JPS62123216A - Optimum combustion control device for recovery boiler - Google Patents

Optimum combustion control device for recovery boiler

Info

Publication number
JPS62123216A
JPS62123216A JP61179153A JP17915386A JPS62123216A JP S62123216 A JPS62123216 A JP S62123216A JP 61179153 A JP61179153 A JP 61179153A JP 17915386 A JP17915386 A JP 17915386A JP S62123216 A JPS62123216 A JP S62123216A
Authority
JP
Japan
Prior art keywords
recovery boiler
evaluation index
heat
concentration
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61179153A
Other languages
Japanese (ja)
Other versions
JPH0480158B2 (en
Inventor
Yoshikazu Fukushima
福島 義和
Yohei Shiogoshi
塩越 陽平
Takao Matsuda
松田 孝男
Yasumitsu Kurosaki
泰充 黒崎
Toshiyuki Itoko
井床 利之
Shiro Nakabayashi
中林 志郎
Kazuyuki Iizuka
和幸 飯塚
Ryuichi Kuwata
桑田 龍一
Tsugio Kumaki
熊木 亜夫
Atsushi Muramatsu
篤 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Jujo Paper Co Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
Toshiba Corp
Jujo Paper Co Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Jujo Paper Co Ltd, Kawasaki Heavy Industries Ltd filed Critical Toshiba Corp
Publication of JPS62123216A publication Critical patent/JPS62123216A/en
Publication of JPH0480158B2 publication Critical patent/JPH0480158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Incineration Of Waste (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To search the most optimum combustion condition in operation while considering both of a steam generating efficiency and the reducing rate of smelt and carry out combustion control by a method wherein the titled control device is equipped with a heat amount ratio operating means, obtaining the heat amount ratio from the input heat and the output heat of a recovery boiler, an evaluation index operating means, a regulating means and a set value changing means. CONSTITUTION:An input heat and an output heat, obtained by operating units 34, 39, are sent to a subtracting unit 35 to obtain the ratio of the output heat to the input heat, thereafter, are supplied to a weighted sum operating unit 44. The SO2 concentration signal of combustion exhaust gas 7 is being inputted in the weighted sum operating unit 44 and the evaluation index of operating condition in a recovery boiler 2 is obtained by operation. The evaluation index is inputted into an extreme value searching unit 45 and the set value of a primary low air flow amount controller 46 is changed up-and-down so that the evaluation index becomes the greatest. When the evaluation index has the largest value, the set value of the primary low air flow amount is held.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、パルプ製造工程において生ずる黒液を燃焼し
て黒液中に含まれる蒸解用薬剤の原料を回収するととも
に黒液の保有熱量により水蒸気を発生させる回収ボイラ
の最適燃焼制御装置に関し、更に詳しくは最適な操業状
態になるように空気流量を探索して回収ボイラの燃焼状
態を制御する回収ボイラの最適燃焼制御装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention aims to burn the black liquor produced in the pulp manufacturing process to recover raw materials for cooking chemicals contained in the black liquor, and to utilize the heat capacity of the black liquor to recover raw materials for cooking chemicals contained in the black liquor. The present invention relates to an optimal combustion control device for a recovery boiler that generates steam, and more particularly to an optimal combustion control device for a recovery boiler that controls the combustion state of the recovery boiler by searching for an air flow rate so as to achieve an optimal operating state.

[従来の技術] 紙パルプ製造工程中の蒸解工程においては、木材中のセ
ルローズ(1141分)とリグニン(樹脂分)とを分離
して取出す必要があり、このためにNaOHを主成分と
する薬剤が使用されている。
[Prior art] In the cooking process in the paper pulp manufacturing process, it is necessary to separate and extract cellulose (1141 min) and lignin (resin content) from wood, and for this purpose, a chemical agent containing NaOH as a main component is used. is used.

そして、この蒸解工程からは、該蒸解工程により骨られ
る溶解状態の前記リグニン等有機成分とNa25O+や
Na2 GO3等のいわゆるNaを主成分とする無機分
成分とが混合された黒液と称する廃溶液が排出される。
From this cooking process, a waste solution called black liquor is produced, which is a mixture of organic components such as lignin in a dissolved state and inorganic components mainly composed of Na such as Na25O+ and Na2GO3. is discharged.

ところで、回収ボイラの機能は、上記黒液を燃焼して黒
液中に含まれるリグニン等有機成分の保有熱量により発
電用あるいは工場用諸設備に供する蒸気を発生させて回
収することにある。また、回収ボイラのもう1つの機能
は、黒液の燃焼熱を利用して黒液中に含有されるNa2
SO4を還元し、これをNa2Sを主成分とする形で炉
底に溶融させて前記蒸解工程に利用する薬剤の原料を回
収することにある。すなわち、回収ボイラは、紙パルプ
製造工程において排出される黒液を燃焼して熱エネルギ
ーと薬剤の原料を回収するといった2重の役割を持って
おり、紙パルブ工場の操業上極めて重要な意義を有して
いる。このため、回収ボイラの燃焼制御は、蒸気発生効
率と薬剤回収効率即ちスメルト還元率と呼ばれるNa2
SO4のNaSへの還元効率の双方が高く得られるよう
な運転が望まれている。
By the way, the function of the recovery boiler is to burn the black liquor to generate and recover steam that is used for power generation or various factory equipment using the amount of heat held by organic components such as lignin contained in the black liquor. Another function of the recovery boiler is to use the combustion heat of the black liquor to recover the Na2 contained in the black liquor.
The purpose of this method is to reduce SO4 and melt it in the form of Na2S as the main component at the bottom of the furnace to recover raw materials for chemicals used in the cooking process. In other words, the recovery boiler has a dual role of burning the black liquor discharged in the pulp and paper manufacturing process to recover thermal energy and raw materials for chemicals, and has extremely important significance in the operation of pulp and paper mills. have. For this reason, the combustion control of the recovery boiler depends on the steam generation efficiency and the chemical recovery efficiency, that is, the Na2
It is desired to operate in such a way that both the efficiency of reducing SO4 to NaS is high.

