(又は陰極室)から、各々液及びガスを混相流
にて抜き出すための排出管と各陽極室(又は陰極
室)へ夫々液を供給する給液管とが夫々接続され
た構造のものである。
Conventionally, methods for electrolyzing alkali metal halides are well known, and a diaphragm type electrolytic cell is generally used. Filter press type and pool type electrolytic cells are used. Pool type electrolytic cells are, for example, electrolytic cells developed by Diamond Shamlok Co., Ltd., Hooker Chemical Co., Ltd., Nippon Soda Co., Ltd., etc. Either the liquid or the anolyte exists in a common pool, and the other is an anode chamber (or cathode chamber) in which at least the current-carrying surface is divided by a diaphragm.
Since the polar chamber is configured to exist within the pool, the polar chamber generally has a structure in which both sides thereof are in contact with the liquid in the pool, so a monopolar type is advantageous to use this effectively. The present invention proposes a new structure for the manifold used in the above-mentioned pool type electrolytic cell.The manifold in the present invention extends almost the entire length of the diaphragm type electrolytic cell and is located at the top of the electrolytic cell, and is located at the top of the electrolytic cell. It has a structure in which a discharge pipe for extracting liquid and gas from each chamber (or cathode chamber) in a multiphase flow and a liquid supply pipe for supplying liquid to each anode chamber (or cathode chamber) are connected respectively. be.

尚、本考案においては、マニホルド中の液は陽
極液及び陰極液のいずれでもかまわないが、本考
案においては以下全て陽極液を用いた態様で示
す。
In the present invention, the liquid in the manifold may be either an anolyte or a catholyte; however, in the present invention, an embodiment using an anolyte is shown below.

従来、上記マニホルドとしては、第1図に示す
構造のものが使用されていた。即ち電解により発
生した塩素ガスを伴う陽極液は排出管2よりマニ
ホルド中へ抜き出され、一定濃度の陽極液が給液
管3より各陽極室へ供給される。塩素ガスはガス
抜き口4より系外へ排出される。この際、電解に
より陽極液の濃度は低下するため、これを一定濃
度として陽極液を供給するためには補給液が必要
で、該液は溶液補給口5より供給される。そして
マニホルド中で両液が混合され一定濃度となるよ
うにバランスさせ一部取り出し口6より系外へ抜
き出される。
Conventionally, as the above-mentioned manifold, one having the structure shown in FIG. 1 has been used. That is, the anolyte containing chlorine gas generated by electrolysis is extracted into the manifold through the discharge pipe 2, and the anolyte at a constant concentration is supplied to each anode chamber through the supply pipe 3. Chlorine gas is discharged to the outside of the system through the gas vent port 4. At this time, the concentration of the anolyte decreases due to electrolysis, so a replenishment liquid is required to maintain the constant concentration and supply the anolyte, and this liquid is supplied from the solution replenishment port 5. Both liquids are mixed in the manifold, balanced to a constant concentration, and a portion is extracted from the system through the outlet 6.

ところが従来のマニホルドでは外部より供給さ
れる高濃度の補給液はマニホルドの一箇所より供
給され、該マニホルドの一端より取り出され、し
かも該マニホルドは一室構造であるため、補給液
と電解に供するための循環液との混合が不均一と
なり、マニホルドより各陽極室に供給する供給液
濃度は溶液補給口5近辺では高く、該補給口から
遠ざかるにつれ低くなる。この為、各給液管3よ
り供給される陽極液の濃度はまちまちで該液を用
いた場合、電解条件が不均一となり好ましくな
い。また従来のマニホルド中では各給液管の濃度
を一定にコントロールすることが困難であつた。
However, in conventional manifolds, high-concentration replenishment liquid supplied from the outside is supplied from one point of the manifold and taken out from one end of the manifold, and since the manifold has a one-chamber structure, it is necessary to supply the replenishment liquid and electrolysis. Mixing with the circulating fluid becomes non-uniform, and the concentration of the supply solution supplied from the manifold to each anode chamber is high near the solution supply port 5 and decreases as it moves away from the supply port. For this reason, the concentration of the anolyte supplied from each liquid supply pipe 3 varies, and when such aqueous solution is used, the electrolytic conditions become non-uniform, which is not preferable. Furthermore, in conventional manifolds, it has been difficult to control the concentration in each liquid supply pipe to a constant level.

