JPS62122488A - X-ray machine - Google Patents

X-ray machine

Info

Publication number
JPS62122488A
JPS62122488A JP60261281A JP26128185A JPS62122488A JP S62122488 A JPS62122488 A JP S62122488A JP 60261281 A JP60261281 A JP 60261281A JP 26128185 A JP26128185 A JP 26128185A JP S62122488 A JPS62122488 A JP S62122488A
Authority
JP
Japan
Prior art keywords
light
half mirror
optical path
ray
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261281A
Other languages
Japanese (ja)
Inventor
Shingo Oyoshi
大吉 真吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60261281A priority Critical patent/JPS62122488A/en
Publication of JPS62122488A publication Critical patent/JPS62122488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To improve the quality of a picture by arranging a television system and an automatic control system respectively on a different optical path separated by a luminous quantity distributing member to prevent vignetting by a luminous quantity detector in an angle type optical system from being caused. CONSTITUTION:Light from a light image on an output fluorescent screen I.I5 is made incident on an I.I lens 6a, where the light is collimated and the parallel ray is divided into an optical path reflected in a direction of a TV camera 7 by a half mirror 6f and an optical path going straightfoward through the half mirror 6f as it is. The light going straightforward through the half mirror 6f is made incident on the luminous quantity detector 6c, and converted to an electric signal by a photomultiplier 6c6 and sent to a controller 9 as a detection signal to control the X-ray exposure condition automatically. The light from the screen I.I is reflected by the half mirror in this way and since no hindrance exists on the path until it is made incident on the TV camera, no vignetting due to the luminous quantity is caused and the image sent to the TV camera is brought into high quality.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、X線管から曝射するX線の曝射条件を制御し
てX線撮影を行う撮影装置、例えば医用X線装置に関す
るものでおる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an imaging device that performs X-ray photography by controlling the exposure conditions of X-rays emitted from an X-ray tube, such as a medical X-ray device. is.

[発明の技術的背明とその問題点] 従来の医用X線装置を第4図乃至第7図に示す。[Technical background of the invention and its problems] A conventional medical X-ray apparatus is shown in FIGS. 4 to 7.

第4図はオーバーチューブテーブル方式X線TV寝台に
医用X線装置を組み合せた状態の概略図、第5図は従来
の医用X線装置のブロック図、第6図は従来の医用X線
装置における光学系の構造図、第7図はその先m検出器
の概略図である。図において1はX線管、2はX線絞り
、3は被写体(患者)、4は寝台、5はイメージインテ
ンシファイア(以下I−I)という)、6は光量検出器
6C等からなる光学系、7はTVカメラ、8はTVモニ
ター、9はX線の曝射量を調整する制御装置、10はX
線管に印加する高圧を供給する高圧発生装置である。
Fig. 4 is a schematic diagram of a medical X-ray device combined with an overtube table type X-ray TV bed, Fig. 5 is a block diagram of a conventional medical X-ray device, and Fig. 6 is a diagram of a conventional medical A structural diagram of the optical system, and FIG. 7 is a schematic diagram of the m-detector. In the figure, 1 is an X-ray tube, 2 is an X-ray diaphragm, 3 is a subject (patient), 4 is a bed, 5 is an image intensifier (hereinafter referred to as I-I), 6 is an optical system consisting of a light intensity detector 6C, etc. system, 7 is a TV camera, 8 is a TV monitor, 9 is a control device that adjusts the amount of X-ray exposure, 10 is an
This is a high pressure generator that supplies high pressure to be applied to the wire tube.

上記の如く構成された従来の医用X線装置におけるX線
の自動露出制御や自動輝度制御は、被写体を透過したX
線をl−l5によって光学像とした後、その光学像から
の光を光量検出器6Gによって検出し、これを光電変換
した電気信号に基づきX線曝射■を調整することにより
行っている。
The automatic exposure control and automatic brightness control of X-rays in conventional medical X-ray equipment configured as described above are
After the line is converted into an optical image by 1-15, the light from the optical image is detected by a light quantity detector 6G, and the X-ray exposure (2) is adjusted based on the electrical signal obtained by photoelectrically converting this.

