JPS62122105A - Energy absorber - Google Patents

Energy absorber

Info

Publication number
JPS62122105A
JPS62122105A JP60242424A JP24242485A JPS62122105A JP S62122105 A JPS62122105 A JP S62122105A JP 60242424 A JP60242424 A JP 60242424A JP 24242485 A JP24242485 A JP 24242485A JP S62122105 A JPS62122105 A JP S62122105A
Authority
JP
Japan
Prior art keywords
resistor
zinc oxide
parallel
circuit
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60242424A
Other languages
Japanese (ja)
Inventor
原口 英二
功 横山
水越 明男
進藤 勝二
小沢 淳
菊池 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60242424A priority Critical patent/JPS62122105A/en
Publication of JPS62122105A publication Critical patent/JPS62122105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエネルギー吸収装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an energy absorption device.

〔発明の背景〕[Background of the invention]

電動機1発電機等の電気機械系に蓄積された運動エネル
ギーによる電気エネルギーの放出または電気回路網内に
蓄積された電気エネルギーの放出に伴う過電圧を抑制す
るためには、上述のエネルギーを吸収しなければならな
い。この目的のために使用される過電圧抑制装置として
酸化亜鉛(Z n O)非直線抵抗体の利用が考えられ
ている。
Motor 1 In order to suppress the overvoltage caused by the release of electrical energy due to kinetic energy stored in an electromechanical system such as a generator or the release of electrical energy stored in an electrical network, the above-mentioned energy must be absorbed. Must be. The use of a zinc oxide (ZnO) nonlinear resistor is being considered as an overvoltage suppressor used for this purpose.

吸収エネルギー量を大きくするため酸化亜鉛非直線抵抗
体の複数個を並列接続して用いる必要があるが、酸化亜
鉛非直線抵抗体は電流■と電圧Vとの関係がIoeV’
で表わされ、かつその非直線指数αが大きく電圧・電流
特性のすぐれた非直線性のだめに、並列接続された酸化
亜鉛非直線抵抗体間の通電電流に大きなアンバランスを
生じ易い。
In order to increase the amount of absorbed energy, it is necessary to use multiple zinc oxide nonlinear resistors connected in parallel, but the relationship between the current ■ and the voltage V of the zinc oxide nonlinear resistor is IoeV'
Because of the excellent nonlinearity of the voltage and current characteristics with a large nonlinearity index α, a large imbalance tends to occur in the current flowing between the zinc oxide nonlinear resistors connected in parallel.

これは僅かな特性の違いによるものであり、複数の酸化
亜鉛非直線抵抗体に分流する電流の最大と最小との比は
100倍から1000倍にも達する。
This is due to slight differences in characteristics, and the ratio between the maximum and minimum currents that flow through the plurality of zinc oxide nonlinear resistors reaches 100 to 1000 times.

このため特開昭58−222502 %+よ第3図に示
されているように、酸化亜鉛非直線抵抗体1,2で構成
される例えば2つの電路の夫々に直列に抵抗体3.4を
挿入して電流のバランスを図っている。
For this purpose, as shown in FIG. 3 of JP-A-58-222502%+, for example, resistors 3 and 4 are connected in series to each of two electrical circuits composed of zinc oxide nonlinear resistors 1 and 2. It is inserted to balance the current.

