JPS62122284A - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JPS62122284A
JPS62122284A JP60262755A JP26275585A JPS62122284A JP S62122284 A JPS62122284 A JP S62122284A JP 60262755 A JP60262755 A JP 60262755A JP 26275585 A JP26275585 A JP 26275585A JP S62122284 A JPS62122284 A JP S62122284A
Authority
JP
Japan
Prior art keywords
light
light receiving
incident light
wiring
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262755A
Other languages
Japanese (ja)
Inventor
Hideo Kameda
亀田 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60262755A priority Critical patent/JPS62122284A/en
Publication of JPS62122284A publication Critical patent/JPS62122284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To perform stable, accurate position detection, in a light receiving element having a light receiving part, in which cells are arranged in a matrix pattern, by changing the ratio of the numbers of light receiving cells, which are connected to first and second wirings for every region corresponding to the diameter of incident light, at a specified rate toward the direction of the position detection. CONSTITUTION:Light receiving cells 11 are arranged in a matrix pattern in a light receiving part. Ten groups of regions 14 corresponding to the diameter of incident light from the left end to the right end are provided in the light receiving part. Ten light receiving cells are arranged in each group. The ratio of the light receiving cells 11, which are connected to a first wiring 12 and a second wiring 13 is changed from 9:1-1:9 at a constant rate. When the light is inputted to the region 14 corresponding to the diameter of the incident light at, e.g., the second column from the left, the ratio between photovoltaic currents I11 and I12, which are sent to the first wiring 12 and the second wiring 13, becomes 4:1. When the light is inputted to the region 14 corresponding to the diameter of the incident light in the third column from the right, the ratio between the photovoltaic currents I11 and I12, which are sent to the first and second wirings 12 and 13, becomes 3:10. Thus, in this semiconductor light receiving element, the photovoltaic currents I11 and I12 with the ratio corresponding to the position of the incident light can be sent to the first and second wirings 12 and 13 without resistors, and faulty operation does not occur due to the intensity of the incident light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、入射光の位置検出を行う半導体受光素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light receiving element that detects the position of incident light.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体受光素子の一例であるPSDを示
す概要図で、1はPSD受光面、2は入射光スポットで
ある。′ 第4図は第3図に示したPSDの等価回路図で、3はシ
リコンフォトダイオード、4は抵抗器、T1゜T2は出
力端子である。
FIG. 3 is a schematic diagram showing a PSD which is an example of a conventional semiconductor light-receiving element, where 1 is the PSD light-receiving surface and 2 is an incident light spot. 4 is an equivalent circuit diagram of the PSD shown in FIG. 3, where 3 is a silicon photodiode, 4 is a resistor, and T1 and T2 are output terminals.

第5図はPSDの出力を増幅する場合の増幅回路を示す
構成図で、5はSPD、6a、6bは演算増幅器、7a
、7bは抵抗器である。
FIG. 5 is a configuration diagram showing an amplification circuit for amplifying the output of the PSD, where 5 is the SPD, 6a and 6b are operational amplifiers, and 7a
, 7b are resistors.

次に動作について説明する。Next, the operation will be explained.

PSD受光面1に入射光スポット2があたると内部のシ
リコンフォトダイオード3によって光起電流が発生し、
端子T、、T、よりそれぞれ入射光スポット2の位置に
よって決定される所定の数の抵抗器4を介した電流I 
、 I 2が出力される。
When the incident light spot 2 hits the PSD light receiving surface 1, a photovoltaic current is generated by the internal silicon photodiode 3,
A current I flows through a predetermined number of resistors 4 determined by the position of the incident light spot 2 from the terminals T, , T, respectively.
, I2 is output.