この場合に、第4図に示す従来の医用X線装置では機械
的構造上、被写体3と床FLとの間にI・I5、光学系
6、TVカメラ7を配置しなければならない。また、医
用X線装置は寝たきりの病人を移動するための図示しな
いストレッチV−や別の医療機械、例えば内視鏡装置と
併用して使用するため人間工学上被写体3と床FLとの
間の距離は必然的にある値に決まってしまう。このため
、TVカメラ7をxI!jl管1に対向して配置すると
床FLと干渉してしまう。この干渉を防止するためTV
カメラ7をX線曝射方向に対して90度曲げた方向(第
4図では被写体3の頭方向)に取付けである。このよう
な事情から従来の医用XPi!装置では第6図に示すタ
ンデムレンズ方式光学系が用いられている。
In this case, in the conventional medical X-ray apparatus shown in FIG. 4, the I/I 5, optical system 6, and TV camera 7 must be placed between the subject 3 and the floor FL due to its mechanical structure. In addition, since the medical X-ray device is used in conjunction with a stretch V- (not shown) for moving a bedridden patient and another medical machine, such as an endoscope device, ergonomically, there is a gap between the subject 3 and the floor FL. The distance is inevitably fixed at a certain value. For this reason, TV camera 7 is installed! If it is placed opposite to the jl pipe 1, it will interfere with the floor FL. To prevent this interference,
The camera 7 is mounted in a direction bent by 90 degrees with respect to the X-ray irradiation direction (in the direction of the head of the subject 3 in FIG. 4). Due to these circumstances, the conventional medical XPi! The apparatus uses a tandem lens optical system shown in FIG.

ここで、タンデムレンズ方式というのは、光学分野にお
いて公知の技術であり、2組のレンズ間の光線が平行光
線となるようにレンズを配置したもので必り、医用Xl
!装置におけるタンデムレンズ方式光学系6は第6図に
示すにうに、I−ルンズ(対物レンズ)6aとTVレン
ズ6eとの間にできる平行光線となるタンデム間隔内に
ミラー6b、光量検出器5c、レンズ絞り6d等を配置
して光量の検出、調整2分配等を行うものである。
Here, the tandem lens system is a well-known technology in the optical field, in which lenses are arranged so that the light rays between two sets of lenses become parallel rays.
! As shown in FIG. 6, the tandem lens type optical system 6 in the apparatus includes a mirror 6b, a light amount detector 5c, and a light amount detector 5c within a tandem interval that forms a parallel beam of light between an I-lens (objective lens) 6a and a TV lens 6e. A lens aperture 6d and the like are arranged to detect, adjust, and distribute the amount of light into two parts.

尚、5aはI−1の出力蛍光面であり、7aは躍@管の
フェイスプレートである。また、光量検出器6Gは第7
図に示すように、採光野レンズ6C1と、プリズム6C
2と、フィルター6C3と、視野絞り6C4と、コンデ
ンサレンズ6Csと、フォトマル6Caとにより構成さ
れている。採光野レンズ6Ctに入射した光景はプリズ
ム602で方向を変え、フィルター603で光量調整さ
れて視野絞り6C4面上に結像する。視野絞り6C4は
必要な部分の光量だけをコンデンサレンズ6C5に入射
する。ここで収束された光量が7オトマル6C6に入射
し、電気信号に変換される。
Note that 5a is the output phosphor screen of I-1, and 7a is the face plate of the tube. In addition, the light amount detector 6G is the seventh
As shown in the figure, the lighting field lens 6C1 and the prism 6C
2, a filter 6C3, a field diaphragm 6C4, a condenser lens 6Cs, and a photomultiplier 6Ca. The direction of the scene incident on the light field lens 6Ct is changed by a prism 602, the light amount is adjusted by a filter 603, and an image is formed on the field diaphragm 6C4 surface. The field stop 6C4 allows only the necessary amount of light to enter the condenser lens 6C5. The amount of light converged here enters the 7 otomaru 6C6 and is converted into an electrical signal.