なお同図において5,6は、並列に接続された複数の電
路を有するエネルギー吸収装置の端子である。ところで
このように構成されたエネルギー吸収装置では、雷イン
パルス電流などの大電流通流時に直列に接続した抵抗体
3,4の電圧降下が過大になり、抵抗体3.4が絶縁破
壊する不具合があった。更に複数個並列に接続された電
路のいずれか一つに不具合を生じ短絡状態になった場合
に、装置全体の機能が損なわれる欠点があった。
In the figure, numerals 5 and 6 are terminals of an energy absorbing device having a plurality of electrical circuits connected in parallel. By the way, in the energy absorption device configured in this way, when a large current such as a lightning impulse current flows, the voltage drop across the resistors 3 and 4 connected in series becomes excessive, resulting in dielectric breakdown of the resistors 3 and 4. there were. Furthermore, if any one of the plurality of electrical circuits connected in parallel develops a problem and becomes short-circuited, the function of the entire device is impaired.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、酸化亜鉛
非直線抵抗体に直列に接続される抵抗体の絶縁破壊を防
止し、並列電路群の一部に不具合を生じても装置全体の
機能を維持することを可能としたエネルギー吸収装置を
提供することを目的とするものである。
The present invention was made in view of the above points, and it prevents dielectric breakdown of a resistor connected in series with a zinc oxide nonlinear resistor, and prevents the entire device from being damaged even if a failure occurs in a part of the parallel circuit group. The purpose of this invention is to provide an energy absorbing device that can maintain its functionality.

〔発明の概要〕[Summary of the invention]

工 すなわた本発明は並列に接続された複数の電路を備え、
前記電路は電流工と電圧Vとの関係が■OCV“ (α
は非直線指数)で表わされる酸化亜鉛非直線抵抗体と、
この非直線抵抗体に直列に接続され、かつ前記非直線抵
抗体の非直線指数αより小さな指数の抵抗体とを有して
いるエネルギー吸収装置において、前記吸収装置に、前
記抵抗体の電圧降下を許容値以下に抑える保護用酸化亜
鉛非直線抵抗体と、前記電路の短絡を防止する遮断装置
とを設けたことを特徴とするものであり、これによって
抵抗体の電圧降下は許容値以下に押えられ、電路の短絡
が防止されるようになる。
The present invention includes a plurality of electrical circuits connected in parallel,
In the electric circuit, the relationship between the electric current and the voltage V is ``OCV'' (α
is a nonlinear index), and
In an energy absorbing device that is connected in series to this non-linear resistor and has a resistor having an index smaller than a non-linear index α of the non-linear resistor, the absorber has a voltage drop across the resistor. The device is characterized by being equipped with a protective zinc oxide non-linear resistor that suppresses the voltage drop below the allowable value, and a cutoff device that prevents short-circuiting of the electric circuit, thereby reducing the voltage drop across the resistor below the allowable value. This will prevent short circuits in the electrical circuit.

発明者等はどのようにすれば酸化亜鉛非直線抵抗体に直
列に接続される抵抗体の絶縁破壊が防止され、並列電路
群の一部に不具合を生じても装置全体の機能を維持する
ことができるかを検討した。
The inventors have determined how to prevent dielectric breakdown of the resistor connected in series with the zinc oxide nonlinear resistor and maintain the functionality of the entire device even if a failure occurs in part of the parallel circuit group. We considered whether it could be done.

第3図に示されているように酸化亜鉛非直線抵抗体1.
2と直列に接続される抵抗体3,4は酸化亜鉛非直線抵
抗体1.2の非直線指数αより小さな指数の直線抵抗で
も非直線抵抗でもよい、この直列に接続される抵抗体3
,4の端子間電圧に注目すると、抵抗体3,4の電圧降
下は電流に比例する。従って、電流の大きな電路にある
抵抗体の電圧降下の方が大きく、電流の増加と共に電圧
降下が上昇し、逐にはその抵抗体の沿面耐電圧を越える
。種々の抵抗体の沿面耐電圧を検討し、酸化亜鉛非直線
抵抗体のそれと比較して結果が第4図に示されている。
As shown in FIG. 3, zinc oxide nonlinear resistor 1.
The resistors 3 and 4 connected in series with the zinc oxide nonlinear resistor 1.2 may be linear resistances or nonlinear resistances with an index smaller than the nonlinear index α of the zinc oxide nonlinear resistor 1.2.
, 4, the voltage drop across the resistors 3 and 4 is proportional to the current. Therefore, the voltage drop across a resistor in a circuit carrying a large current is greater, and as the current increases, the voltage drop increases and eventually exceeds the creeping withstand voltage of the resistor. The creepage withstand voltage of various resistors was investigated and compared with that of a zinc oxide nonlinear resistor, and the results are shown in FIG.