第7図および第8図は以上述べた従来の回収ボイラおよ
びその燃焼制御装置の構成を示す図である。先ず、第7
図は回収ボイラを示すものであって、図示されていない
がチップ蒸解工程から廃液として排出される黒液は噴射
ガン1により回収ボイラ2の炉内に噴霧される。ここで
、噴霧状とされた黒液は炉内で放射熱により浮遊乾燥さ
れて炉底に落下してチャーベッド3を形成する。このチ
ャーベッド3は燃焼用空気4〜6を受けて燃焼され、こ
のとき発生する燃焼排ガス7は過熱器8、ドラム9およ
び節炭器10を通って熱交換に供され、さらに電気集塵
器11を通って煙突12から系外へ排ガス13として排
出される。回収ボイラ2に供給される水は節炭器10に
おいて燃焼排ガス7により加熱されて温水とされ、引続
きドラム9のバンクチューブによって加熱されて蒸気1
4とされた後に過熱器8に送り込まれ、ここで加熱され
て主蒸気15として主蒸気ライン16から系外へ取出さ
れる構成となっている。
FIGS. 7 and 8 are diagrams showing the configuration of the conventional recovery boiler and its combustion control device described above. First, the seventh
The figure shows a recovery boiler, and although not shown, black liquor discharged as waste liquid from the chip cooking process is sprayed into the furnace of the recovery boiler 2 by an injection gun 1. Here, the atomized black liquor is suspended and dried in the furnace by radiant heat and falls to the bottom of the furnace to form a char bed 3. This char bed 3 receives combustion air 4 to 6 and is combusted, and the combustion exhaust gas 7 generated at this time passes through a superheater 8, a drum 9, and an economizer 10, and is subjected to heat exchange. 11 and is discharged from the chimney 12 to the outside of the system as exhaust gas 13. The water supplied to the recovery boiler 2 is heated by the combustion exhaust gas 7 in the economizer 10 to become hot water, and then heated by the bank tube of the drum 9 to produce steam 1.
4 and then sent to a superheater 8 where it is heated and taken out as main steam 15 from the main steam line 16 to the outside of the system.

一方、チャーベット3およびその近傍においては燃焼熱
を利用した高温の還元雰囲気が形成される。黒液中に混
入されるNa2SO4はこの高温の還元雰囲気でNa2
Sに還元され、スメルト17(チップ蒸解用薬剤)と称
する液体として炉底に溶融し、スメルトスパウトロ18
より回収される。また、黒液中に混入してきたNa2S
O4の熱分解や黒液の燃焼の際に発生するS○2ガスは
チャーベッド頂上部に発生するNa2ガスあるいはNa
2oヒユームによって捕捉されてNa25O+とじて固
定化され同様にNa2Sに還元される。
On the other hand, in the charbet 3 and its vicinity, a high-temperature reducing atmosphere is formed using combustion heat. Na2SO4 mixed into the black liquor becomes Na2 in this high-temperature reducing atmosphere.
It is reduced to S and melted at the bottom of the furnace as a liquid called smelt 17 (chemical for chip cooking), and is produced as smelt spout 18.
more will be recovered. In addition, Na2S that has been mixed into the black liquor
The S○2 gas generated during the thermal decomposition of O4 and the combustion of black liquor is the Na2 gas or Na gas generated at the top of the char bed.
It is captured by 2O fume, immobilized as Na25O+, and similarly reduced to Na2S.

次に、第8図は第7図に示す回収ボイラに適用した従来
の一般的な燃焼制御装置を示す図である。
Next, FIG. 8 is a diagram showing a conventional general combustion control device applied to the recovery boiler shown in FIG. 7.

即ち、この燃焼制御装置は、第7図に示す回収ボイラシ
ステムに502s度検出器21、極値探索部22.1次
空気流量調節計23を設け、この空気流m調節計23の
操作出力を1次空気送風ファン24に与えて1次空気流
量を制御する構成である。この装置は、極値探索部22
を用いて山登り法等の手段により前記502a度が極小
となるように1次空気流m設定値を探索し、その探索結
果を1次空気流量調節計23へ設定値として供給するも
のである。
That is, this combustion control device includes a recovery boiler system shown in FIG. The configuration is such that the primary air is supplied to the primary air blowing fan 24 to control the primary air flow rate. This device has an extreme value search section 22
The primary airflow m setting value is searched for using a hill climbing method or the like so that the above-mentioned 502a degrees becomes a minimum, and the search result is supplied to the primary air flow rate controller 23 as the setting value.

以上のような燃焼制御手段を採用した理由は、直接的に
はSO2濃度の低下による低公害化を目指すものである
が、間接的にはスメルト還元率の上昇を目指したものと
考えられている。すなわち、低い50211度は、黒液
中の有機成分の燃焼あるいは黒液中のNa2SO4の熱
分解によって生じる802ガスがチャーベッド表面から
発生するNa2ガスあるいはNa2Oヒユームにより捕
捉され、ガスとして飛散することな(N a2 S 0
4の形で固着化する割合が高いことから、結果として高
いスメルト還元率でスメルト17を得ることができると
考えられている。また、もう1つの採用理由である蒸気
発生効率については、これを副次的に考え、炉床温度が
高いほどNa2ガスの飛散が盛んになると考え、SO2
濃度の低下は高い炉床温度の実現を表わし、概略高い蒸
気発生効率を実現するとの観点に立つものであった。
The reason for adopting the above-mentioned combustion control means is to directly aim at lowering pollution by lowering SO2 concentration, but indirectly it is thought to aim at increasing the smelt reduction rate. . In other words, the low temperature of 50211 degrees means that the 802 gas produced by the combustion of organic components in the black liquor or the thermal decomposition of Na2SO4 in the black liquor is captured by the Na2 gas or Na2O fume generated from the surface of the charbed, and is not scattered as a gas. (N a2 S 0
It is thought that since the proportion of solidification in the form of smelt 4 is high, it is possible to obtain smelt 17 with a high smelt reduction rate as a result. In addition, regarding the steam generation efficiency, which is another reason for its adoption, we considered this as a secondary consideration, and considered that the higher the hearth temperature, the more the scattering of Na2 gas.
The reduction in concentration represented the realization of a high hearth temperature, which was considered to lead to the realization of a generally high steam generation efficiency.

[発明が解決しようとする問題点コ ところで、近年、省エネルギーの要請が高まるにつれ、
従来副次的に考えられていた回収ボイラの蒸気発生プラ
ントとしての役割の比重が相対的に珊大する傾向にある
。これに伴い回収ボイラの運転にあっても、スメルト還
元率と蒸気発生効率の双方を考慮した上での最適な操業
状態を実現し、これを維持していくことが求められてい
る。
[Problems that the invention aims to solve]In recent years, as the demand for energy conservation has increased,
The role of recovery boilers as steam generation plants, which have traditionally been considered secondary, is becoming increasingly important. Accordingly, even in the operation of the recovery boiler, it is required to realize and maintain an optimal operating state by considering both the smelt reduction rate and the steam generation efficiency.

この点に関し、従来の燃焼制御装置は、スメル1−還元
率の極大化のみを目指すか、スメルト還元率の極大化と
蒸気発生効率の極大化を同時に達成しうるという前提の
もとに、排ガス302濃度を極小とする1次空気流量の
設定値を探索していた。
In this regard, conventional combustion control devices aim only at maximizing the smelt reduction rate, or at the same time maximize the smelt reduction rate and steam generation efficiency. They were searching for a set value for the primary air flow rate that would minimize the 302 concentration.