本考案は、上記問題を解決するための新規なマ
ニホルドの構造を示すものでその要旨は、隔膜式
電解槽のほぼ全長に及んで電解槽上部に存在し、
各陽極室(又は陰極室)から各々液及びガスを混
相流にて抜き出すための排出管と各陽極室(又は
陰極室)へ夫々液を供給する給液管とが夫々接続
されいるマニホルドであつて、該マニホルドは長
手方向に2分割されており、その一方は前記給液
管が接続された溶液供給室を構成し、他方は前記
排出管が接続された溶液循環室を構成しており、
溶液供給室と溶液循環室とは、マニホルドの一方
の端部近辺で連絡されており、且つ該連絡部近辺
に溶液補給口を有し、他端近辺に溶液の取り出し
口を有することを特徴とする隔膜式電解槽のマニ
ホルドの構造である。
The present invention presents a new manifold structure to solve the above problem, and its gist is that the manifold is located at the top of the electrolytic cell over almost the entire length of the diaphragm electrolytic cell.
A manifold in which a discharge pipe for extracting liquid and gas from each anode chamber (or cathode chamber) in a multiphase flow and a liquid supply pipe for supplying liquid to each anode chamber (or cathode chamber) are respectively connected. The manifold is divided into two in the longitudinal direction, one of which constitutes a solution supply chamber to which the liquid supply pipe is connected, and the other constitutes a solution circulation chamber to which the discharge pipe is connected,
The solution supply chamber and the solution circulation chamber are connected near one end of the manifold, and have a solution supply port near the communication portion and a solution takeout port near the other end. This is the structure of the manifold of a diaphragm type electrolytic cell.

本考案マニホルドは長手方向に2分割されてな
る溶液供給室と溶液循環室を有する構造であるた
め溶液の流れを一定に保つことができ、且つ溶液
供給室の一端より補給液を補給する構造のためマ
ニホルド中で希薄な循環液と濃厚な補給液とを均
一に混合することができ容易で常に定濃度の液を
各陽極室に供給することか出来る。
The manifold of the present invention has a structure that has a solution supply chamber and a solution circulation chamber that are divided into two in the longitudinal direction, so that the flow of the solution can be kept constant. Therefore, the dilute circulating fluid and the concentrated replenishing fluid can be uniformly mixed in the manifold, making it easy to constantly supply a constant concentration of fluid to each anode chamber.

尚、本考案においてマニホルド中における溶液
供給室と溶液循環室の2室に分割する態様は、例
えば仕切り板で区切る等完全に気相部まで仕切ら
なくても、溶液を2室に分離できるものであれば
良い。
In addition, in the present invention, the mode in which the manifold is divided into two chambers, the solution supply chamber and the solution circulation chamber, allows the solution to be separated into the two chambers without completely partitioning the gas phase, such as by partitioning with a partition plate. It's good to have.

本考案におけるマニホルド及び長手方向に2分
割するための仕切り板の材質、形状等は公知のも
のが採用できる。例えば材質として耐溶液性、ガ
ス性を有する金属或いはプラスチツクスなどがあ
り、マニホルドの形状は一般に円筒状又は網状を
有し、又、仕切り板は上記材質よりなる1〜5mm
厚の板で2室を分離できる構造のものであればよ
い。
In the present invention, known materials and shapes can be used for the manifold and the partition plate for dividing the manifold into two parts in the longitudinal direction. For example, the material may be metal or plastic that has solution resistance and gas properties, the shape of the manifold is generally cylindrical or mesh, and the partition plate is made of the above material and has a diameter of 1 to 5 mm.
Any structure that allows the two chambers to be separated by a thick plate may be used.

以下本考案を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第2図は本考案マニホルドを示した斜視図であ
り、第3図は1つの陽極室とマニホルドの連結状
態を示した概略図で第4図は第3図のマニホルド
部の正面図を示したものである。
Fig. 2 is a perspective view showing the manifold of the present invention, Fig. 3 is a schematic diagram showing how one anode chamber and the manifold are connected, and Fig. 4 is a front view of the manifold part of Fig. 3. It is something.