同図は横軸に各種抵抗体をとり、縦軸に酸化亜鉛非直a
抵抗体の沿面耐電圧と供試した抵抗体の沿面耐電圧との
比を7てたものである。同図から明らかなように供試し
た酸化亜鉛系抵抗体、焼結カーボン抵抗体、炭化けい素
糸抵抗体とも図中点線表示の酸化亜鉛非直線抵抗体の沿
面耐電圧とほぼ等しい沿面耐電圧を有とていることが判
った6従って抵抗体の電、圧降下の最大値が酸化亜鉛非
直線抵抗体の電圧降下以下となる電流範囲で使用しなけ
ればならないが、それには電路に大きな電流が流れ抵抗
体の電圧降下がある程度大きくなった場合に、その大き
な電流が抵抗体に流れるのが抑制されるように複数の電
路と並列に。
In the figure, the horizontal axis shows various resistors, and the vertical axis shows zinc oxide non-linear a
The ratio between the creeping withstand voltage of the resistor and the creeping withstand voltage of the resistor under test was set at 7. As is clear from the figure, the creeping withstand voltage of the zinc oxide resistor, sintered carbon resistor, and silicon carbide thread resistor tested is almost equal to the creeping withstand voltage of the zinc oxide nonlinear resistor shown by the dotted line in the figure. 6 Therefore, it must be used in a current range where the maximum voltage and pressure drop of the resistor is less than the voltage drop of the zinc oxide nonlinear resistor, but in order to do so, a large current in the electrical circuit is required. parallel to multiple electrical circuits so that when the current flows and the voltage drop across the resistor becomes large to a certain extent, that large current is suppressed from flowing through the resistor.

または少なくともひとつの抵抗体と並列に保護用酸化亜
鉛非直線抵抗体を設けてやればよい。このようにするこ
とにより保護用酸化亜鉛非直線抵抗体は非直線特性を有
しているので電路の大電流は抵抗体から非直線特性を有
している保護用酸化亜鉛非直線抵抗体にその大部分が分
流するようになって、抵抗体には大電流の流れるのが少
なく抑制されるようになり、抵抗体はその電圧降下の上
昇が許容値以下に抑えられることが確められた。また、
電路と直列に遮断装置を設ければ不具合の発生した電路
は遮断装置で遮断されるようになって。
Alternatively, a protective zinc oxide nonlinear resistor may be provided in parallel with at least one resistor. By doing this, since the protective zinc oxide nonlinear resistor has nonlinear characteristics, the large current in the electrical circuit is transferred from the resistor to the protective zinc oxide nonlinear resistor, which has nonlinear characteristics. It was confirmed that most of the current was shunted, and the large current flowing through the resistor was suppressed to a small extent, and that the increase in voltage drop in the resistor was suppressed to below an allowable value. Also,
If a circuit breaker is installed in series with the electrical circuit, the circuit in which the problem occurs will be shut off by the circuit breaker.

他の健全な電路の短絡が防止されるようになり、装置全
体の機能が停止するのが防止されることが確かめられた
。そこで本発明では吸収装置に、抵抗体の電圧降下を許
容値以下に抑える保護用酸化亜鉛非直線抵抗体と、電路
の短絡を防止する遮断。
It was confirmed that short-circuiting of otherwise healthy electrical circuits was prevented, and that the entire device was prevented from functioning. Therefore, in the present invention, the absorption device includes a protective zinc oxide non-linear resistor that suppresses the voltage drop of the resistor to below a permissible value, and an interrupter that prevents a short circuit in the electric circuit.