しかし、本出願における発明者等が実験したところによ
れば、第9図に示すようにスメルト還元率を極大とする
極大点イに対応する1次空気流量S1と蒸気発生効率を
極大とする極大点口に対応する1次空気流132とは必
ずしも従来考えられているように一致せず、むしろ異な
る場合が多い。
However, according to experiments conducted by the inventors of the present application, as shown in FIG. The primary air flows 132 corresponding to the point ports do not necessarily match as conventionally thought, but rather are often different.

従って、従来の装置は、厳凹な意味において両者の極大
化を同時に達成することが難しく、蒸気発生効率上必ず
しも最適な状態で回収ボイラを運転しているものではな
い。このことは、逆に蒸気発生効率の極大化を狙おうと
すれば結果としてスメルト還元率の低下をきたすことに
なる。発明者等が実験の結果について総合判断するに、
スメルト還元率と蒸気発生効率との関係は理論的には次
のように説明することができる。即ち、回収ボイラにお
いては、スメルト還元の際には次に示すような化学反応
が行なわれている。
Therefore, in a serious sense, it is difficult for conventional devices to simultaneously maximize both conditions, and the recovery boiler is not necessarily operated in an optimal state in terms of steam generation efficiency. On the other hand, if an attempt is made to maximize steam generation efficiency, this will result in a decrease in the smelt reduction rate. In the overall judgment of the inventors regarding the results of the experiment,
The relationship between smelt reduction rate and steam generation efficiency can be theoretically explained as follows. That is, in the recovery boiler, the following chemical reaction takes place during smelt reduction.

Na2304 +40 一+Na2S+C○−136゜5Kca+この式に示す
化学反応は、吸熱反応であることは既に知られており、
還元反応が盛んになるほど吸熱量が増え、蒸気発生に寄
与すべき燃焼熱が還元反応に奪われるといった現象が発
生する。また、この還元反応は未燃焼の炭素(C)を必
要とするが、燃焼を促進して蒸気発生効率を上げようと
して酸素を供給し過ぎると、還元に必要な未燃の炭素が
還元に寄与することなく酸化燃焼によって失われてしま
う。このため、スメルト還元率を向上させるためにチャ
ーペッド3を必要以上に燃焼させず還元反応を最も促進
させる温度での還元雰囲気に保たなければならない。し
かし、このような手法は、高い蒸気発生効率と高いスメ
ルト還元率とが互いに相容れない場合がありうることを
示している。このような問題がこれまでに充分に明らか
にされず、また注意を払っていない理由は、回収ボイラ
において蒸気発生機能が副次的に取り扱われていたこと
およびこのために蒸気発生効率が黒液中の燃焼熱量の変
化、還元反応熱m等を考慮したボイラ効率として正確に
定義されていないことに起因すると考えられる。
Na2304 +40 -+Na2S+C○-136゜5Kca+It is already known that the chemical reaction shown in this formula is an endothermic reaction,
As the reduction reaction becomes more active, the amount of heat absorbed increases, and a phenomenon occurs in which combustion heat that should contribute to steam generation is taken away by the reduction reaction. In addition, this reduction reaction requires unburned carbon (C), but if too much oxygen is supplied in an attempt to promote combustion and increase steam generation efficiency, the unburned carbon necessary for reduction will contribute to reduction. It is lost through oxidative combustion. Therefore, in order to improve the smelt reduction rate, it is necessary to keep the charped 3 in a reducing atmosphere at a temperature that promotes the reduction reaction most without burning it more than necessary. However, such approaches demonstrate that high steam generation efficiency and high smelt reduction rates may be mutually exclusive. The reason why such problems have not been sufficiently clarified or paid attention to is that the steam generation function in recovery boilers has been treated as a secondary function, and for this reason, the steam generation efficiency has decreased to a level that is lower than that of black liquor. This is thought to be due to the fact that the boiler efficiency is not accurately defined in consideration of changes in the amount of combustion heat in the boiler, the heat of reduction reaction m, etc.

本発明は以上のような実情に鑑みてなされたもので、蒸
気発生効率とスメルト還元率の双方を考慮した上で操業
上最適な燃焼状態を探索して燃焼制御を実行する回収ボ
イラの最適燃焼制御装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide optimal combustion for a recovery boiler that searches for the optimal combustion state for operation and executes combustion control, taking both steam generation efficiency and smelt reduction rate into consideration. The purpose is to provide a control device.

[問題点を解決するための手段] 本発明は以上のような目的を達成するために、回収ボイ
ラの出熱と入熱の熱量比を演算する熱量比演算手段と、
前記熱量比と少なくとも燃焼排ガスの502m度との関
数として前記回収ボイラの総合運転状態の評価指標を演
算する評価指標演算手段と、前記回収ボイラの燃焼状態
制御用操作量を得る調節手段と、前記評価指標が極値ま
たは目標値に向うように前記調節手段の設定値を可変す
る設定値可変手段とを備えたものである。
[Means for Solving the Problems] In order to achieve the above objects, the present invention includes a heat ratio calculation means for calculating the heat ratio of heat output and heat input of a recovery boiler;
an evaluation index calculation means for calculating an evaluation index of the overall operating state of the recovery boiler as a function of the heat ratio and at least 502 m degrees of the combustion exhaust gas; and an adjustment means for obtaining a manipulated variable for controlling the combustion state of the recovery boiler; and set value varying means for varying the set value of the adjusting means so that the evaluation index moves toward an extreme value or a target value.

[作用] 従って、以上のような手段をすることにより、蒸気発生
効率を出熱・入熱化部ち回収ボイラへ持込まれる入熱と
これから蒸気として有効に取出しうる出熱との熱量比と
いうボイラ効率を尺度として得、またスメルト還元率の
向上を燃焼排ガスのSO2濃度の低下という形で検出し
、前記熱量比と8021I度との関数として該回収ボイ
ラの評価指標を得ることにより、蒸気発生効率とスメル
ト還元率の双方を考慮して回収ボイラの運転状態の評価
指標を得、この評価指標が極値または目標値へ向うよう
に前記回収ボイラの燃焼状態υ1111用操操量を操作
するので、蒸気発生効率、スメルト還元率の一方に偏る
ことなく両者を勘案して操業上堰も好ましい回収ボイラ
の運転状態を実現することができる。
[Function] Therefore, by taking the above-mentioned measures, the steam generation efficiency can be determined as the heat ratio of the heat input brought into the heat output/heat conversion section or recovery boiler and the heat output that can be effectively extracted as steam. By obtaining the efficiency as a measure, detecting the improvement in the smelt reduction rate in the form of a decrease in the SO2 concentration of the combustion exhaust gas, and obtaining the evaluation index of the recovery boiler as a function of the heat ratio and 8021I degree, the steam generation efficiency can be determined. An evaluation index of the operation state of the recovery boiler is obtained by considering both the smelt reduction rate and the smelt reduction rate, and the operation amount for the combustion state υ1111 of the recovery boiler is manipulated so that this evaluation index moves toward the extreme value or the target value. By taking both the steam generation efficiency and the smelt reduction rate into consideration without being biased toward one side, the operation of the recovery boiler can be realized using a favorable weir.