ところで、前述の如<TVカメラ7をX線曝射方向に対
して90度曲げて取イ」けた光学系(以下アングル形光
学系という)は、T −、Iレンズ6aとTVレンズ6
eとの間の平行光線となるタンデム間隔の間にミラー6
b、光量検出器6c、レンズ絞り6dを設けなければな
らない。このタンデム間隔はミラー6bを用いているた
め長くなり、レンズの口径数が発生しやすくなる。これ
を防止するには、I−Iレンズ6aのF1aを小さく(
レンズの口径を大きり)シなければならず、レンズ製作
が困難になる(レンズの焦点距離が同じであるならばF
値を小さくするとレンズの曲率が大きくなりレンズの収
差の補正が難しくなる)。レンズ製作を容易にするため
屈曲率の大ぎい光学ガラスを使用すると高価なものにな
ってしまうという欠点がある。
By the way, the optical system (hereinafter referred to as an angle type optical system) in which the TV camera 7 is bent 90 degrees with respect to the X-ray irradiation direction as described above includes the T- and I lenses 6a and the TV lens 6.
mirror 6 between the tandem spacing that creates parallel rays between e and
b. A light amount detector 6c and a lens aperture 6d must be provided. This tandem interval becomes long because the mirror 6b is used, and the number of apertures of the lens is likely to occur. To prevent this, F1a of the I-I lens 6a should be made small (
The aperture of the lens must be increased (larger), making lens manufacturing difficult (if the focal length of the lens is the same, F
If the value is small, the curvature of the lens increases, making it difficult to correct lens aberrations.) If optical glass with a large refractive index is used to facilitate lens production, it has the disadvantage that it becomes expensive.

また、透視、撮影時にX線曝射条件で必る管電圧、管電
流、撮影時間を自動制御するための光量検出器6Cは、
採光野の関係で挿入位置が決められるため、TVモニタ
ー8で観察する範囲から外すためにはF値を小さく、言
い換えるとレンズの口径を大きくしなければならない。
In addition, a light amount detector 6C for automatically controlling the tube voltage, tube current, and imaging time required under the X-ray exposure conditions during fluoroscopy and imaging is
Since the insertion position is determined by the lighting field, in order to remove it from the observation range on the TV monitor 8, the F number must be reduced, or in other words, the aperture of the lens must be increased.

このため、レンズが高価なものになってしまうと同時に
レンズが大きくなり、装置自体も大型化するという欠点
がある。
For this reason, there are disadvantages in that the lens becomes expensive, the lens becomes large, and the device itself becomes large.

さらに、X線曝射条件を自動制御するための光量検出器
6Gは、採光野の関係でおる決まった位置に配置しなC
プればならない。このため、光量検出器6Cによるケラ
レ(ある範囲内の平均光量が一部損傷する現象)か発生
し、TVモニター8上の像の一部が欠け、像品位の悪い
像となり診断価値も信頼性の低いものとなるという欠点
があった。
Furthermore, the light intensity detector 6G for automatically controlling the X-ray exposure conditions must be placed at a fixed position due to the lighting field.
You have to pull it. As a result, vignetting (a phenomenon in which the average light intensity within a certain range is partially damaged) occurs in the light intensity detector 6C, and a portion of the image on the TV monitor 8 is missing, resulting in an image with poor image quality and reliability. The disadvantage was that it resulted in a low value.

[発明の目的] 本発明は、上記事情に鑑みて成されたものであり、アン
グル形光学系における光量検出器によるケラレの発生を
防止して画質の向上を図ることができるX線撮影装置を
提供することを目的とするものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and provides an X-ray imaging device that can improve image quality by preventing the occurrence of vignetting caused by a light amount detector in an angled optical system. The purpose is to provide

U発明の概要1 上記目的を達成するための本発明の概要は、X線管より
曝射したX線による被写体の像を光学像に変換し、この
光学像をテレビカメラにより撮影してテレビジョンモニ
タに表示するテレビジョン系と、前記光学像の光mを光
量検出器により検出して前記X線の@剣条件を制御する
自動制御系とを有するX線撮影装置において、前記光学
像の光量を複数の光路に分配する光量分配部材を設け、
前記テレビジョン系及び自動制御系を、前記光信分配部
材により分けられた異なる光路上にそれぞれ配置したこ
とを特徴とするものである。
Summary of the Invention 1 The summary of the present invention for achieving the above object is to convert an image of a subject by X-rays emitted from an In an X-ray imaging apparatus having a television system that displays on a monitor and an automatic control system that detects the light m of the optical image with a light amount detector and controls the @sword condition of the X-ray, the light amount of the optical image is A light amount distribution member is provided that distributes the light into a plurality of optical paths,
The television system and the automatic control system are arranged on different optical paths separated by the optical fiber distribution member.