装置とを設けた。このようにすることにより酸化亜鉛非
直線抵抗体に直列に接続される抵抗体の絶縁破壊を防止
し、並列電路群の一部に不具合を生じても装置全体の機
能を維持することを可能としたエネルギー吸収装置を得
ることを可能としたものである。
A device was installed. By doing this, it is possible to prevent dielectric breakdown of the resistor connected in series with the zinc oxide nonlinear resistor, and to maintain the functionality of the entire device even if a failure occurs in part of the parallel circuit group. This made it possible to obtain an energy absorbing device with high energy efficiency.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明を省略する0本
実施例では吸収装置に、抵抗体3.4の電圧降下を許容
値以下に抑える保護用酸化亜鉛非直線抵抗体7,8と、
電路の短絡を防止する遮断装置9,10とを設けた。こ
のようにすることにより吸収装置に、抵抗体3,4の電
圧降下を許容値以下に抑える保護用酸化亜鉛非直線抵抗
体7.8と、電路の短絡を防止する遮断装置9,10と
が設けられるようになって、抵抗体3.4の電圧降下が
許容値以下に抑えられ、電路の短絡が防止されるように
なり、酸化亜鉛非直線抵抗体1,2に直列に接続される
抵抗体3.4の絶縁破壊を防止し、並列電路群の一部に
不具合を生じても装置全体の機能を維持することを可能
としたエネルギー吸収装置を得ることができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. Note that the same parts as in the prior art have been given the same reference numerals, so their explanations will be omitted. 8 and
Interrupting devices 9 and 10 are provided to prevent short circuits in the electric circuit. By doing so, the absorption device includes a protective zinc oxide non-linear resistor 7.8 that suppresses the voltage drop across the resistors 3 and 4 below an allowable value, and a disconnection device 9 and 10 that prevents a short circuit in the electric circuit. As a result, the voltage drop across the resistor 3.4 is suppressed to a permissible value or less, and a short circuit in the electric circuit is prevented. It is possible to obtain an energy absorbing device that prevents dielectric breakdown of the body 3.4 and maintains the function of the entire device even if a failure occurs in a part of the parallel circuit group.

すなわち並列電路の抵抗体3,4と並列に保護用酸化亜
鉛非直線抵抗体7,8を設け、夫々の電路に直列に遮断
袋[9,10を設けた。このようにすることにより抵抗
体3には並列に保護用酸化亜鉛非直線抵抗体7が設けら
れ、抵抗体4には並列に保護用酸化亜鉛非直線抵抗体8
が設けられるようになり、2つの電路には夫々直列に遮
断装置9.10が設けられるようになる。従って端子5
゜6間の電圧がある程度小さい範囲では電路を流れる電
流はその大部分が抵抗体3,4をほぼ均等に流れるが、
端子5,6間の電圧が大きくなると電路を流れる電流は
その大部分が保護用酸化亜鉛非直線抵抗体7,8に流れ
るようになって、抵抗体3.4に流れる電流の増加が抑
えられるようになり、抵抗体3,4の電圧降下を許容値
以下に抑えることができ、抵抗体3,4の沿面耐電圧を
保持してその絶縁破壊の発生を防止することができる。
That is, protective zinc oxide non-linear resistors 7 and 8 were provided in parallel with the resistors 3 and 4 of the parallel circuits, and blocking bags [9 and 10 were provided in series with the respective circuits. By doing so, the protective zinc oxide nonlinear resistor 7 is provided in parallel with the resistor 3, and the protective zinc oxide nonlinear resistor 8 is provided in parallel with the resistor 4.
are now provided, and interrupting devices 9 and 10 are provided in series on each of the two electrical circuits. Therefore, terminal 5
In a range where the voltage between ゜6 is small to a certain extent, most of the current flowing through the electric circuit flows almost equally through the resistors 3 and 4, but
When the voltage between terminals 5 and 6 increases, most of the current flowing through the electrical circuit flows through protective zinc oxide nonlinear resistors 7 and 8, suppressing an increase in the current flowing through resistor 3.4. As a result, the voltage drop across the resistors 3 and 4 can be suppressed to below a permissible value, and the creeping withstand voltage of the resistors 3 and 4 can be maintained to prevent dielectric breakdown thereof.