[実施例] 以下、本発明の一実施例について第1図を参照にして説
明する。なお、同図において第8図と同一部分には同一
符号を付して詳しい説明は省略する。即ち、本発明装置
においては、噴射黒液ライン31に黒液体積流量検出器
32および黒液密度検出器33が設置され、これらの検
出器32.33によって検出された流量信号および密度
信号は入熱演算部34に供給される。この入熱演算部3
4は流」信号と密度信号を用いて回収ボイラ2に持ち込
まれる熱温つまり入熱を演算により求め、ここで求めら
れた入熱を除算部5に供給するものである。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. In this figure, the same parts as in FIG. 8 are given the same reference numerals and detailed explanations are omitted. That is, in the apparatus of the present invention, a black liquor volumetric flow rate detector 32 and a black liquor density detector 33 are installed in the injection black liquor line 31, and the flow rate signal and density signal detected by these detectors 32 and 33 are input. It is supplied to the thermal calculation section 34. This heat input calculation section 3
Reference numeral 4 calculates the heat temperature, that is, the heat input, brought into the recovery boiler 2 using the flow rate signal and the density signal, and supplies the calculated heat input to the dividing section 5.

また、給水ライン36には給水流型検出器37および給
水温度検出器38が設置され、それぞれの流量信号およ
び温度信号が出熱演算部39に供給されている。また、
この出熱演算部39には主蒸気ライン16に設置された
主蒸気流量検出器40、主蒸気圧力検出器41および主
蒸気温度検出器42から主蒸気流量信号、主蒸気圧力信
号および主蒸気温度信号がそれぞれ供給されている。
Further, a feed water flow type detector 37 and a feed water temperature detector 38 are installed in the water supply line 36, and their respective flow rate signals and temperature signals are supplied to a heat output calculation section 39. Also,
The heat output calculation unit 39 receives a main steam flow rate signal, a main steam pressure signal, and a main steam temperature signal from a main steam flow rate detector 40, a main steam pressure detector 41, and a main steam temperature detector 42 installed in the main steam line 16. signals are provided respectively.

この出熱演算部3つは、回収ボイラ2に供給される給水
が主蒸気として取出される間に黒液の燃焼によって付与
された熱量つまり回収ボイラ2の有効取出し熱量を演算
によって求めて前記除算部35に供給する。この除算部
35は入熱演算部34の出力と出熱演算部39の出力と
が入力され、後者を前者で除することによって出熱・入
熱比を求めるものである。
These three heat output calculation units calculate the amount of heat given by combustion of black liquor while the feed water supplied to the recovery boiler 2 is taken out as main steam, that is, the effective amount of heat taken out of the recovery boiler 2, and calculate the above-mentioned division. 35. The output of the heat input calculation part 34 and the output of the heat output calculation part 39 are input to the division part 35, and the heat output/heat input ratio is obtained by dividing the latter by the former.

また、電気集塵器11の後段側に燃焼排ガス7の5O2
i1度を検出する802濃度検出器21が設置され、こ
こで検出された50211度信号は前記除算部35の出
力とともに加重和演算部44に供給される。この加重和
演算部46は除算部35の出力と30211度の加重和
として求めて回収ボイラ2の運転状態の評価指標を演算
によって求めるものである。そして、この加重和演算部
44の出力側に極値探索部45および1次低空気流量調
節計46が設けられている。この極値探索部45は加重
和演算部44の出力として得られる回収ボイラ2の運転
状態の評価指標が極値に向うように1次低空気流量調節
計46の設定値を上下させるものである。また、1次低
空気流m調節計46は回収ボイラ2の燃焼状態制御用に
1次低空気流量4を所定の設定値に制御するものである
In addition, 5O2 of the combustion exhaust gas 7 is placed on the downstream side of the electrostatic precipitator 11.
An 802 degree concentration detector 21 for detecting i1 degree is installed, and the 50211 degree signal detected here is supplied to the weighted sum calculation section 44 together with the output of the division section 35. This weighted sum calculating section 46 calculates the evaluation index of the operating state of the recovery boiler 2 by calculating the weighted sum of the output of the dividing section 35 and 30211 degrees. An extreme value search section 45 and a primary low air flow rate controller 46 are provided on the output side of the weighted sum calculation section 44. This extreme value search section 45 is for increasing or decreasing the set value of the primary low air flow rate controller 46 so that the evaluation index of the operating state of the recovery boiler 2 obtained as the output of the weighted sum calculation section 44 moves toward an extreme value. . Further, the primary low air flow m controller 46 controls the primary low air flow rate 4 to a predetermined set value for controlling the combustion state of the recovery boiler 2.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

噴射黒液ライン31から黒液体積流量信号および黒液密
度信号を受けると、入熱演算部34は両信号を乗算して
噴射黒液の重量流量を求めるとともに、この重量流量に
予め定められた黒液の単位重量当りの燃焼発熱量を乗じ
、噴射黒液によって回収ボイラ2内に供給される単位時
間当りの入熱量を求める。
When receiving the black liquid volumetric flow rate signal and the black liquor density signal from the injection black liquor line 31, the heat input calculation unit 34 multiplies both signals to obtain the weight flow rate of the injection black liquor, and also calculates the weight flow rate of the injection black liquor, and adds a predetermined value to this weight flow rate. The amount of heat input per unit time supplied into the recovery boiler 2 by the injected black liquor is determined by multiplying by the combustion calorific value per unit weight of black liquor.

一方、出熱演算部39においては回収ボイラ2に供給さ
れた水が水蒸気として系外に取出される時に付与される
有効熱量すなわち単位時間当り出熱量を次の演算式によ
って求めるものである。
On the other hand, the heat output calculating section 39 calculates the effective amount of heat given when the water supplied to the recovery boiler 2 is taken out of the system as steam, that is, the amount of heat output per unit time, using the following calculation formula.

出熱量=(主蒸気流fliX主蒸気エンタルピー)−(
給水流量×給水エンタルピー) 主蒸気エンタルピー−f(主蒸気温度。
Heat output = (main steam flow fliX main steam enthalpy) - (
Feedwater flow rate x Feedwater enthalpy) Main steam enthalpy - f (main steam temperature.