第2図は本考案マニホルドの斜視図でマニホル
ド7は隔膜式電解槽13のほぼ全長に及んで電解
槽上部に存在し、各陽極室1から液及びガスを混
相流にて抜き出すための排出管2と各陽極室1へ
液を供給する給液管3とが接続されたもので、該
マニホルドは長手方向に仕切り板8により溶液循
環室9と溶液供給室10に2分割され、溶液供給
室10と溶液循環室9とはマニホルドの一方の端
部近辺11で連絡され、且つ該部近辺に溶液補給
口5を有し、他端近辺に溶液の取り出し口6を有
する構造である。又、陽極液中のガスはガス抜き
口4より系外へ導かれる。
FIG. 2 is a perspective view of the manifold of the present invention. The manifold 7 extends almost the entire length of the diaphragm electrolytic cell 13 and is located above the electrolytic cell, and is a discharge pipe for extracting liquid and gas from each anode chamber 1 in a multiphase flow. 2 and a liquid supply pipe 3 that supplies liquid to each anode chamber 1 are connected, and the manifold is divided into two in the longitudinal direction by a partition plate 8 into a solution circulation chamber 9 and a solution supply chamber 10. 10 and the solution circulation chamber 9 are connected to each other near one end 11 of the manifold, and have a solution supply port 5 near this part and a solution outlet 6 near the other end. Further, the gas in the anolyte is led out of the system through the gas vent port 4.

本考案マニホルドの特徴は、仕切り板で仕切る
等公知の方法によりマニホルド中を溶液循環室9
と溶液供給室10との2室に分離することであ
る。
The feature of the manifold of the present invention is that the solution circulation chamber 9 is divided into the manifold by a known method such as partitioning with a partition plate.
and a solution supply chamber 10.

このため各陽極室1から排出管2を通じて抜き
書された陽極液は第3図(1つの陽極室とマニホ
ルドの連結状態を示した概略図)矢印方向に従つ
て陽極室1へ循環される。一部取り出し口より系
外へ排出される。更に補給液を加えた状態を次に
示す。即ち、第4図に本考案マニホルドの平面図
(矢印は溶液の流動状態を示す)を示したが、本
考案では仕切り板8により溶液循環室9と溶液供
給室10とに分離し、両室はマニホルドの一方の
端部近辺11で連絡され、且つ該部に溶液補給口
5を有するため、排出口2より抜き出された陽極
液は矢印方向に流動すると共に一方の端部近辺1
1で濃厚な補給液が供給されるため、該部分(混
合部)11で循環液と補給液が均一な濃厚に混合
される。そのため以下各陽極室1へ液を供給する
場合、常に一定濃度を保つことができる。
For this purpose, the anolyte extracted from each anode chamber 1 through the discharge pipe 2 is circulated to the anode chamber 1 in the direction of the arrow in FIG. 3 (schematic diagram showing the state of connection between one anode chamber and a manifold). Part of it is discharged from the system through the outlet. The state in which the replenisher was further added is shown below. That is, although FIG. 4 shows a plan view of the manifold of the present invention (arrows indicate the flow state of the solution), the present invention is divided into a solution circulation chamber 9 and a solution supply chamber 10 by a partition plate 8, and both chambers are separated from each other by a partition plate 8. are connected near one end 11 of the manifold, and have a solution supply port 5 there, so that the anolyte extracted from the discharge port 2 flows in the direction of the arrow and flows near one end 1
Since the concentrated replenishment liquid is supplied at step 1, the circulating fluid and the replenishment liquid are mixed uniformly and thickly at this portion (mixing section) 11. Therefore, when the liquid is supplied to each anode chamber 1, a constant concentration can be maintained at all times.

