JPS62121806A - Flow rate adjusting mechanism for steam turbine governor - Google Patents

Flow rate adjusting mechanism for steam turbine governor

Info

Publication number
JPS62121806A
JPS62121806A JP26152885A JP26152885A JPS62121806A JP S62121806 A JPS62121806 A JP S62121806A JP 26152885 A JP26152885 A JP 26152885A JP 26152885 A JP26152885 A JP 26152885A JP S62121806 A JPS62121806 A JP S62121806A
Authority
JP
Japan
Prior art keywords
valve
flow rate
valves
control
governor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26152885A
Other languages
Japanese (ja)
Inventor
Motoro Iwato
岩藤 元郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26152885A priority Critical patent/JPS62121806A/en
Publication of JPS62121806A publication Critical patent/JPS62121806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To increase a valve full-open point and reduce a throttle loss of a valve as well as to aim at improvement in turbine efficiency, by constituting a governor in a way of combining it with such a valve that is different in size in a geometrical series manner. CONSTITUTION:A governor is constituted of plural valves converting size of the governor into geometrical series times. For example, in case of a four-valve type, size of each valve should be set to 1:2:4:8. With this constitution, a valve full-open point comes to 15 in number, whereby prenty of valve full-open points by far much more than valve numbers can be made possible so that a throttle loss of each valve is reduced and, what is more, turbine efficiency is improvable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービンなど原動機のエネルギ媒体であ
る気体や液体の流量を最少の圧力損失で流量を増減して
タービン効率を向上させる技術分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in the technical field of improving turbine efficiency by increasing or decreasing the flow rate of gas or liquid, which is the energy medium of a prime mover such as a steam turbine, with minimum pressure loss. be done.

従来の技術 従来よりの技術は、いくつかの加減弁で流量を増減する
場合には、決められた開閉順に従って弁を作動させて〜
またので、加減弁群の全流量での加減弁が全開となる点
は全弁数と同じだけである。
Conventional technology In the conventional technology, when increasing or decreasing the flow rate using several control valves, the valves are operated according to a predetermined opening/closing order.
Therefore, the number of points at which the regulating valves are fully open at the full flow rate of the regulating valve group is the same as the total number of valves.

従って、加減弁から加減弁間の弁の絞り損失は避けられ
ず、この間の損失(原動機の場合は効率低下)が比較的
大きかった。
Therefore, throttling loss between the control valves and the control valves is unavoidable, and the loss (in the case of a prime mover, efficiency decrease) during this period is relatively large.

発明が解決しようとする問題点 本発明は、最少の絞り損失で、流量又は圧力などを増減
し、従来例の原動機の効率低下を解消し、原動機の高効
率化を実現することにある。
Problems to be Solved by the Invention The present invention aims to increase or decrease the flow rate or pressure with minimum throttling loss, eliminate the reduction in efficiency of the conventional prime mover, and realize high efficiency of the prime mover.

問題点を解決するための手段 本発明は、上述の問題を解決するために、次のような手
段を採っている。すなわち、 弁の大きさが等比級的に異なる弁を含み、流量を増減す
る複数の加減弁で構成される加減弁群と、全流量にわた
って前記加減弁の絞り損失を最少とする弁全開点を数多
くするために流量に応じて弁の組合せを変えて選定し、
次の組合せへ流量を変える制御装置とになる流量増減機
構とする。
Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. In other words, a control valve group consisting of a plurality of control valves that increase or decrease the flow rate, including valves of geometrically different sizes, and a valve full-opening point that minimizes throttling loss of the control valve over the entire flow rate. In order to increase the number of valves, we select different combinations of valves depending on the flow rate.
The flow rate increase/decrease mechanism is used as a control device to change the flow rate to the next combination.

作用 以上述べた手段によれば、したがって、加減弁群の全流
量にわたって、弁数よりも遥かに多(の弁全開点とする
ことができ(全開点数の最大は等級数の和となる)、流
量の増減な各弁の全開点の組合せ、いわゆる弁全開制御
とすれば、弁の絞り損失を最少とすることにより、ター
ビンの高効率化が図れる。
According to the above-described means, it is possible to have a valve fully open point that is far greater than the number of valves over the entire flow rate of the control valve group (the maximum number of fully open points is the sum of the number of classes), By combining the full-open points of each valve to increase or decrease the flow rate, so-called full-open valve control, the efficiency of the turbine can be increased by minimizing the throttling loss of the valves.

実施例 次に、本発明の一実施例につき、第1図より第9図を参
照して述べる。
Embodiment Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 9.