主蒸気圧力) 給水エンタルピー=g(@水温度) 上式においてf、qはそれぞれある関数を表わす。main steam pressure) Water supply enthalpy = g (@water temperature) In the above formula, f and q each represent a certain function.

すなわち、主蒸気エンタルピーは主蒸気温度と主蒸気圧
力の関数となり、給水エンタルピーは給水温度の関数と
なるもので、これらの関係は蒸気表に記載されており、
これを予め記憶しマイクロコンピュータ等を用いて演算
により実現することができる。
In other words, main steam enthalpy is a function of main steam temperature and main steam pressure, and feed water enthalpy is a function of feed water temperature, and these relationships are listed in the steam table.
This can be realized by storing this information in advance and calculating it using a microcomputer or the like.

そして、以上のようにして各演算部34.39によりに
より求められた入熱および出熱は除算部35に送られ、
ここで回収ボイラ2の蒸気発生効率を表わす指標である
出熱・入熱比を求めた後、これを加重和演算部44に供
給する。更に、この加重和演算部44には燃焼排ガス7
のSO2濃度信号が入力されており、次式に基づいて回
収ボイラ2における運転状態の評価指標を演算により求
める。
The heat input and heat output calculated by each calculation unit 34 and 39 as described above are sent to the division unit 35,
After determining the heat output/heat input ratio, which is an index representing the steam generation efficiency of the recovery boiler 2, this is supplied to the weighted sum calculation section 44. Furthermore, this weighted sum calculating section 44 is provided with the combustion exhaust gas 7.
The SO2 concentration signal is input, and an evaluation index of the operating state of the recovery boiler 2 is calculated based on the following equation.

評gfi指標−α(出熱・入熱比) +β(802濃度) 但し、αは正の加重係数、βは負の加重係数である。こ
の評価指標の第1項は蒸気発生効率に相当するもので、
第1項は蒸気発生効率が高くなるほど増大する。一方、
評価指標の第2項はスメルト還元率に対応するものとし
て考えることができる。即ち、炉内に投入される硫黄分
(8分)は炉内で酸化されて酸化硫黄物が生成され、炉
底部において高温還元反応が充分に行なわれていればN
a2ガスあるいはNa2Oヒユームが炉底部で発生し、
これらが炉内で発生する酸化硫黄分を硫酸ナトリウム(
Na2SO4)などの形で捕捉し、ボイラ出口排ガス中
のSO2′a度は低くなり、スメルト還元率は高くなる
傾向にある。このため502i1度の高低は炉底部での
高温還元反応状態を通じてスメルト還元率の1つの指標
となり、よって前記第2項はスメルト還元率が高くなる
ほどSO2濃度が減少する傾向にあるために負の加重係
数を乗することにより増大する。従って、この評価指標
は蒸気発生効率、スメルト還元率がともに高いほど増大
する傾向にある。また、SO2濃度についてはスメルト
還元率の高さを示す指標となる他、直接的にはボイラ2
の腐蝕防止に寄与し、また、公害防止の観点からも低い
ほど望ましく、評価指標は大きいほど操業上望ましい状
態となる。
Evaluation gfi index - α (heat output/heat input ratio) + β (802 concentration) However, α is a positive weighting coefficient, and β is a negative weighting coefficient. The first term of this evaluation index corresponds to steam generation efficiency,
The first term increases as the steam generation efficiency increases. on the other hand,
The second term of the evaluation index can be considered as corresponding to the smelt reduction rate. In other words, the sulfur content (8 minutes) introduced into the furnace is oxidized in the furnace to generate sulfur oxides, and if the high temperature reduction reaction is sufficiently carried out at the bottom of the furnace, N
A2 gas or Na2O fume is generated at the bottom of the furnace,
These remove the sulfur oxide content generated in the furnace with sodium sulfate (
The degree of SO2'a in the exhaust gas at the boiler outlet tends to decrease, and the smelt reduction rate tends to increase. Therefore, the height of 502i1 degrees becomes one indicator of the smelt reduction rate through the high-temperature reduction reaction state at the bottom of the furnace, and therefore, the second term is negatively weighted because the SO2 concentration tends to decrease as the smelt reduction rate increases. It increases by multiplying by a coefficient. Therefore, this evaluation index tends to increase as both the steam generation efficiency and the smelt reduction rate become higher. In addition, the SO2 concentration is an indicator of the high smelt reduction rate, and it is also directly measured in the boiler 2.
The lower the evaluation index, the more desirable it is from the viewpoint of pollution prevention, and the higher the evaluation index, the more desirable it is for operation.

しかも、前記出熱・入熱比とSO211度の何れかの加
重係数を変えれば、蒸気発生効率、スメルト還元率の重
さを変えることができる。このように本装置は蒸気発生
効率とスメルト還元率の関係を勘案し、更に502II
度を低下させ、ボイラ腐蝕防止効果、環境保全効果等の
直接的効果をも勘案して操業側の要請に合致する評価指
標を得ることができる。
Furthermore, by changing the weighting coefficient of either the heat output/heat input ratio or the SO211 degree, the weight of the steam generation efficiency and the smelt reduction rate can be changed. In this way, this device takes into consideration the relationship between steam generation efficiency and smelt reduction rate, and also
It is possible to obtain an evaluation index that meets the requirements of the operator by taking into account direct effects such as boiler corrosion prevention effect and environmental conservation effect.

そして、以上のようにして得られた評価指標は極値探索
部45に入力される。この極値探索部45はこの評価指
標の値が極大に向うように1次低空気流量調節計46の
設定値を上下させながら試行探索し、評価指標が極大値
の時は1次低空気流量の設定値を保持する。この極値探
索のアルゴリズムは山登り法等公知のアルゴリズムを利
用することができる。
The evaluation index obtained as described above is then input to the extreme value search section 45. This extreme value search unit 45 performs a trial search while increasing and lowering the setting value of the primary low air flow rate controller 46 so that the value of this evaluation index approaches the maximum value, and when the evaluation index is at the maximum value, the primary low air flow rate is Retains the setting value. As the algorithm for this extreme value search, a known algorithm such as the mountain climbing method can be used.

従って、以上のような構成によれば、蒸気発生効率、ス
メルト還元率の双方を考慮し、更に5o211度低下の
直接的効果をも考慮して回収ボイラ操業側からみて最適
な状態で黒液を燃焼させる1次低空気流量を探索し、該
回収ボイラを最適な状態で燃焼制御することができる。
Therefore, according to the above configuration, black liquor is produced in the optimum condition from the recovery boiler operating side, taking into account both steam generation efficiency and smelt reduction rate, and also taking into account the direct effect of 5o211 degree reduction. By searching for a primary low air flow rate for combustion, combustion can be controlled in the recovery boiler in an optimal state.