[発明の実施例] 以下に本発明の一実施例を第1図乃至第3図を参照して
説明する。第1図は本発明の第1の実施例である医用X
線装置のブロック図、第2図はその光学系の概略拡大図
であり、第3図は本発明の第2の実施例である医用X線
装置の光学系の概略拡大図である。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 shows the first embodiment of the present invention.
FIG. 2 is a schematic enlarged view of the optical system of the X-ray apparatus, and FIG. 3 is a schematic enlarged view of the optical system of the medical X-ray apparatus according to the second embodiment of the present invention.

尚、第4図乃至第7図に示す従来の医用X線装置と同一
機能を有するものには、同一符号を付すことにより、そ
の詳細な説明を省略することとする。
Components having the same functions as those of the conventional medical X-ray apparatus shown in FIGS. 4 to 7 will be denoted by the same reference numerals, and detailed explanation thereof will be omitted.

図において、6fはハーフミラ−であり、入射光量の内
の半分を反射し、残りの半分を透過するという性質を有
する。このハーフミラ−6fをタンデムレンズ方式光学
系の平行光線に対して45度傾斜して設ける。そして、
ハーフミラ−6fによって反射された光路上にTVカメ
ラ7を配置し、ハーフミラ−6fを透過した光路上に光
量検出器6Cを配置する。
In the figure, 6f is a half mirror, which has the property of reflecting half of the amount of incident light and transmitting the other half. This half mirror 6f is provided at an angle of 45 degrees with respect to the parallel light beam of the tandem lens type optical system. and,
A TV camera 7 is placed on the optical path reflected by the half mirror 6f, and a light amount detector 6C is placed on the optical path transmitted through the half mirror 6f.

次に、本発明の作用について述べる。X線管1より曝射
されたX線は、X線絞り2を介して被写体3を透過し、
l−l5に至る。このX線により形成される像はl−l
5により光像に変換されると同時に、増幅される。そし
てl−l5の出力蛍光面5aから出力された光像を光学
系6のI−Iレンズ6aとTVレンズ6eの2組レンズ
により縮小してTVカメラ7に伝達し、TVモニター8
により観察して診断を行う。この際、第2図に示すよう
にl−15の出力蛍光面5a上の光像がらの光は、I−
ルンズ6aに入射して平行光線となり、ハーフミラ−6
fによってTVカメラ7の方向へ反射される光路と、そ
のままハーフミラ−6fを透過して直進する光路とにわ
けられる。TVカメラ7の方向へ分配された光信は、レ
ンズ絞り6eにより、光量調整されてTVレンズ6eに
入n=+ t、、TVカメラ7が内臓しているIM像管
の7エイスプレイ1〜7a上に像を形成する。
Next, the operation of the present invention will be described. X-rays emitted from the X-ray tube 1 pass through the subject 3 via the X-ray diaphragm 2,
It reaches l-l5. The image formed by this X-ray is l-l
5, it is converted into an optical image and simultaneously amplified. Then, the optical image output from the output phosphor screen 5a of the l-l5 is reduced by two sets of lenses, the I-I lens 6a and the TV lens 6e of the optical system 6, and transmitted to the TV camera 7.
Observe and diagnose. At this time, as shown in FIG. 2, the light from the light image on the output phosphor screen 5a of I-15 is
It enters the lens 6a and becomes a parallel ray, and the half mirror 6
The light path is divided into an optical path that is reflected toward the TV camera 7 by f, and an optical path that passes straight through the half mirror 6f. The light beam distributed in the direction of the TV camera 7 is adjusted in light intensity by the lens diaphragm 6e, and enters the TV lens 6e n=+t, and enters the 7 eighth plays 1 to 7a of the IM picture tube built in the TV camera 7. form an image on top.

一方、ハーフミラ−6fを透過して直進した光mは、光
信検出器6cに入射した後、フォトマル60Bにより電
気信号に変換され、X線曝射条件を自動制御するための
検出信号として制御装置9へ送られる。
On the other hand, the light m that has passed through the half mirror 6f and gone straight is incident on the photodetector 6c and then converted into an electrical signal by the photomultiplier 60B, which is then used as a detection signal for automatically controlling the X-ray exposure conditions in the control device. Sent to 9.

上記本発明の第1の実施例によれば、■・■がらの光が
ハーフミラ−によって反射され、TVカメラに入射する
までの経路上には何の障害物もないので、従来のX線自
動撮影装置のように光量検出器によるケラレが生ずるこ
とがなく、TVカメラに伝達される像を高品位のものと
することができる。
According to the first embodiment of the present invention, the light from ■ and ■ is reflected by the half mirror and there are no obstacles on the path until it enters the TV camera, so Unlike photographing devices, vignetting due to the light amount detector does not occur, and the image transmitted to the TV camera can be of high quality.