このことは縦軸に電圧をとり、横軸に電流をとって端子
5.6間の電圧、電流の関係が示されている第2図から
も明らかである。同図にも示されているように領域Iは
各々の並列電路に流れる電流が小さく、抵抗体3,4の
効果が現われず、領域■では各々の電路の電流が大きく
なって抵抗体3゜4による分流均等化の効果が顕著にな
る。そして電流が更に増大し領域■になると、抵抗体3
,4に並列に接続した保護用酸化亜鉛非直線抵抗体7゜
8に流れる電流が増大して抵抗体304の電流を分流す
るようになり、抵抗体3,4の電圧降下の上昇を抑え、
抵抗体3,4を保護するようになる。
This is clear from FIG. 2, which shows the relationship between voltage and current between terminals 5 and 6, with voltage on the vertical axis and current on the horizontal axis. As shown in the same figure, in region I, the current flowing through each parallel circuit is small, and the effect of resistors 3 and 4 does not appear, and in region 2, the current in each circuit becomes large, and 4, the effect of dividing and equalizing the flow becomes remarkable. When the current increases further and reaches the region ■, the resistor 3
, 4 is connected in parallel to the protective zinc oxide nonlinear resistor 7.8, the current flowing through the resistor 304 is shunted, and the voltage drop across the resistors 3 and 4 is suppressed.
This protects the resistors 3 and 4.

なお、保護用酸化亜鉛非直線抵抗体7,8の電圧降下は
同じ通電電流に対し酸化亜鉛非直線抵抗体1.2のそれ
と同じになるように設定しである。
The voltage drop of the protective zinc oxide nonlinear resistors 7 and 8 is set to be the same as that of the zinc oxide nonlinear resistor 1.2 for the same current.

また、並列電路には直列に遮断装置9,10を夫々設け
たので、通電動作中に例えば酸化亜鉛非直線抵抗体1や
抵抗体3などに不具合が生じ、短絡状態となっても、こ
れら酸化亜鉛非直線抵抗体1および抵抗体3を有する電
路に流れる故障電流は遮断装置9で遮断されるようにな
る。従って酸装置全体の機能を維持することができる。
In addition, since the parallel circuits are provided with interrupting devices 9 and 10 in series, even if a malfunction occurs in the zinc oxide nonlinear resistor 1 or the resistor 3 during energizing operation, resulting in a short circuit, these oxidized A fault current flowing through the electrical circuit having the zinc nonlinear resistor 1 and the resistor 3 is interrupted by the interrupting device 9. Therefore, the functionality of the entire acid device can be maintained.

その遮断装置9,10としては電力用ヒユーズや真空遮
断器などが小形であり、簡便であるが、真空遮断器など
遮断器を使用する場合は電路に故障電流検出要素を設け
、遮断器の開路動作を行なわせるようにすればよい。
As the interrupting devices 9 and 10, power fuses, vacuum circuit breakers, etc. are small and simple, but when using a circuit breaker such as a vacuum circuit breaker, a fault current detection element is provided in the electrical circuit, and the circuit breaker is opened. All you have to do is make it perform the action.

なお本実施例では2つの電路を並列接続した場合につい
て説明したが、これのみに限るものではなくこれ以上の
電路が並列接続された場合でも同様であることは云うま
でもない。
Although the present embodiment has been described with reference to the case where two electric lines are connected in parallel, it goes without saying that the present invention is not limited to this and the same applies even when more electric lines are connected in parallel.

第5図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

本実施例では保護用酸化亜鉛非直線抵抗体7を、ひとつ
の抵抗体3と並列に接続した。すなわちひとつの抵抗体
3にのみ保護用酸化亜鉛非直線抵抗体7を設けた。この
場合にも端子5,6間の電圧が大きくなると、保護用酸
化亜鉛非直線抵抗体7に流れる電流が増大して抵抗体3
,4の電流が分流されるようになって、前述の場合と同
様な作用効果を奏することができる。
In this example, a protective zinc oxide nonlinear resistor 7 was connected in parallel with one resistor 3. That is, the protective zinc oxide nonlinear resistor 7 was provided for only one resistor 3. In this case as well, when the voltage between the terminals 5 and 6 increases, the current flowing through the protective zinc oxide nonlinear resistor 7 increases and the resistor 3
, 4 are now shunted, and the same effects as in the case described above can be achieved.