その後、この電流I、、I2は第5図に示した増幅回路
によって増幅されて出力される。
Thereafter, the currents I, , I2 are amplified by the amplifier circuit shown in FIG. 5 and output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の半導体素子では、端子T1゜T2と
受光部間に抵抗器4によって高い電圧を生じ、特に入射
光の強度が強い場合にはシリコンフォ1、ダイオード3
のカソード基準電圧を超え、この場合はシリコンフォト
ダイオード3に順方向電流が流れろためシリコンフォト
ダイオード3にょって入射光の検出を行えなくなるとい
う問題点があった。また他方第5図に示した増幅回路で
は、例えば一方の演算増幅器6bの出力が変動すると、
抵抗器7b、PSD5内の抵抗器4を介してその出力が
演算増幅器6aの入力へと流れ、増幅回路の出力に誤差
を生じろという問題点があった。
In the conventional semiconductor device as described above, a high voltage is generated between the terminals T1 and T2 and the light receiving part by the resistor 4, and when the intensity of the incident light is particularly strong, the silicon photovoltaic device 1 and the diode 3
In this case, a forward current flows through the silicon photodiode 3, making it impossible for the silicon photodiode 3 to detect incident light. On the other hand, in the amplifier circuit shown in FIG. 5, for example, when the output of one operational amplifier 6b fluctuates,
There is a problem in that the output flows to the input of the operational amplifier 6a via the resistor 7b and the resistor 4 in the PSD 5, causing an error in the output of the amplifier circuit.

この発明は、かかる問題点を解決するためになされたも
ので、入射光の強度が強い場合にも動作不良を起こさず
、正確に位置検出を行うことができる半導体受光素子を
得る乙とを目的とする。
This invention was made in order to solve such problems, and the object is to obtain a semiconductor light receiving element that can accurately detect a position without causing malfunction even when the intensity of incident light is strong. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体受光素子は、マトリクス状に配置
された受光部を有し、入射光の径に対応する領域ごとの
第1および第2の配線に接続される受光部の分布の比を
位置検出を行う方向に向って所定の割合で変化させたも
のである。
The semiconductor light-receiving element according to the present invention has light-receiving parts arranged in a matrix, and the ratio of the distribution of the light-receiving parts connected to the first and second wirings is determined for each area corresponding to the diameter of incident light. It is changed at a predetermined rate in the direction of detection.

〔作用〕[Effect]

この発明においては、入射光の径に対応する領域ごとの
受光部に入射する入射光による光起電流の第1および第
2の配線に送出される比が位置検出を行う方向に向って
変化する。
In this invention, the ratio of the photovoltaic current sent to the first and second wirings due to the incident light incident on the light receiving section for each region corresponding to the diameter of the incident light changes in the direction of position detection. .

〔実施例〕〔Example〕

第1図はこの発明の半導体受光素子の一実施例を示す概
要図で、11は例えばシリコンフ第1・ダイオードから
なる受光部である受光セル、12は第1の配線、13は
第2の配線、14は入射光の径に対する領域を示す。
FIG. 1 is a schematic diagram showing an embodiment of a semiconductor light-receiving element of the present invention, in which 11 is a light-receiving cell which is a light-receiving section made of, for example, a first silicon diode, 12 is a first wiring, and 13 is a second wiring. , 14 indicate the area with respect to the diameter of the incident light.

ここでは簡単のため入射光の径に対応する領域14と同
じ径のスリット状の入射光が入射するものとし、左端か
ら右端まで入射光の径に対応する領域14が10群存在
し、その各群毎に第1の配線12および第2の配線13
に接続される受光セル11の比を9: 1から1: 9
まで一定の割合で変えた場合について説明する。
Here, for simplicity, it is assumed that incident light enters a slit having the same diameter as the area 14 corresponding to the diameter of the incident light, and there are 10 groups of areas 14 corresponding to the diameter of the incident light from the left end to the right end, and each of them A first wiring 12 and a second wiring 13 for each group.
The ratio of the light receiving cells 11 connected to the 9:1 to 1:9
We will explain the case where the value is changed at a constant rate.

次に動作について述べる。Next, we will discuss the operation.

入射光が例えば左から2列目の入射光の径に対応する領
域14に入射すると、第1の配線12と第2の配線13
に送出される光起電流■11y112の比は4・1とな
り、右から3列目の入射光の径に対応する領域14に入
射した場合には第1の配線12と第2の配線13に送出
される光起電流111゜112の比は3: 10となる
。したがって、この半導体受光素子では、抵抗器を用い
ずに入射光の入射位置に対応した比の光起電流I 11
+ I 12をそれぞれ第1の配線12および第2の配
線13へと送出することができ、入射光の強度によって
動作不良を起こすことがない。
When the incident light enters the area 14 corresponding to the diameter of the incident light in the second row from the left, the first wiring 12 and the second wiring 13
The ratio of the photovoltaic current ■11y112 sent to The ratio of the photovoltaic currents 111°112 sent out is 3:10. Therefore, in this semiconductor photodetector, a photovoltaic current I 11 of a ratio corresponding to the incident position of the incident light can be generated without using a resistor.
+I 12 can be sent to the first wiring 12 and the second wiring 13, respectively, and malfunctions will not occur due to the intensity of the incident light.