なお、上記実施例の入熱演算部34は黒液の重I!量を
もとに燃焼発熱量を演算しているが、黒液の密度があま
り変わらなければ、体積流量をもとに燃焼発熱量を求め
てもよい。また、黒液の性状の変動等により黒液中に含
まれる可燃物であるリグニン等有機成分の重量比が変動
する場合、適当な方法でこれを推定することができれば
黒液の有機成分流量をもとに発熱量を演算することによ
り、より正確な入熱量を得ることができる。また、発生
した水蒸気を取出すラインとして主蒸気ライン16以外
にもある場合には出熱の演算において当該ラインにおけ
る流体の取出し熱量を加えるものである。また、上記実
施例では、出熱・入熱比の演算は熱量換算比で求めてい
るが、より簡単には発生蒸気量と黒液体積流量あるいは
黒液体積流量との比である、いわゆるスチームゲインを
求め、これを出熱・入熱比として代用して使用すること
も可能である。さらに、黒液中の水分比率に変動がある
場合には水の蒸発の潜熱を考慮することによって、また
黒液中の芒硝(Na2804 )flに変動がある場合
には還元反応に際して発生する吸熱量をそれぞれ出熱・
入熱比の演算において考慮する形とすれば、より正確に
出熱・入熱比を得ることができる。また、燃焼用空気の
顕熱に変動がある場合にはこれを考慮してもよい。また
、上記実施例は燃焼状態の制御用操作最として1次低空
気流量を用いているが、これは2大空気l、全空気量、
全空気量に対する1次空気の配分比、噴射黒液流量、噴
射黒液温度等燃焼状態に変動をもたらす他の操作量を用
いて極値探索法を行なってもよい。
In addition, the heat input calculating section 34 of the above embodiment uses heavy I! of black liquor. Although the combustion calorific value is calculated based on the amount, if the density of the black liquor does not change much, the combustion calorific value may be calculated based on the volumetric flow rate. In addition, if the weight ratio of organic components such as lignin, which is a combustible substance contained in black liquor, changes due to changes in the properties of black liquor, if this can be estimated using an appropriate method, the flow rate of organic components in black liquor can be estimated. A more accurate amount of heat input can be obtained by calculating the amount of heat generated. Furthermore, if there is a line other than the main steam line 16 as a line for extracting generated steam, the amount of heat extracted from the fluid in that line is added in the heat output calculation. In addition, in the above embodiment, the heat output/heat input ratio is calculated using the heat conversion ratio, but it can be more simply calculated as the ratio between the amount of generated steam and the black liquid product flow rate or the black liquid product flow rate. It is also possible to find the gain and use it as a substitute for the heat output/heat input ratio. Furthermore, if the water ratio in the black liquor varies, the latent heat of evaporation of water can be taken into account, and if the mirabilite (Na2804) fl in the black liquor varies, the amount of endothermic heat generated during the reduction reaction can be determined. The fever and
If it is taken into account in calculating the heat input ratio, the heat output/heat input ratio can be obtained more accurately. Further, if there is a fluctuation in the sensible heat of the combustion air, this may be taken into consideration. Furthermore, in the above embodiment, the primary low air flow rate is used as the operation for controlling the combustion state;
The extreme value search method may be performed using other manipulated variables that cause fluctuations in the combustion state, such as the distribution ratio of primary air to the total air amount, the flow rate of the injected black liquor, and the temperature of the injected black liquor.

次に、第2図は本発明の他の実施例を示すもので、回収
ボイラ2の炉外壁に放射温度計51を設置し、前記加重
和演算部44に代えて前記放射温度計51から得られる
炉内温度測定信号と前記出熱・入熱比および前記S○2
とを加重和演算部44Aに供給して加重和を求めるよう
にしてもよい。炉内温度は、前記放射温度計51の視野
測定波長を適当に定めることにより、チャーベッド3の
頂上部の表面温度あるいはチャーベッド直上部の火炎温
度等を測定することが可能である。また、放射温度系5
1に代えて熱雷対等を炉上部に設置し、炉内ガス体の雰
囲気温度を測定して炉内温度を知ることもできる。
Next, FIG. 2 shows another embodiment of the present invention, in which a radiation thermometer 51 is installed on the outer wall of the recovery boiler 2, and the radiation thermometer 51 is used instead of the weighted sum calculation section 44. The furnace temperature measurement signal, the heat output/heat input ratio, and the S○2
may be supplied to the weighted sum calculating section 44A to obtain a weighted sum. The temperature inside the furnace can be measured by appropriately determining the field measurement wavelength of the radiation thermometer 51, such as the surface temperature at the top of the char bed 3 or the flame temperature directly above the char bed. In addition, the radiation temperature system 5
Instead of 1, it is also possible to install a thermal lightning pair or the like in the upper part of the furnace and measure the atmospheric temperature of the gas inside the furnace to know the temperature inside the furnace.

従って、以上のような構成によれば、評価指標は出熱・
入熱比とSO2濶度8炉内温度の3者の加重和として得
られる。炉内温度は燃焼の盛んな様子を示す指標である
ので、高い炉内温度は蒸気発生に寄与する。また、特に
炉内温度が還元反応を適正に行い得る温度範囲(例えば
900℃〜1200℃)内で極大にあれば、Na2ガス
の飛散による802補捉効果によりスメルト還元率およ
び蒸気発生率をともに向上させることができる。
Therefore, according to the above configuration, the evaluation index is heat output and
It is obtained as a weighted sum of three factors: heat input ratio, SO2 degree, and furnace temperature. Since the furnace temperature is an indicator of active combustion, a high furnace temperature contributes to steam generation. In addition, especially if the temperature inside the furnace is at a maximum within the temperature range where the reduction reaction can be carried out properly (e.g. 900°C to 1200°C), both the smelt reduction rate and the steam generation rate will be reduced due to the 802 scavenging effect due to the scattering of Na2 gas. can be improved.

このように炉内温度を、最適燃焼状態を実現するための
指標とすることができる。
In this way, the furnace temperature can be used as an index for achieving the optimum combustion state.