第1図は本発明の一実施例を示す系統図で、図中符号A
は原動機(タービン10)と被駆動機15、Bは制御部
、Cは流量加減部と加減弁5で、これち、作動部は加減
弁5と図示しない操作部(サーボモータなど)で、加減
弁5は例として容量の異なる弁V□、v2、v3、v4
、v5 より構成する。
FIG. 1 is a system diagram showing one embodiment of the present invention, and the reference numeral A in the figure is
are the prime mover (turbine 10) and the driven machine 15, B is the control section, C is the flow rate adjustment section and the adjustment valve 5, and the actuating section is the adjustment valve 5 and an operation section (not shown, such as a servo motor) that controls the adjustment. The valves 5 are, for example, valves V□, v2, v3, v4 with different capacities.
, v5.

弁の大きさを1.2.4.8.16・・・の如(、等比
級数的とし、作動弁が連続的とする時は、1.2.4.
4・・・等とする。
The size of the valve is as follows: 1.2.4.8.16 (, when the valve size is geometrical series and the operating valve is continuous, 1.2.4.
4...etc.

加減弁5の流量増減のための開閉順は、一定で9口 な(、作動させる敢減弁5の合計容量順とし、最も多く
の弁全開点あるいは必要な流量時に弁の絞り損失を最少
とする弁の組合せとなるように各弁を作動させる。
The order of opening and closing of the control valves 5 to increase or decrease the flow rate is constant (9 ports) (in order of the total capacity of the control valves 5 to be operated, and the valve throttle loss is minimized when the most valves are fully open or when the required flow rate is reached). Operate each valve to create a combination of valves.

加減弁5の大きさを等比級数倍としたとき、1(弁の大
きさ)、2.4.8.16・・・全流量は31で、弁全
開点も31点となる。
When the size of the regulating valve 5 is multiplied by a geometric series, 1 (valve size), 2.4.8.16... The total flow rate is 31, and the valve full opening point is also 31 points.

加減弁の大きさを弁連続作動とするとき(1と4は隣り
合せとする)、1.2.4.4,4・e・全流量は15
で、弁全開点も15点とする。
When the size of the control valve is set to continuous valve operation (1 and 4 are placed next to each other), 1.2.4.4,4・e・Total flow rate is 15
The valve full-open point is also set to 15 points.

その他、1.2.4.8.8・拳・全流量は23で、弁
全開点も23点とする。
In addition, 1.2.4.8.8・Fist・The total flow rate is 23, and the valve full open point is also 23 points.

第2図及び第3図に等比級数倍としたときの4弁式のノ
ズルの配分イ列を示し、第4図及び第5図にノズルが等
比級数倍のとき、5弁式のノズルの配分1列を示し、第
6図、第7図、第8図および第9図に6弁弐のノズル配
分例を示す。
Figures 2 and 3 show the nozzle distribution rows for a 4-valve type when the nozzle is multiplied by a geometric series, and Figures 4 and 5 show the nozzle distribution array for a 5-valve type when the nozzle is multiplied by a geometric series. Figures 6, 7, 8, and 9 show examples of nozzle distribution for two six valves.

発明の効果 本発明機構によると、原動機などへの流量の加減弁制御
において、全流量にわたって弁数よりもはるかに多くの
加減弁全開制御ができる。従って、全流量にわたって弁
の絞り損失を大幅に減らした流量の増減となる。このた
め、原動機の効率はそれだけ向上するし、他の流量増減
時に応用するときは、ラインの圧力損失を最少にするこ
とにより、タービン効率の向上、省エネ化に寄与するこ
とが出来、実験の結果では、流量によっても異るが、約
5%以上の効率上昇がある。
Effects of the Invention According to the mechanism of the present invention, in regulating valve control of flow rate to a prime mover, etc., it is possible to fully open control of a far greater number of regulating valves than the number of valves over the entire flow rate. Therefore, the flow rate increases or decreases with significantly reduced valve throttling losses over the entire flow rate. Therefore, the efficiency of the prime mover increases accordingly, and when applied to other flow rate increases and decreases, minimizing pressure loss in the line can contribute to improving turbine efficiency and saving energy. Although it varies depending on the flow rate, there is an efficiency increase of about 5% or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す系統図、第2図、第3図
は4弁弐のノズルの配分例を示す略図、第4図、第5図
は5弁式のノズルの配分例を示す略図、第6図、第7図
、第8図及び第9図は6弁式のノズルの配分例を各々示
す略図である。 A・・原動機と被5駆動機、B・・制御部、C・・流量
加減部と加減弁、5・・加減弁、lO・・タービン(原
動機)、15・・被1駆動機(発電機)。 s7図 第2図    113図 第4図   第5図 第6図    第7図 186図    w′9図
Fig. 1 is a system diagram showing an embodiment of the present invention, Figs. 2 and 3 are schematic diagrams showing an example of the distribution of 4-valve nozzles, and Figs. 4 and 5 are examples of the distribution of 5-valve nozzles. FIG. 6, FIG. 7, FIG. 8, and FIG. 9 are schematic diagrams each showing an example of distribution of six-valve nozzles. A... Prime mover and 5 driven machines, B... Control unit, C... Flow rate adjusting unit and regulating valve, 5... Adjusting valve, lO... Turbine (prime mover), 15... Driven machine 1 (generator) ). s7 figure 2 figure 113 figure 4 figure 5 figure 6 figure 7 figure 186 figure w'9 figure