またこの半導体受光素子を増幅回路に接続すると、第2
図のようになる。第2図において、第5図と同一符号は
同一部分を示し、8は第1図に示したこの発明の半導体
受光素子である。
Furthermore, when this semiconductor photodetector is connected to an amplifier circuit, a second
It will look like the figure. In FIG. 2, the same reference numerals as in FIG. 5 indicate the same parts, and numeral 8 designates the semiconductor light receiving element of the present invention shown in FIG.

第2図から明らかなように、演算増幅器5a。As is clear from FIG. 2, the operational amplifier 5a.

6b間は半導体受光素子8内の受光セル11を構成する
複数のシリコンフォトダイオードを介してのみ接続され
ている。したがって、どちらか一方の演算増幅器6aま
たは6bの出力が変動しても、その出力が反対側の演算
増幅PJ6bまたは6aの入力へと流れて増幅回路の出
力に誤差を生じない。
6b are connected only through a plurality of silicon photodiodes constituting a light receiving cell 11 in the semiconductor light receiving element 8. Therefore, even if the output of either operational amplifier 6a or 6b fluctuates, the output flows to the input of operational amplifier PJ6b or 6a on the opposite side, and no error occurs in the output of the amplifier circuit.

なお、このように入射光の径に対応する領域14と同じ
径のスリット状の入射光が入射する場合には、その受光
面全面において、第1の配線12および第2の配線13
に接続されろ受光部11の分布に一様性がな(でもよい
Note that when the incident light in the form of a slit having the same diameter as the area 14 corresponding to the diameter of the incident light enters, the first wiring 12 and the second wiring 13 are disposed on the entire light receiving surface.
The distribution of the light-receiving sections 11 may not be uniform even if the light-receiving section 11 is connected to the

また上記実施例では、スリット状の入射光が入射する場
合について説明したが、スポット状の入射光が入射する
場合には、受光部がそのスポット径に対して十分に小さ
くなるようにし4.かつ受光面全面において第1の配線
および第2の配線に接続される多数の受光部の分布の比
を位置検出を行う方向に向って所定の割合で変化させろ
乙と、つまり、2系統の分配を確率的な分布とすること
により、高い精度で位置検出を行うことができる。
Further, in the above embodiment, the case where a slit-shaped incident light is incident has been explained, but when a spot-shaped incident light is incident, the light receiving section should be made sufficiently small with respect to the spot diameter.4. In addition, the ratio of the distribution of the large number of light receiving parts connected to the first wiring and the second wiring on the entire surface of the light receiving surface is changed at a predetermined ratio in the direction of position detection, that is, the distribution of the two systems. By using a stochastic distribution, position detection can be performed with high accuracy.