また、TVカメラを配置した光路とは別個のハーフミラ
−を透過した光路−ヒ【光量検出器を配置しであるので
、光量検出器によるTVモニター上のケラレの発生を配
慮する必要がなく、光量検出器の挿入位置を自由に選7
S(ことができる。同時に、光量検出器によるケラレの
発生を配IL!する必要がないので、I−IレンズはF
値の大きいく低価格となる)ものを選ぶことができる。
In addition, since the optical path that passes through a half mirror separate from the optical path in which the TV camera is placed, there is no need to consider the occurrence of vignetting on the TV monitor due to the light amount detector, and the light amount Freely select the insertion position of the detector7
At the same time, there is no need to prevent the occurrence of vignetting due to the light intensity detector, so the I-I lens can be
You can choose the one with the highest value or lowest price.

したがって、本実施例によれば安価なX線撮影装置を提
供することができる。
Therefore, according to this embodiment, an inexpensive X-ray imaging apparatus can be provided.

さらに、光量検出器がハーフミラ−の後ろにあるため光
量検出器とハーフミラ−との間の干渉という問題がなく
なり、ハーフミラ−をI−ルンズ側へ近接して配置する
ことができる。このため、■・■レンズとTVレンズと
の間のタンデム間隔が短くなるので、その分光学系を小
型化することが可能でおる。
Furthermore, since the light amount detector is located behind the half mirror, there is no problem of interference between the light amount detector and the half mirror, and the half mirror can be placed close to the I-luns side. As a result, the tandem distance between the ■/■ lens and the TV lens becomes shorter, making it possible to downsize the spectroscopic system.

次に、本発明の第2の実施例について第3図を参照して
述べる。ハーフミラ−6flはl−l5の光学像からの
光(タンデムレンズ方式光学系により平行光線となって
いる。)に対して45度傾斜して設けである。そのハー
フミラ−6fzにより反射した第1の光路A1上にTV
カメラを配置しである。一方、光学像からの光がハーフ
ミラ−6fxを透過した第2の光路A2上にミラー6q
を光路に対し直角に配置し、そのミラー6gからの反射
光がハーフミラ−6ftにより再度反射された前記第1
の光路とは逆方向の第3の光路A3上に第2のハーフミ
ラ−6f2を配置しである。
Next, a second embodiment of the present invention will be described with reference to FIG. The half mirror 6fl is provided at an angle of 45 degrees with respect to the light from the optical image of l-l5 (which becomes a parallel beam of light due to the tandem lens type optical system). A TV is placed on the first optical path A1 reflected by the half mirror 6fz.
This is where the camera is placed. On the other hand, a mirror 6q is placed on the second optical path A2 where the light from the optical image passes through the half mirror 6fx.
is arranged perpendicularly to the optical path, and the reflected light from the mirror 6g is reflected again by the half mirror 6ft.
A second half mirror 6f2 is disposed on the third optical path A3 in the opposite direction to the optical path.

そして、その第2のハーフミラ−6f2により反射した
第4の光路へ4上に光量検出器6Gを配置し、さらに、
その第2のハーフミラ−6f2を透過した第5の光路A
5上に前記光学像をフィルムに記録するための間接カメ
ラ用レンズ11及びX線フィルム12を設けている。そ
の他の構成は第1の実施例と同様でおる。
Then, a light amount detector 6G is arranged on the fourth optical path reflected by the second half mirror 6f2, and further,
The fifth optical path A transmitted through the second half mirror 6f2
5, an indirect camera lens 11 and an X-ray film 12 are provided for recording the optical image on film. The other configurations are the same as those of the first embodiment.

上記構成の第2の実施例によれば、光量検出器は間接カ
メラとは異なる光路上に配置しであるので、光量検出に
よるケラレのないX線写真を得ることができる。その他
の作用、効果は第1の実施例と同様でおる。
According to the second embodiment with the above configuration, since the light amount detector is disposed on a different optical path from the indirect camera, it is possible to obtain an X-ray photograph without vignetting due to light amount detection. Other functions and effects are similar to those of the first embodiment.