第6図には本発明の更に他の実施例が示されている6本
実施例では保護用酸化亜鉛非直線抵抗体11を、複数の
電路と並列に接続した。そして保護用酸化亜鉛非直線抵
抗体11と直列に遮断装置12を接続した。この場合に
も端子5,6間の電圧が大きくなると、保護用酸化亜鉛
非直線抵抗体11に流れる電流が増大して抵抗体3,4
の電流が分流されるようになって、前述の場合と同様な
作用効果を奏することができる。
FIG. 6 shows yet another embodiment of the present invention. In this embodiment, a protective zinc oxide nonlinear resistor 11 was connected in parallel with a plurality of electrical circuits. A cutoff device 12 was connected in series with the protective zinc oxide nonlinear resistor 11. In this case as well, when the voltage between the terminals 5 and 6 increases, the current flowing through the protective zinc oxide nonlinear resistor 11 increases and the resistors 3 and 4
The current is shunted, and the same effects as in the case described above can be achieved.

第7図には本発明の更に他の実施例が示されている。並
列接続される電路、すなわち酸化亜鉛非直線抵抗体1.
抵抗体3.保護用酸化亜鉛非直線抵抗体7を有する電路
と、酸化亜鉛非直線抵抗体2、抵抗体4.保護用酸化亜
鉛非直線抵抗体8を有する電路とを並列に接続してひと
つの並列電路とした。そして酸化亜鉛非直線抵抗体13
.抵抗体15.保護用酸化亜鉛非直線抵抗体17を有す
る電路と、酸化亜鉛非直線抵抗体14.抵抗体16、保
護用酸化亜鉛非直線抵抗体18を有する電路とを並列に
接続してひとつの並列@路とした。
FIG. 7 shows yet another embodiment of the invention. Electrical circuits connected in parallel, ie zinc oxide non-linear resistor 1.
Resistor 3. An electric circuit having a protective zinc oxide nonlinear resistor 7, a zinc oxide nonlinear resistor 2, a resistor 4. The electrical circuit having the protective zinc oxide nonlinear resistor 8 was connected in parallel to form one parallel electrical circuit. And zinc oxide nonlinear resistor 13
.. Resistor 15. An electric circuit having a protective zinc oxide nonlinear resistor 17 and a zinc oxide nonlinear resistor 14. The resistor 16 and the electrical circuit having the protective zinc oxide nonlinear resistor 18 were connected in parallel to form one parallel @ circuit.