この際、溶液供給室10の他端近辺には、せき
12を介して溶液の取り出し口6を付設した構造
のものは、溶液供給室10内の液面の高さを、該
せきの高さに応じて、一定に保つことが可能とな
るので、溶液供給室10から陽極室1へ供給され
る液の流量、濃度のコントロールが容易に出来る
ため好ましい。マニホルド内を流れる液の状態と
せきとの関係と第5図イ及びロによつて説明す
る。第5図イはマニホルドを第4図におけるA−
A′の面で切り、矢印の方向に見た図である。マ
ニホルドは中央の仕切り板8によつて、溶液循環
室9と溶液供給室に二分割されており、溶液供給
室内の液高はせき12によつてほぼ一定に保た
れ、溶液供給室内の溶液は一部せき12から溢流
し、溶液の取り出し口6から排出される。また第
5図ロは第4図のマニホルドをB−B′の面で切
り、矢印の方向に見た図である。本図において中
央の仕切り板8を境として、左側に図示した溶液
循環室9中の液高と、同じく右側に図示した溶液
供給室10の液高とには差が生じている。即ち、
溶液循環室側は、陽極室から排出された液及びガ
スの混相流のため、一部ガスを含んでいることも
あつて、嵩高となつているが溶液供給室側ではす
でに液中のガスは抜けており、しかも一部の溶液
は陽極室に供給されているため液高は低くなつて
いる。しかし通常はせきの高さ以下にはならな
い。換言すれば溶液供給室中の溶液の高さはせき
の高さによつてコントロールされているのであ
る。
At this time, if the solution supply chamber 10 has a structure in which a solution outlet 6 is provided through a weir 12 near the other end, the height of the liquid level in the solution supply chamber 10 is determined by the height of the weir. This is preferable because the flow rate and concentration of the liquid supplied from the solution supply chamber 10 to the anode chamber 1 can be easily controlled. The relationship between the state of the liquid flowing in the manifold and the weir will be explained with reference to FIGS. 5A and 5B. Figure 5 A shows the manifold A- in Figure 4.
It is a view cut along the plane A' and viewed in the direction of the arrow. The manifold is divided into a solution circulation chamber 9 and a solution supply chamber by a central partition plate 8. The liquid level in the solution supply chamber is kept almost constant by a weir 12, and the solution in the solution supply chamber is A portion of the solution overflows from the weir 12 and is discharged from the solution outlet 6. FIG. 5B is a view of the manifold shown in FIG. 4 cut along line B-B' and viewed in the direction of the arrow. In this figure, with the central partition plate 8 as a boundary, there is a difference between the liquid level in the solution circulation chamber 9 shown on the left side and the liquid level in the solution supply chamber 10 also shown on the right side. That is,
The solution circulation chamber side is bulky because it contains some gas due to the multiphase flow of liquid and gas discharged from the anode chamber, but in the solution supply chamber side, the gas in the liquid has already been removed. Moreover, some of the solution is being supplied to the anode chamber, so the liquid level is low. However, it usually does not go below cough height. In other words, the height of the solution in the solution supply chamber is controlled by the height of the weir.