尚、本発明は上記実施例に限定されるものではなく、そ
の発明の要旨の範囲内で種々の変形が可能である。例え
ば、ハーフミラ−とミラーとの組み合せを賛えることに
より、間接カメラや光量検出器を任意の位置に配置する
ことができる。
Note that the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist of the invention. For example, by using a combination of a half mirror and a mirror, an indirect camera or a light amount detector can be placed at an arbitrary position.

[発明の効果] 以上説明したように本発明によれば、光量検出器とTV
カメラとを異なる光路2Fに配置することにより、アン
グル形光学系にお【プる光量検出器によるケラレの発生
を防止して画質の向上を図ることができるX線撮影装置
を提供することかできる。
[Effects of the Invention] As explained above, according to the present invention, the light amount detector and the TV
By placing the camera on a different optical path 2F, it is possible to provide an X-ray imaging device that can prevent the occurrence of vignetting due to the light amount detector attached to the angled optical system and improve the image quality. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例である医用X線装置のブ
ロック図、第2図はその光学系の概略拡大図、第3図は
本発明の第2の実施例である医用X線装置の光学系の概
略拡大図、第4図はオーバーチューブテーブル方式X線
TV寝台に医用X線装置を組み合せた状態の概略図、第
5図は従来の医用X線装置のブロック図、第6図は従来
の医用X線装置における光学系の構造図、第7図はその
光量検出器の概略図である。 1・・・X線管、2・・・X線絞り、 5・・・イメージ・インテンシファイア(I−I)6・
・・光学系、6f・・・ハーフミラ−16g・・・ミラ
ー、7・・・TVカメラ。 代理人 弁理士  則  近  憲  1も同    
   大   胡   曲   夫l2 弔3図 第4図 5PJs図
FIG. 1 is a block diagram of a medical X-ray apparatus according to a first embodiment of the present invention, FIG. 2 is a schematic enlarged view of its optical system, and FIG. 3 is a medical X-ray apparatus according to a second embodiment of the present invention. FIG. 4 is a schematic enlarged view of the optical system of the X-ray device; FIG. 4 is a schematic diagram of a medical X-ray device combined with an overtube table type X-ray TV bed; FIG. FIG. 6 is a structural diagram of an optical system in a conventional medical X-ray apparatus, and FIG. 7 is a schematic diagram of its light amount detector. 1... X-ray tube, 2... X-ray aperture, 5... Image intensifier (I-I) 6.
...Optical system, 6f...Half mirror-16g...Mirror, 7...TV camera. Agent Patent Attorney Nori Chika Same as 1
Ogo Qufu l2 Funeral Figure 3 Figure 4 5 PJs Figure

Claims (3)

【特許請求の範囲】[Claims] (1)X線管より曝射したX線による被写体の像を光学
像に変換し、この光学像をテレビカメラにより撮影して
テレビジョンモニタに表示するテレビジョン系と、前記
光学像の光量を光量検出器により検出して前記X線の曝
射条件を制御する自動制御系とを有するX線撮影装置に
おいて、前記光学像の光量を複数の光路に分配する光量
分配部材を設け、前記テレビジョン系及び自動制御系を
、前記光量分配部材により分けられた異なる光路上にそ
れぞれ配置したことを特徴とするX線撮影装置。
(1) A television system that converts the image of a subject by X-rays emitted from an X-ray tube into an optical image, photographs this optical image with a television camera, and displays it on a television monitor; An X-ray imaging apparatus having an automatic control system that controls the exposure conditions of the X-rays by detection by a light amount detector, further comprising a light amount distribution member that distributes the light amount of the optical image to a plurality of optical paths, An X-ray imaging apparatus characterized in that a system and an automatic control system are respectively arranged on different optical paths separated by the light amount distribution member.
(2)前記光量分配部材はハーフミラーであり、光学像
からの光を反射した光路上に前記テレビジョン系を設け
、その光が透過した光路上に前記自動制御系を設けた特
許請求の範囲第1項記載のX線撮影装置。
(2) The scope of the present invention is that the light amount distribution member is a half mirror, the television system is provided on the optical path through which the light from the optical image is reflected, and the automatic control system is provided on the optical path through which the light is transmitted. The X-ray imaging device according to item 1.
(3)前記光量分配部材は2つのハーフミラーを組み合
せたものであり、第1のハーフミラーによって光学像か
らの光を反射した光路上に前記テレビジョン系を設け、
第1のハーフミラーを透過した光路上に設けた第2のハ
ーフミラーによって反射した光路上に前記自動制御系を
設けた特許請求の範囲第1項記載のX線撮影装置。
(3) the light amount distribution member is a combination of two half mirrors, and the television system is provided on the optical path where the light from the optical image is reflected by the first half mirror;
The X-ray imaging apparatus according to claim 1, wherein the automatic control system is provided on the optical path reflected by the second half mirror, which is provided on the optical path transmitted through the first half mirror.
JP60261281A 1985-11-22 1985-11-22 X-ray machine Pending JPS62122488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261281A JPS62122488A (en) 1985-11-22 1985-11-22 X-ray machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261281A JPS62122488A (en) 1985-11-22 1985-11-22 X-ray machine