そしてこれらひとつの並列電路に直列に夫々遮断装置9
,10を設けてエネルギー吸収装置を構成した。このよ
うにすることにより遮断装置9゜10は2つの電路を並
列に接続した並列電路に夫夫設けられるようになって、
遮断装置9,10の設置数を前述の場合よりも減らすこ
とができるようになる。なお本実施例では2つの電路を
接続してひとつの並列電路としたが、並列接続する電路
が2つに限るものでないことは云うまでもない。
And each interrupting device 9 is connected in series to one of these parallel circuits.
, 10 were provided to constitute an energy absorption device. By doing this, the interrupting devices 9 and 10 can be installed on parallel circuits in which two circuits are connected in parallel.
The number of installed cutoff devices 9 and 10 can be reduced compared to the case described above. Note that in this embodiment, two electric lines are connected to form one parallel electric line, but it goes without saying that the number of electric lines connected in parallel is not limited to two.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は酸化亜鉛非直線抵抗体に直列に接
続される抵抗体の絶縁破壊が防止され、並列電路群の一
部に不具合を生じても装置全体の機能が維持されるよう
になって、酸化亜鉛非直線抵抗体に直列に接続される抵
抗体の絶縁破壊)防止し、並列電路群の一部に不具合を
生じても装置全体の機能が維持することを可能としたエ
ネルギー吸収装置を得ることができる。
As described above, the present invention prevents dielectric breakdown of the resistor connected in series with the zinc oxide nonlinear resistor, and maintains the functionality of the entire device even if a failure occurs in a part of the parallel circuit group. Energy absorption prevents dielectric breakdown of the resistor connected in series with the zinc oxide non-linear resistor) and maintains the functionality of the entire device even if a failure occurs in part of the parallel circuit group. You can get the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエネルギー吸収装置の一実施例の装置
構成を示す回路図、第2図は同じく一実施例の端子間の
電圧と電流との関係を示す特性図、第3図は従来のエネ
ルギー吸収装置の装置構成を示す回路図、第4図は各種
抵抗体の沿面耐電圧と酸化亜鉛非直線抵抗体の沿面耐電
圧との比較特性図、第5図は本発明のエネルギー吸収装
置の他の実施例の装置構成を示す回路図、第6図は本発
明のエネルギー吸収装置の更に他の実施例の装置構成を
示す回路図、第7図は本発明のエネルギー吸収装置の更
に他の実施例の装置構成を示す回路図である。 1.2・・・酸化亜鉛非直線抵抗体、3,4・・・抵抗
体、5.6・・・端子、7,8・・・保護用酸化亜鉛非
直線抵抗体、9,10・・・遮断装置、11・・・保護
用酸化亜鉛非直線抵抗体、12・・・遮断装置、13.
14・・・酸化亜鉛非直線抵抗体、15.16・・・抵
抗体、17.18・・・保護用酸化亜鉛非直線抵抗体。 茅3 固 ぐ 茅4 固
FIG. 1 is a circuit diagram showing the device configuration of an embodiment of the energy absorption device of the present invention, FIG. 2 is a characteristic diagram showing the relationship between voltage and current between terminals of the same embodiment, and FIG. 3 is a conventional FIG. 4 is a characteristic diagram comparing the creeping voltage of various resistors and that of a zinc oxide nonlinear resistor, and FIG. 5 is a circuit diagram showing the structure of the energy absorbing device of the present invention. FIG. 6 is a circuit diagram showing the device configuration of yet another embodiment of the energy absorbing device of the present invention, and FIG. 7 is a circuit diagram showing the device configuration of yet another embodiment of the energy absorbing device of the present invention. FIG. 2 is a circuit diagram showing the device configuration of the embodiment. 1.2... Zinc oxide nonlinear resistor, 3, 4... Resistor, 5.6... Terminal, 7, 8... Zinc oxide nonlinear resistor for protection, 9, 10... - Shutoff device, 11... Zinc oxide non-linear resistor for protection, 12... Shutdown device, 13.
14...Zinc oxide nonlinear resistor, 15.16...Resistor, 17.18...Zinc oxide nonlinear resistor for protection. Moga 3 harden Koga 4 hard

Claims (1)