次に、第3図は、同じく本発明の他の実施例を示す図で
あって、これは燃焼排ガス7のCO2m度肝52を設定
し、第1図に示す加重和演算部44に代えて、前記GO
2濃度計52のCOZ 濃度を前記出熱・入熱比および
前記SO2濃度信号をm0て加重和を求めるような加重
和演算部44Bであってもよい。つまり、この第3図の
実施例によれば、回収ボイラ2の運転状態の評価指標は
出熱・入熱比と50211度と0021濃度の3者の加
重和として得ることができる。COZ 濃度は炉内燃焼
状態の指標であることから、CO211度の極大化を最
適燃焼状態の指標として使うこともできる。従って、こ
れを評価指標に取り込み総合的な運転状態評価の捕捉情
報として使用することが有効である。
Next, FIG. 3 is a diagram showing another embodiment of the present invention, in which the CO2m degree 52 of the combustion exhaust gas 7 is set, and instead of the weighted sum calculation section 44 shown in FIG. Said G.O.
The weighted sum calculating section 44B may calculate a weighted sum by calculating the COZ concentration of the two concentration meters 52 by the heat output/heat input ratio and the SO2 concentration signal by m0. In other words, according to the embodiment shown in FIG. 3, the evaluation index of the operating state of the recovery boiler 2 can be obtained as the weighted sum of the heat output/heat input ratio, the 50211 degrees, and the 0021 concentration. Since the COZ concentration is an index of the combustion state in the furnace, the maximum CO211 degree can also be used as an index of the optimal combustion state. Therefore, it is effective to incorporate this into the evaluation index and use it as captured information for comprehensive driving condition evaluation.

次に、第4図は、出熱・入熱比、SO2濃度、炉内温度
およびCO2濃度のすべてを取り込んで加重和演算部4
4Cで評価指標を求める構成としてもよい。
Next, in FIG. 4, the weighted sum calculation unit 4 takes in all of the heat output/heat input ratio, SO2 concentration, furnace temperature, and CO2 concentration.
The configuration may be such that the evaluation index is obtained using 4C.

また、以上の実流例は、加重和を演算するものであった
が、例えば圧線形の演算を用いてより操業の実情に即し
た最適燃焼制御装置を提供することもできる。第5図は
そのための構成である。即ち、SO2濃度に対応する関
数発生器53と出熱・入熱比に対応する関数発生器54
とを設け、これらの関数データを加重和演算部44Dに
入力し、目標値に達した場合に極値探索を停止するよう
にしてもよい。つまり、この実施例は、関数発生器44
.45から第6図(A)、(B)に示すような関数デー
タを発生し、出熱・入熱比またはSO2濃度が目標値に
達した時、極値探索を停止しその状態を保持するように
作用するので、過度に蒸気発生効率あるいはスメルト還
元率の極値を追い求めるあまり、安定なチャーベッド3
の形成を阻害し周期的な燃焼の良否を繰返す等不安定な
燃焼状態に回収ボイラが陥るのを防ぐことができる。
In addition, although the above actual flow example calculates a weighted sum, it is also possible to provide an optimal combustion control device that is more in line with the actual operating situation by using, for example, pressure line calculation. FIG. 5 shows the configuration for this purpose. That is, a function generator 53 corresponding to the SO2 concentration and a function generator 54 corresponding to the heat output/heat input ratio.
These function data may be input to the weighted sum calculation unit 44D, and the extreme value search may be stopped when the target value is reached. That is, in this embodiment, the function generator 44
.. 45 to generate functional data as shown in Figures 6 (A) and (B), and when the heat output/heat input ratio or SO2 concentration reaches the target value, the extreme value search is stopped and the state is maintained. Therefore, in pursuit of extreme values of steam generation efficiency or smelt reduction rate, stable char bed 3
It is possible to prevent the recovery boiler from falling into an unstable combustion state, such as by inhibiting the formation of combustion and repeating periodic combustion failures.

また、本発明は、応用例として評価指標の演算において
NOX濃度の最大制限値等の制約条件を加味することも
可能である。
Further, as an applied example of the present invention, it is also possible to take into account constraints such as the maximum limit value of NOX concentration in the calculation of the evaluation index.

[発明の効果] 以上詳記したように本発明によれば、回収ボイラの蒸気
発生効率を極大にする燃焼状態とスメルト還元率を極大
にする燃焼状態が異なるという現象を踏まえて、蒸気発
生効率とスメルト還元率の双方を勘案して操業側の要請
上量も望ましい状態に回収ボイラの燃焼状態を誘導し得
、安定的に目標とする運転状態を継続できる回収ボイラ
の最適燃焼制御装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the steam generation efficiency is improved based on the phenomenon that the combustion state that maximizes the steam generation efficiency of the recovery boiler and the combustion state that maximizes the smelt reduction rate are different. We provide an optimal combustion control device for a recovery boiler that can guide the combustion state of the recovery boiler to a state that meets the requirements of the operator by taking into account both the smelt reduction rate and the smelt reduction rate, and that can stably continue the target operating state. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す構成図、第2図な
いし第5図は本発明の他の実施例を説明する構成図、第
6図は第5図の作用を説明する関数データ図、第7図お
よび第8図は従来の回収ボイラの構成図および回収ボイ
ラの燃焼制御装置の構成図、第9図は従来装置の問題点
を説明する図である。 2・・・回収ボイラ、3・・・チャーベッド、7・・・
燃焼排ガス、17・・・スメルト、34・・・入熱演算
部、35・・・除算部、39・・・出熱演算部、44.
44A、44B、44C,44D・・・加重和演算部、
45・・・極値探索部、46・・・空気流量調節計。 出願人代理人 弁理士 鈴江武彦 第2図 第4囚 第 3 図 第5図 (A)               CB)第6図 第7図 第8図 暑 第9図
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, FIGS. 2 to 5 are block diagrams explaining other embodiments of the present invention, and FIG. 6 is a function diagram explaining the operation of FIG. 5. The data diagram, FIGS. 7 and 8 are a configuration diagram of a conventional recovery boiler and a configuration diagram of a combustion control device for the recovery boiler, and FIG. 9 is a diagram illustrating problems with the conventional system. 2... Recovery boiler, 3... Char bed, 7...
Combustion exhaust gas, 17... Smelt, 34... Heat input calculation section, 35... Division section, 39... Heat output calculation section, 44.
44A, 44B, 44C, 44D... weighted sum calculation unit,
45...Extreme value search unit, 46...Air flow rate controller. Applicant's Representative Patent Attorney Takehiko Suzue Figure 2 Figure 4 Prisoner Figure 3 Figure 5 (A) CB) Figure 6 Figure 7 Figure 8 Figure 9

Claims (6)