Publications (1)

Publication Number Publication Date
JPS62122488A true JPS62122488A (en) 1987-06-03

Family

ID=17359637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261281A Pending JPS62122488A (en) 1985-11-22 1985-11-22 X-ray machine

Country Status (1)

Country Link
JP (1) JPS62122488A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178499A (en) * 1987-01-20 1988-07-22 Kowa Co X-ray observation device
US6963336B2 (en) 2001-10-31 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7023482B2 (en) 2000-11-06 2006-04-04 Canon Kabushiki Kaisha Processing apparatus
US7119769B2 (en) 2002-08-13 2006-10-10 Rohm Co., Ltd. Active matrix type organic EL panel drive circuit and organic EL display device
US7180479B2 (en) 2001-10-30 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Signal line drive circuit and light emitting device and driving method therefor
US7193619B2 (en) 2001-10-31 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7317441B2 (en) 2002-10-09 2008-01-08 Mitsubishi Denki Kabushiki Kaisha Constant current circuit, drive circuit and image display device
JP2008181159A (en) * 2001-09-21 2008-08-07 Semiconductor Energy Lab Co Ltd Display device and driving method thereof
US7570244B2 (en) 2002-06-19 2009-08-04 Mitsubishi Denki Kabuhsiki Kaisha Display device
US7576734B2 (en) 2001-10-30 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit, light emitting device, and method for driving the same
US7652650B2 (en) 2002-09-13 2010-01-26 Sony Corporation Current output drive circuit and display device
US7710166B2 (en) 2002-01-17 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and electronic apparatus using the same
US7742064B2 (en) 2001-10-30 2010-06-22 Semiconductor Energy Laboratory Co., Ltd Signal line driver circuit, light emitting device and driving method thereof
US7796110B2 (en) 2001-08-29 2010-09-14 Nec Corporation Semiconductor device for driving a current load device and a current load device provided therewith
US8026702B2 (en) 2008-06-10 2011-09-27 Micron Technology, Inc. Voltage regulator system
US8120551B2 (en) 2000-11-07 2012-02-21 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US8354987B2 (en) 2003-07-09 2013-01-15 Sony Corporation Constant current circuit and flat display device
US8659529B2 (en) 2003-01-17 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Current source circuit, a signal line driver circuit and a driving method thereof and a light emitting device
US9640106B2 (en) 2003-02-28 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754756B2 (en) * 1987-01-20 1995-06-07 興和株式会社 X-ray observation device
JPS63178499A (en) * 1987-01-20 1988-07-22 Kowa Co X-ray observation device
US7023482B2 (en) 2000-11-06 2006-04-04 Canon Kabushiki Kaisha Processing apparatus
US10269296B2 (en) 2000-11-07 2019-04-23 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US9741289B2 (en) 2000-11-07 2017-08-22 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US9245481B2 (en) 2000-11-07 2016-01-26 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US8810486B2 (en) 2000-11-07 2014-08-19 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US8558769B2 (en) 2000-11-07 2013-10-15 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US8120551B2 (en) 2000-11-07 2012-02-21 Sony Corporation Active-matrix display device, and active-matrix organic electroluminescent display device
US7796110B2 (en) 2001-08-29 2010-09-14 Nec Corporation Semiconductor device for driving a current load device and a current load device provided therewith
US8599109B2 (en) 2001-09-21 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
JP2008181159A (en) * 2001-09-21 2008-08-07 Semiconductor Energy Lab Co Ltd Display device and driving method thereof
US7576734B2 (en) 2001-10-30 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit, light emitting device, and method for driving the same
US8624802B2 (en) 2001-10-30 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Signal line driver circuit and light emitting device and driving method therefor
US7742064B2 (en) 2001-10-30 2010-06-22 Semiconductor Energy Laboratory Co., Ltd Signal line driver circuit, light emitting device and driving method thereof
US8325165B2 (en) 2001-10-30 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit, light emitting device, and method for driving the same
US7180479B2 (en) 2001-10-30 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Signal line drive circuit and light emitting device and driving method therefor
US8314754B2 (en) 2001-10-30 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Signal line driver circuit, light emitting device and driving method thereof
US8164548B2 (en) 2001-10-30 2012-04-24 Semiconductor Energy Laboratory Co., Ltd. Signal line driver circuit and light emitting device and driving method therefor
US7961159B2 (en) 2001-10-30 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Signal line driver circuit, light emitting device and driving method thereof
US7583257B2 (en) 2001-10-31 2009-09-01 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US8593377B2 (en) 2001-10-31 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US6963336B2 (en) 2001-10-31 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7948453B2 (en) 2001-10-31 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7193619B2 (en) 2001-10-31 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US9076385B2 (en) 2001-10-31 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US8294640B2 (en) 2001-10-31 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7940235B2 (en) 2001-10-31 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US7791566B2 (en) 2001-10-31 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Signal line driving circuit and light emitting device
US8253446B2 (en) 2002-01-17 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus using the same
US7710166B2 (en) 2002-01-17 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and electronic apparatus using the same
US8149043B2 (en) 2002-01-17 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus using the same
US8669791B2 (en) 2002-01-17 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus using the same
US8928362B2 (en) 2002-01-17 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus using the same
US7570244B2 (en) 2002-06-19 2009-08-04 Mitsubishi Denki Kabuhsiki Kaisha Display device
US7119769B2 (en) 2002-08-13 2006-10-10 Rohm Co., Ltd. Active matrix type organic EL panel drive circuit and organic EL display device
US7652650B2 (en) 2002-09-13 2010-01-26 Sony Corporation Current output drive circuit and display device
US7317441B2 (en) 2002-10-09 2008-01-08 Mitsubishi Denki Kabushiki Kaisha Constant current circuit, drive circuit and image display device
US8659529B2 (en) 2003-01-17 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Current source circuit, a signal line driver circuit and a driving method thereof and a light emitting device
US9626913B2 (en) 2003-01-17 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Current source circuit, a signal line driver circuit and a driving method thereof and a light emitting device
US9640106B2 (en) 2003-02-28 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8354987B2 (en) 2003-07-09 2013-01-15 Sony Corporation Constant current circuit and flat display device
US8253396B2 (en) 2008-06-10 2012-08-28 Micron Technology, Inc. Voltage regulator system
US8026702B2 (en) 2008-06-10 2011-09-27 Micron Technology, Inc. Voltage regulator system