【特許請求の範囲】 1、並列に接続された複数の電路を備え、前記電路は電
流Iと電圧Vとの関係がI■V^α(αは非直線指数)
で表わされる酸化亜鉛非直線抵抗体と、この非直線抵抗
体に直列に接続され、かつ前記非直線抵抗体の非直線指
数αより小さな指数の抵抗体とを有しているエネルギー
吸収装置において、前記吸収装置に、前記抵抗体の電圧
降下を許容値以下に抑える保護用酸化亜鉛非直線抵抗体
と、前記電路の短絡を防止する遮断装置とを設けたこと
を特徴とするエネルギー吸収装置。 2、前記保護用酸化亜鉛非直線抵抗体が、少なくともひ
とつの前記抵抗体と並列に接続されたものである特許請
求の範囲第1項記載のエネルギー吸収装置。 3、前記保護用酸化亜鉛非直線抵抗体が、前記複数の電
路と並列に接続されたものである特許請求の範囲第1項
記載のエネルギー吸収装置。 4、前記遮断装置が、前記電路と直列に接続されたもの
である特許請求の範囲第1項記載のエネルギー吸収装置
[Claims] 1. A plurality of electric circuits connected in parallel are provided, and the electric circuit has a relationship between current I and voltage V of I V^α (α is a nonlinear index).
An energy absorption device comprising a zinc oxide nonlinear resistor represented by: and a resistor connected in series to the nonlinear resistor and having an index smaller than the nonlinear index α of the nonlinear resistor, An energy absorbing device characterized in that the absorbing device is provided with a protective zinc oxide non-linear resistor that suppresses a voltage drop across the resistor below a permissible value, and a cutoff device that prevents a short circuit in the electric circuit. 2. The energy absorbing device according to claim 1, wherein the protective zinc oxide nonlinear resistor is connected in parallel with at least one of the resistors. 3. The energy absorption device according to claim 1, wherein the protective zinc oxide nonlinear resistor is connected in parallel with the plurality of electric circuits. 4. The energy absorbing device according to claim 1, wherein the interrupting device is connected in series with the electric circuit.
JP60242424A 1985-10-29 1985-10-29 Energy absorber Pending JPS62122105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242424A JPS62122105A (en) 1985-10-29 1985-10-29 Energy absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242424A JPS62122105A (en) 1985-10-29 1985-10-29 Energy absorber

Publications (1)

Publication Number Publication Date
JPS62122105A true JPS62122105A (en) 1987-06-03

Family

ID=17088903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242424A Pending JPS62122105A (en) 1985-10-29 1985-10-29 Energy absorber

Country Status (1)

Country Link
JP (1) JPS62122105A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108637U (en) * 1980-12-24 1982-07-05
JPS57163701U (en) * 1981-04-09 1982-10-15
JPS58222502A (en) * 1982-06-18 1983-12-24 株式会社日立製作所 Energy absorbing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108637U (en) * 1980-12-24 1982-07-05
JPS57163701U (en) * 1981-04-09 1982-10-15
JPS58222502A (en) * 1982-06-18 1983-12-24 株式会社日立製作所 Energy absorbing device

Similar Documents

Publication Publication Date Title
US7933108B2 (en) Motor drive with low leakage surge protection
US5854730A (en) Transient and voltage surge protection system and method for preventing damage to electrical equipment
US4300181A (en) Commutation circuit for an HVDC circuit breaker
US5157572A (en) Apparatus suitable for use in protecting electrical installations from transients
US6493201B1 (en) Spark gap retrofit module for surge arrester
Bhargava et al. Effectiveness of pre-insertion inductors for mitigating remote overvoltages due to shunt capacitor energization
US4777555A (en) Device for protecting an electric power line against high transient overvoltages
McGranaghan et al. Overvoltage protection of shunt-capacitor banks using MOV arresters
US20200006937A1 (en) Fault current limiter with modular mutual reactor
US5353186A (en) Reactor switch
JPS62122105A (en) Energy absorber
JPH09233833A (en) Ac/dc converter
JP3317386B2 (en) Secondary voltage suppression circuit of power supply CT
JPH0630525A (en) Three-phase alternating-current power supply apparatus of electronic apparatus
US4060842A (en) Combined mutual drainage reactor and grounding relay
Niebuhr Application of metal-oxide-varistor surge arresters on distribution systems
RU2085002C1 (en) Limiter of internal overvoltages
CN110445111B (en) Magnetic control type shunt reactor control winding direct current bus overvoltage protection system
GB2314219A (en) Protecting high voltage power distribution transformers from lightning strikes
JPS5957524A (en) Ac current limiting type semiconductor circuit breaker
CA1153096A (en) Commutation circuit for an hvdc circuit breaker
RU2091952C1 (en) Gear grounding neutral of transformer
KR100398824B1 (en) Lightning arrester device
Goedde et al. Overvoltage protection for distribution and low-voltage equipment experiencing sustained overvoltages
CN116488122A (en) MOV suitable for turn-off converter