さらに、第3の配線を設けて受光部11を接続すること
により、3次元的な位置検出を行うようにすることもで
きる。
Furthermore, three-dimensional position detection can be performed by providing a third wiring and connecting the light receiving section 11.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、マトリクス状に配置さ
れた受光部を有し、入射光の径に対応する領域ごとの第
1および第2の配線に接続される受光部の分布の比を位
置検出を行う方向に向って所定の割合で変化させたので
、入射光の径に対応する領域あたりの受光部に入射する
入射光によつ光起電流の第1および第2の配線に送出さ
れる比が位置検出を行う方向に向って変化し、安定した
動作で正確に位置検出を行うことができるという効果が
ある。
As explained above, this invention has light receiving sections arranged in a matrix, and detects the position by detecting the ratio of the distribution of the light receiving sections connected to the first and second wirings for each area corresponding to the diameter of the incident light. Since the change is made at a predetermined rate in the direction of the incident light, the incident light that enters the light receiving part per area corresponding to the diameter of the incident light is sent to the first and second wiring of the photovoltaic current. The effect is that the ratio changes in the direction in which position detection is performed, and position detection can be performed accurately with stable operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体受光素子の一実施例を示す概
要図、第2図はこの発明の半導体受光素子を増幅回路に
接続した場合を示す概要図、第3図は従来の半導体受光
素子の一例であるPSDを示す概要図、第4図は第3図
に示したPSDの等価回路図、第5図はPSDの出力を
増幅する場合の増幅回路を示す構成図である。 図において、11は受光セル、12は第1の配線、13
は第2の配線、14は入射光の径に対応する領域である
。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第2図 7、:I 第4図 第5図 7コ
FIG. 1 is a schematic diagram showing an embodiment of the semiconductor photodetector of the present invention, FIG. 2 is a schematic diagram showing the case where the semiconductor photodetector of the present invention is connected to an amplifier circuit, and FIG. 3 is a schematic diagram of a conventional semiconductor photodetector. 4 is an equivalent circuit diagram of the PSD shown in FIG. 3, and FIG. 5 is a configuration diagram showing an amplification circuit for amplifying the output of the PSD. In the figure, 11 is a light receiving cell, 12 is a first wiring, and 13 is a light receiving cell.
is the second wiring, and 14 is a region corresponding to the diameter of the incident light. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2 Figure 7, :I Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 受光部に入射する入射光による光起電流によって入射光
の位置検出を行う半導体受光素子において、マトリクス
状に配置された受光部を有し、入射光の径に対応する領
域ごとの第1および第2の配線に接続される前記受光部
の分布の比を位置検出を行う方向に向って所定の割合で
変化させたことを特徴とする半導体受光素子。
A semiconductor light-receiving element that detects the position of incident light using a photovoltaic current generated by the incident light that enters the light-receiving part has light-receiving parts arranged in a matrix, and a first and a first one for each area corresponding to the diameter of the incident light. 2. A semiconductor light-receiving element, characterized in that the distribution ratio of the light-receiving parts connected to the second wiring is changed at a predetermined rate in the direction of position detection.
JP60262755A 1985-11-22 1985-11-22 Semiconductor light receiving element Pending JPS62122284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262755A JPS62122284A (en) 1985-11-22 1985-11-22 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262755A JPS62122284A (en) 1985-11-22 1985-11-22 Semiconductor light receiving element

Publications (1)

Publication Number Publication Date
JPS62122284A true JPS62122284A (en) 1987-06-03

Family

ID=17380136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262755A Pending JPS62122284A (en) 1985-11-22 1985-11-22 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JPS62122284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987461A (en) * 1989-10-11 1991-01-22 The University Of New Mexico High position resolution sensor with rectifying contacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987461A (en) * 1989-10-11 1991-01-22 The University Of New Mexico High position resolution sensor with rectifying contacts

Similar Documents

Publication Publication Date Title
EP0336152B1 (en) Optical direction of arrival sensor
KR860009498A (en) Semiconductor devices
US4205556A (en) Circuitry for strain sensitive apparatus
JPH08178951A (en) Semiconductor acceleration detector
JPS62122284A (en) Semiconductor light receiving element
JPH0450772A (en) Current detector
JPH0311669A (en) Magnetic transistor
JPH03111704A (en) Multiple output electrode type detector of image position
US3855582A (en) Parallel biased photodetector matrix
US5977571A (en) Low loss connecting arrangement for photodiodes
US4961096A (en) Semiconductor image position sensitive device with primary and intermediate electrodes
US5220305A (en) Semiconductor pressure sensor
WO1993014376A1 (en) Structure of semiconductor element for detecting image position and method of detecting image position
JP3067883B2 (en) Sensor device
KR950012656A (en) Semiconductor device and manufacturing method
JPS60806B2 (en) Integrated negative feedback amplifier
JPH03134505A (en) Circuit structure of photoelectric positioning tap
JP3270176B2 (en) Triangular ranging photoelectric sensor
JPS6252802B2 (en)
EP0159840B1 (en) Radiation detector arrays
JPH0543365Y2 (en)
JPH01266770A (en) Semiconductor position detector
JPH088431Y2 (en) Resistance measurement device
JPH04351941A (en) Particulate measuring device
JP3374669B2 (en) Circuit for detecting applied voltage of semiconductor device