Similar Documents

Publication Publication Date Title
JPS62122488A (en) X-ray machine
US4809309A (en) X-ray examination apparatus with a locally divided auxiliary detector
US6038286A (en) Optical arrangement and method for electronically detecting an X-ray image
KR850001493B1 (en) X-ray cine-stereo photographing apparatus
JPH04225197A (en) X-ray inspecting apparatus and film used therefor
JP3357104B2 (en) X-ray imaging system including brightness control
JPS63210813A (en) Videoscopic device
JPS5836327B2 (en) X-ray imaging device
EP0468570A1 (en) X-ray examination apparatus comprising an X-ray image intensifier tube
JPS6240416A (en) Light source optical system for endoscope
US5920604A (en) Optical arrangement and process for transmitting and converting primary X-ray images
JP2012239766A (en) Light source device for endoscope
JPS59207786A (en) X-ray tv photographing device
JPS5832345A (en) X-ray fluorescence amplifying tube
JP3863901B1 (en) Medical X-ray TV imaging device
JPH0620270B2 (en) X-ray television imaging device
JPS61177417A (en) Aperture device of light source device for endoscope
JPH05216140A (en) Optical distributor
JP2000004397A (en) X-ray diagnostic equipment
JPS58214846A (en) X-ray image photographic apparatus
JPS60182695A (en) Automatically setting device of x-ray photographing tube voltage
JPS58131877A (en) X-ray television device
JPH02143879U (en)
JPS63178499A (en) X-ray observation device
JP2001526812A (en) Imaging device