本考案において特にマニホルド中を2分割する
ことにより、抜き出し液と供給液の流路を確保す
ると共に該流路の一端で抜き出し液の濃度を調製
するための溶液補給口を有することが特徴であ
り、他の構造については、公知のものが制限なく
使用できる。
The present invention is particularly characterized in that by dividing the inside of the manifold into two, a flow path for the extracted liquid and the supplied liquid is ensured, and at one end of the flow path, there is a solution replenishment port for adjusting the concentration of the extracted liquid. As for other structures, known structures can be used without restriction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の隔膜電解用マニホルドの構造
を示した斜視図で、第2図は本考案マニホルドの
斜視図である。第3図は本考案のマニホルドと陽
極室(又は陰極室)内との溶液の流れを示す図で
あり、第4図は、本考案のマニホルドの横断面図
であり、更に第5図イ及びロは第4図のマニホル
ドをA−A′面及びB−B′面でそれぞれ切断した
断面図である。 図において1は陽極室、2は排出管、3は給液
管、4はガス抜き口、5は溶液補給口、6は排出
口、7はマニホルド、8は仕切り板、9は溶液循
環室、10は溶液供給室、11は溶液混合部、1
2はせき、13は電解槽である。
FIG. 1 is a perspective view showing the structure of a conventional manifold for diaphragm electrolysis, and FIG. 2 is a perspective view of the manifold of the present invention. FIG. 3 is a diagram showing the flow of solution between the manifold of the present invention and the anode chamber (or cathode chamber), FIG. 4 is a cross-sectional view of the manifold of the present invention, and FIG. B is a cross-sectional view of the manifold shown in FIG. 4 taken along the plane A-A' and the plane B-B'. In the figure, 1 is an anode chamber, 2 is a discharge pipe, 3 is a liquid supply pipe, 4 is a gas vent, 5 is a solution supply port, 6 is a discharge port, 7 is a manifold, 8 is a partition plate, 9 is a solution circulation chamber, 10 is a solution supply chamber, 11 is a solution mixing section, 1
2 is a weir, and 13 is an electrolytic cell.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 隔膜式電解槽のほぼ全長に及んで電解槽上部に
存在し、各陽極室(又は陰極室)から、各々液及
びガスを混相流にて抜き出すための排出管と各陽
極室(又は陰極室)へ夫々液を供給する給液管と
が夫々接続されているマニホルドであつて該マニ
ホルドは長手方向に2分割されており、その一方
は前記給液管が接続された溶液供給室を構成し、
他方は前記排出管が接続された溶液循環室を構成
しており、溶液供給室と溶液循環室とは、マニホ
ルドの一方の端部近辺で連絡されており、且つ該
連絡部近辺に溶液補給口を有し、他端近辺に溶液
取り出し口を有することを特徴とする隔膜式電解
槽のマニホルド。
Exhaust pipes and each anode chamber (or cathode chamber) that extend over almost the entire length of the diaphragm electrolyzer and are located at the top of the electrolyzer, and are used to extract liquid and gas from each anode chamber (or cathode chamber) in a multiphase flow. a manifold to which liquid supply pipes for supplying liquid to each are connected, the manifold being divided into two in the longitudinal direction, one of which constitutes a solution supply chamber to which the liquid supply pipes are connected;
The other side constitutes a solution circulation chamber to which the discharge pipe is connected, and the solution supply chamber and the solution circulation chamber are connected near one end of the manifold, and a solution supply port is provided near the communication section. 1. A manifold for a diaphragm electrolytic cell, characterized in that the manifold has a solution outlet near the other end.
JP1982105152U 1982-07-13 1982-07-13 manifold Granted JPS5912870U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982105152U JPS5912870U (en) 1982-07-13 1982-07-13 manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982105152U JPS5912870U (en) 1982-07-13 1982-07-13 manifold

Publications (2)

Publication Number Publication Date
JPS5912870U JPS5912870U (en) 1984-01-26
JPS621232Y2 true JPS621232Y2 (en) 1987-01-13

Family

ID=30246598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982105152U Granted JPS5912870U (en) 1982-07-13 1982-07-13 manifold

Country Status (1)

Country Link
JP (1) JPS5912870U (en)

Also Published As

Publication number Publication date
JPS5912870U (en) 1984-01-26

Similar Documents

Publication Publication Date Title
JPS6315354B2 (en)
US4108742A (en) Electrolysis
FI64817C (en) FOERFARANDE FOER ELUTVINNING AV METALLER
US4375400A (en) Electrolyte circulation in an electrolytic cell
US4505789A (en) Dynamic gas disengaging apparatus and method for gas separation from electrolyte fluid
JPH02247391A (en) Improved electrolytic apparatus and anode
JPS621232Y2 (en)
US4295953A (en) Filter press type ion exchange membrane-method electrolysis cell
CA1105882A (en) Horizontal mercury cathode electrolyzer
US3252883A (en) Frames for electrolytic diaphragm cells
NO742331L (en)
ES8405086A1 (en) An electrolysis process and electrolytic cell.
US4293395A (en) Process for electrolysis of an aqueous alkali metal chloride solution
US2099801A (en) Electrolytic apparatus for prepar
JP2857111B2 (en) Gas diffusion electrode with gas lift pump
JPS5831893Y2 (en) anode chamber
JP3061334B2 (en) Electrolyte anode chamber
MX9401113A (en) IMPROVED PROCESS AND CUBA FOR CHLORINE-ALCALI ELECTROLYSIS WITH DIAPHRAGM.
JPS599632B2 (en) electrolytic cell
KR840007607A (en) Alkali Halide Compound Electrolysis and Electrolyzer
JP2751900B2 (en) Metal electrowinning method
JPS5831395B2 (en) Diaphragm type alkaline chloride electrolyzer
JPS5952235B2 (en) Electrolysis method of alkali metal salt aqueous solution
GB2182259A (en) Gas sparger
JPS5985874A (en) Construction of electrolytic cell