【特許請求の範囲】[Claims] (1)黒液を炉内に噴射するとともに燃焼用空気を炉内
に投入し前記黒液を燃焼させることにより、黒液中に含
まれる蒸解薬剤原料を回収するとともに燃焼排ガスとの
熱交換により水蒸気を発生させる回収ボイラの最適燃焼
制御装置において、前記回収ボイラの出熱と入熱とから
熱量比を求める熱量比演算手段と、この演算手段によっ
て求められた少なくとも熱量比と燃焼排ガス中に含まれ
るSO_2濃度とに基づいて前記回収ボイラの総合運転
状態の評価指標を演算する評価指標演算手段と、前記回
収ボイラの燃焼状態制御操作量を得る調節手段と、前記
評価指標が極値または目標値に向うように前記調節手段
の設定値を可変する設定値可変手段とを備えたことを特
徴とする回収ボイラの最適燃焼制御装置。
(1) By injecting black liquor into the furnace and injecting combustion air into the furnace to combust the black liquor, the raw material for cooking chemicals contained in the black liquor is recovered and by heat exchange with the combustion exhaust gas. In an optimal combustion control device for a recovery boiler that generates steam, a heat ratio calculation means for calculating a heat ratio from heat output and heat input of the recovery boiler; an evaluation index calculation means for calculating an evaluation index of the overall operating state of the recovery boiler based on the SO_2 concentration; an adjustment means for obtaining a combustion state control operation amount of the recovery boiler; 1. An optimal combustion control device for a recovery boiler, comprising: set value varying means for varying the set value of the adjusting means so as to move toward
(2)評価指標演算手段としては、前記回収ボイラの炉
内温度検出手段を設け、前記熱量比とSO_2濃度と前
記炉内温度検出手段によって検出された炉内温度との3
者の関数に基づいて前記回収ボイラの運転状態の評価指
標を演算するものである特許請求の範囲第1項記載の回
収ボイラの最適燃焼制御装置。
(2) As the evaluation index calculation means, a furnace temperature detection means of the recovery boiler is provided, and the ratio of the calorific value, the SO_2 concentration, and the furnace temperature detected by the furnace temperature detection means are calculated.
2. The optimal combustion control device for a recovery boiler according to claim 1, wherein an evaluation index of the operating state of the recovery boiler is calculated based on a function of the operator.
(3)評価指標演算手段としては、前記回収ボイラの燃
焼排ガスに含まれるCO_2濃度検出手段を設け、前記
熱量比とSO_2濃度と前記CO_2濃度検出手段によ
って検出されたCO_2との3者の関数に基づいて前記
回収ボイラの運転状態の評価指標を演算するものである
特許請求の範囲第1項記載の回収ボイラの最適燃焼制御
装置。
(3) As the evaluation index calculating means, a means for detecting the concentration of CO_2 contained in the combustion exhaust gas of the recovery boiler is provided, and a function of the three factors of the calorific ratio, the concentration of SO_2, and the CO_2 detected by the means for detecting the CO_2 concentration is provided. 2. The optimal combustion control device for a recovery boiler according to claim 1, wherein an evaluation index of the operating state of the recovery boiler is calculated based on the above.
(4)評価指標演算手段としては、熱量比とSO_2濃
度と前記炉内温度とCO_2濃度との4者の関数に基づ
いて前記回収ボイラの運転状態の評価指標を演算するも
のである特許請求の範囲第1項記載の回収ボイラの最適
燃焼制御装置。
(4) The evaluation index calculating means calculates the evaluation index of the operating state of the recovery boiler based on a function of four factors: the heat ratio, the SO_2 concentration, the furnace temperature, and the CO_2 concentration. An optimal combustion control device for a recovery boiler according to scope 1.
(5)評価指標演算手段としては、熱量比、SO_2濃
度、炉内温度およびCO_2濃度のいずれか1つまたは
複数について目標値を設定し、これらの何れか1つが目
標値に達した時、前記回収ボイラの運転状態の評価指標
に影響を与えないように評価指標を演算するものである
特許請求の範囲第1項記載の回収ボイラの最適燃焼制御
装置。
(5) As the evaluation index calculation means, a target value is set for any one or more of the heat ratio, SO_2 concentration, furnace temperature, and CO_2 concentration, and when any one of these reaches the target value, the The optimal combustion control device for a recovery boiler according to claim 1, which calculates the evaluation index so as not to affect the evaluation index of the operating state of the recovery boiler.
(6)評価指標演算手段としては、NOx濃度を制約条
件として前記回収ボイラの運転状態の評価指標を演算す
るものである特許請求の範囲第1項ないし第5項の何れ
か1つに記載の回収ボイラの最適燃焼制御装置。
(6) The evaluation index calculation means according to any one of claims 1 to 5, wherein the evaluation index of the operating state of the recovery boiler is calculated using the NOx concentration as a constraint condition. Optimal combustion control device for recovery boilers.
JP61179153A 1985-07-31 1986-07-30 Optimum combustion control device for recovery boiler Granted JPS62123216A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16899585 1985-07-31
JP60-168995 1985-07-31

Publications (2)

Publication Number Publication Date
JPS62123216A true JPS62123216A (en) 1987-06-04
JPH0480158B2 JPH0480158B2 (en) 1992-12-17

Family

ID=15878399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179153A Granted JPS62123216A (en) 1985-07-31 1986-07-30 Optimum combustion control device for recovery boiler

Country Status (1)

Country Link
JP (1) JPS62123216A (en)

Also Published As

Publication number Publication date
JPH0480158B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
US6408771B1 (en) Methods of improving productivity of black liquor recovery boilers
CN102395926B (en) For optimizing the method and system of recovery boiler parameter
Ibrahim et al. Optimization of fuel in saturated steam boiler through preheating of controlled air-fuel mixture
FI56984B (en) SAETT VIDEO DRIFT AV EN ELDSTAD OCH ANORDNING FOER UTOEVANDE AV DETTA SAETT
US4768469A (en) Operation control apparatus for recovery boilers
Dahlquist et al. Presentation of a dry black liquor gasification process with direct causticization
Juneja et al. Modeling, control and instrumentation of lime kiln process: A review
CN105241182B (en) Brown coal drying system and its drying means
JPS62123216A (en) Optimum combustion control device for recovery boiler
JPS62123215A (en) Optimum combustion control device for recovery boiler
Kusiak et al. Optimizing combustion efficiency of a circulating fluidized boiler: A data mining approach
Blasiak et al. Modeling of kraft recovery boilers
JPH0536550B2 (en)
US3561922A (en) Waste sulphite liouor recovery
CN114046532B (en) Based on CO/O2Control method of wall-attached wind device for on-line monitoring
JPS62129601A (en) Controller for char bed of recovery boiler
Brown et al. Mathematical modeling and computer control of lime kilns
CA1104764A (en) Black liquor recovery
Uronen et al. New topics in lime kiln control
Premsuksatian et al. Optimization for Reduction of NOx and Heat Loss of Parawood Chips Boiler Process Combined with Air Preheater and Controller Using Aspen Dynamics
FI73757B (en) FOERFARANDE FOER MAXIMERING REDUKTIONSEFFEKTEN I EN AOTERVINNINGSUGN.
JPH09287416A (en) Operation control method for recycle power generating system
Yan et al. Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
Shiang Mathematical modeling and simulation of recovery furnace
Johansson et al. The implication of emission control systems on the mass and energy balances of the kraft pulp mill process-A case study of Södra Cell Mönsterås’s recovery boiler