Claims (1)

【特許請求の範囲】[Claims] 弁の大きさが等比級的に異なる弁を含み、流量を増減す
る複数の加減弁で構成される加減弁群と、全流量にわた
って前記加減弁の絞り損失を最少とする弁全開点を数多
くするために流量に応じて弁の組合せを変えて選定し、
次の組合せへ流量を変える制御装置とになる蒸気タービ
ン加減弁の流量増減機構。
A control valve group consisting of a plurality of control valves that increase or decrease the flow rate, including valves of geometrically different sizes, and a number of fully open points of the control valves that minimize the throttling loss of the control valves over the entire flow rate. To achieve this, we select different valve combinations depending on the flow rate.
The flow rate increase/decrease mechanism of the steam turbine regulator serves as a control device that changes the flow rate to the next combination.
JP26152885A 1985-11-22 1985-11-22 Flow rate adjusting mechanism for steam turbine governor Pending JPS62121806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26152885A JPS62121806A (en) 1985-11-22 1985-11-22 Flow rate adjusting mechanism for steam turbine governor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26152885A JPS62121806A (en) 1985-11-22 1985-11-22 Flow rate adjusting mechanism for steam turbine governor

Publications (1)

Publication Number Publication Date
JPS62121806A true JPS62121806A (en) 1987-06-03

Family

ID=17363148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26152885A Pending JPS62121806A (en) 1985-11-22 1985-11-22 Flow rate adjusting mechanism for steam turbine governor

Country Status (1)

Country Link
JP (1) JPS62121806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155579A1 (en) * 2013-03-27 2014-10-02 三菱重工コンプレッサ株式会社 Multi-valve-type steam valve and steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155579A1 (en) * 2013-03-27 2014-10-02 三菱重工コンプレッサ株式会社 Multi-valve-type steam valve and steam turbine
CN105074135A (en) * 2013-03-27 2015-11-18 三菱重工压缩机有限公司 Multi-valve-type steam valve and steam turbine
JPWO2014155579A1 (en) * 2013-03-27 2017-02-16 三菱重工コンプレッサ株式会社 Multi-valve steam valve and steam turbine
US10227898B2 (en) 2013-03-27 2019-03-12 Mitsubishi Heavy Industries Compressor Corporation Multi-valve steam valve and steam turbine

Similar Documents

Publication Publication Date Title
US4325670A (en) Method for admitting steam into a steam turbine
JPH0377365B2 (en)
ES2014754A6 (en) Method for reducing valve loops for improving stream turbine efficiency
JP2747543B2 (en) Method of operating a steam turbine device at low load level
JPS62121806A (en) Flow rate adjusting mechanism for steam turbine governor
US4847039A (en) Steam chest crossties for improved turbine operations
RU2211338C2 (en) Device for nozzle steam distribution in high-pressure cylinder of steam turbine
CN212272322U (en) Steam turbine regulating stage nozzle group structure and system thereof
JPH0364603A (en) Method and apparatus for charging steam turbine
US4903490A (en) Cam-driven valve system for steam turbines
JPH01247703A (en) Full arc injection steam turbine
JPS63186902A (en) Turbine control device
JPS5941307Y2 (en) Turbine speed control device
JP2601200Y2 (en) Steam turbine governor
US4714401A (en) Governing mode change-over apparatus
GB1429324A (en) Method employing valve management for operating a steam turbine
JPH09303109A (en) Mixed pressure turbine
SU567833A1 (en) Power unit output regulating method
JPH0553922B2 (en)
JPH0310117Y2 (en)
JPS62121805A (en) Internal pressure variable type turbine
JPH02286881A (en) Nozzle switching method for pelton hydraulic wheel
JPS62139906A (en) Geothermal turbine
SU1564397A1 (en) Method of smooth control of capacity of compressor stations of gas mains
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation