JPS62121355A - Ultrasonic image pickup device - Google Patents

Ultrasonic image pickup device

Info

Publication number
JPS62121355A
JPS62121355A JP60261797A JP26179785A JPS62121355A JP S62121355 A JPS62121355 A JP S62121355A JP 60261797 A JP60261797 A JP 60261797A JP 26179785 A JP26179785 A JP 26179785A JP S62121355 A JPS62121355 A JP S62121355A
Authority
JP
Japan
Prior art keywords
circuit
transducer
frequency
ultrasonic
transducer array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60261797A
Other languages
Japanese (ja)
Other versions
JPH0546224B2 (en
Inventor
Tomomasa Sato
知正 佐藤
Shigeru Igarashi
茂 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Keiki Inc
Original Assignee
Agency of Industrial Science and Technology
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokyo Keiki Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP60261797A priority Critical patent/JPS62121355A/en
Publication of JPS62121355A publication Critical patent/JPS62121355A/en
Publication of JPH0546224B2 publication Critical patent/JPH0546224B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To add and average the beam patterns of a reflected image and to eliminate the influence of noise by changing the frequency of the signal for driving oscillators for ultrasonic wave transmission in an oscillator array and obtaining the reflected ultrasonic image corresponding thereto. CONSTITUTION:A pulse generator 22, an oscillator selector 24 and an adder, etc. are provided. The generator 22 varies the circuit constant thereof automatically and generates the pulse signals of various frequencies. For example, the circuit 22 is constituted of a resonance circuit 22a consisting of R, L, C, a trigger circuit 22b, a circuit constant selector 22c, a high voltage supply circuit 22d, and a thyristor 22e. Several signals of different frequencies are generated by LC to determine the central frequency and RC to determine a time constant. More specifically, C is charged by the circuit 22 and the thyristor 22e is turned on by the circuit 22b to discharge the C so that the frequency corresponding to the circuit 22a is generated. Such frequency is selected 22c to generate the signals of different frequencies. The signals from the selector 24 are processed by an adder, etc., by which the reflected image corresponding thereto is obtd. and is averaged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波を対象物に照射してその反射像を得る
超音波撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultrasonic imaging device that irradiates an object with ultrasonic waves and obtains a reflected image thereof.

(従来技術) 従来、この種のa音波撮像装器としては第5図に示すよ
うな開口合成型超音波診断装置がある。
(Prior Art) Conventionally, as this type of a-sound imaging device, there is an aperture synthesis type ultrasonic diagnostic device as shown in FIG.

これは、人体等の対象物Xに対し超音波を送信すると共
に対象物Xからの反射超音波を受信する手段として、多
数(例えば64個)の振動子を配列して成る振動子アレ
イlを備えている。この振動子アレイl中の振動子は、
パルス発生器(パルサー)2で作られた所定周波数のパ
ルス信号が増幅器3および振動子切換器4を介して加え
られることで振動して超音波を発生する一方、超音波を
受けると電圧を発生する圧電素子で構成されている。ま
た、振動子切換器4は、振動子アレイl中の振動子を送
信または受信に順次切り換えるものである。
This uses a transducer array l consisting of a large number of transducers (for example, 64) as a means for transmitting ultrasonic waves to an object X such as a human body and receiving reflected ultrasonic waves from the object X. We are prepared. The oscillators in this oscillator array l are
A pulse signal of a predetermined frequency generated by a pulse generator (pulser) 2 is applied via an amplifier 3 and a transducer switcher 4 to vibrate and generate ultrasonic waves, while generating voltage when receiving ultrasonic waves. It is composed of piezoelectric elements. Further, the transducer switching device 4 sequentially switches the transducers in the transducer array l to transmission or reception.

本装置の作動時には、振動子アレイ1中の振動子から対
象物Xに向けて超音波を照射すると・共に対象物からの
反射超音波を同じ振動子で受信し、lラインのデータを
振動子切換器4から増幅器5およびアナログ/ディジタ
ル(A/D)変換器6を介してラインメモリ7に一時格
納した後、各振動子に対応したフレ′−ムメモリ8に貯
える。対象物Xの像は、振動子アレイ1中の振動子を順
次切換走査しながら全てのラインのデータをフレームメ
モリ8に貯え、その後演算部9にて像再生処理を行い、
ディジタルスキャンコンバータ10を介して1画面を表
示器11に表示することで観察される。
When this device is in operation, ultrasonic waves are emitted from the transducers in the transducer array 1 toward the object The data is temporarily stored in line memory 7 from switch 4 via amplifier 5 and analog/digital (A/D) converter 6, and then stored in frame memory 8 corresponding to each vibrator. The image of the object X is obtained by sequentially switching and scanning the transducers in the transducer array 1, storing the data of all lines in the frame memory 8, and then performing image reproduction processing in the arithmetic unit 9.
It is observed by displaying one screen on the display 11 via the digital scan converter 10.

(発明が解決しようとする問題点) しかしながら、このような従来の超音波撮像装置にあっ
ては、振動子アレイ中の開口面積の小さい振動子から対
象物に向けて超音波を照射するようにしているので、特
に生体中では照射エネルギが減少し、受信した超音波の
エネルギも小さくなる。そのため、受信信号はノイズの
影響を受は易く、特に送信周波数の近傍にはサイドロー
ブが発生するので、再生像のS/N比が低いという問題
があった。
(Problems to be Solved by the Invention) However, in such conventional ultrasonic imaging devices, ultrasonic waves are emitted toward the target object from the transducer with a small opening area in the transducer array. Therefore, the irradiation energy decreases, especially in the living body, and the energy of the received ultrasonic waves also decreases. Therefore, the received signal is easily affected by noise, and side lobes are generated particularly in the vicinity of the transmission frequency, so there is a problem that the S/N ratio of the reproduced image is low.

(問題点を解決するための手段) 本発明は、このような従来の問題点に鑑みてなされたも
ので、複数個の超音波送受信用振動子を配列して成る振
動子アレイと、該振動子アレイ中の振動子を順次切り換
えて超音波の送受信を行う切換手段と、該振動子アレイ
中の振動子で受信した超ン′を波から開口合成処理によ
り対象物の反射像を得る像+If生処理−L段とを備え
た超音波撮像装置において、振動子アレイ中の超音波送
信用振動子を駆動する信号の周波数を変化させ、それに
応じた超音波反射像を得て平均することにより、サイド
ローブのようなノイズの影響を除去し、再生像に上のな
S/N比がとれるようにしたものである。
(Means for Solving the Problems) The present invention has been made in view of such conventional problems, and includes a transducer array comprising a plurality of ultrasonic transmitting/receiving transducers arranged, and A switching means for transmitting and receiving ultrasonic waves by sequentially switching the transducers in the transducer array, and an image +If for obtaining a reflected image of the object by aperture synthesis processing from the ultrasonic waves received by the transducers in the transducer array. Raw processing - In an ultrasonic imaging device equipped with an L stage, by changing the frequency of the signal that drives the ultrasonic transmitting transducer in the transducer array, and obtaining and averaging the corresponding ultrasonic reflection images. , the effects of noise such as side lobes are removed, and a high S/N ratio can be obtained in the reproduced image.

(実施例) 以下、添付図面に示す本発明の実施例について説明する
(Embodiments) Hereinafter, embodiments of the present invention shown in the accompanying drawings will be described.

第1図(a)は本発明による超音波診断装置の構成を示
す図で、21は振動子アレイないし探触子であり、この
振動子アレイ中の振動子は、パルス発生器22で作られ
た可変周波数のパルス信号が増幅器23および振動子切
換器24を介して加えられることで振動してMi音波を
発生し、8丘波を受けると電圧を生ずる圧電素子で構成
されている。
FIG. 1(a) is a diagram showing the configuration of an ultrasonic diagnostic apparatus according to the present invention, and 21 is a transducer array or a probe, and the transducers in this transducer array are generated by a pulse generator 22. When a variable frequency pulse signal is applied via an amplifier 23 and a transducer switch 24, the piezoelectric element vibrates to generate Mi sound waves, and generates a voltage when receiving eight hill waves.

また、振動子切換器24は、後述の撮像手順に従って振
動子アレイ21中の振動子を送信素子または受信素子に
順次切り換える機能を有する。振動子切換器24の受信
部は、複数個の増幅器25および遅延回路26と、それ
らの出力を加算する加算器27と、A/D変換器28と
、ディジタルスキャンコンバータ29とを介して、表示
r630に接続されている。
Further, the transducer switching device 24 has a function of sequentially switching the transducers in the transducer array 21 into transmitting elements or receiving elements according to an imaging procedure described later. The receiving section of the transducer switch 24 outputs a display via a plurality of amplifiers 25 and delay circuits 26, an adder 27 that adds the outputs thereof, an A/D converter 28, and a digital scan converter 29. Connected to r630.

次に、本装置の撮像手順について説明する。Next, the imaging procedure of this device will be explained.

本発明によれば、撮像の際には対象物に対し周波数の異
なるいくつかの超音波信号を照射して、それに応じた映
像を得る。そのため、パルス発生器22は、その回路定
数(例えば時定数)を自動的に可変として各種の周波数
のパルス信号を発生するように構成される。これは、例
えば第1図(b)に示すように、R,L、Cによる共振
回路22aと、トリガ回路22bと、回路定数切換器2
2cと、高電圧供給回路22dと、サイリスタ22eと
で構成され、中心周波数を決めるLCと時定数を決める
RCにより、周波数の異なるいくつかの信号を発生する
。すなわち、高電圧供給回路22dによってCを充電し
、トリガ回路22bでサイリスタ22eをオンさせるこ
とによりCを放′屯させ、共振回路22aに応じた周波
数を発生する。これを回路定数切換器22cにより切り
換えることで、周波数の異なる信号を発生することがで
きる。
According to the present invention, when capturing an image, several ultrasound signals having different frequencies are irradiated onto the target object, and an image corresponding to the ultrasound signals is obtained. Therefore, the pulse generator 22 is configured to automatically vary its circuit constant (for example, time constant) to generate pulse signals of various frequencies. For example, as shown in FIG. 1(b), this includes a resonance circuit 22a made up of R, L, and C, a trigger circuit 22b, and a circuit constant switch 2.
2c, a high voltage supply circuit 22d, and a thyristor 22e, and generates several signals with different frequencies using LC that determines the center frequency and RC that determines the time constant. That is, C is charged by the high voltage supply circuit 22d, and C is released by turning on the thyristor 22e by the trigger circuit 22b, thereby generating a frequency corresponding to the resonance circuit 22a. By switching this using the circuit constant switch 22c, signals with different frequencies can be generated.

振動子アレイ?■の各振動子は、振動子すJ換器24に
より送信素子に順次切り換えられると共にパルス発生器
22から出力されるパルスイバ号で駆動され、その周波
数に応じた超音波を発生する。
Transducer array? Each of the transducers (2) is sequentially switched to a transmitting element by the transducer/J switch 24, and is driven by the pulse wave signal output from the pulse generator 22 to generate an ultrasonic wave according to the frequency.

また各振動子は、切換器24により受信素子に切り換え
られることで対象物Xからの反射超音波を受信し、その
受信信号を切換器24を介して後の演算処理部に送る。
Further, each transducer receives reflected ultrasound from the object X by being switched to a receiving element by the switch 24, and sends the received signal to a subsequent arithmetic processing unit via the switch 24.

このような振動子切換器24による送信素子または受信
素子への切換えは、第5図に示した従来例と同様に各振
動子毎の切換え走査によって行ってもよいが、この方式
では、各振動子毎のデータから合成処理を行うために演
算量が多く、演算速度の低下や演算処理部の複雑化を招
くという問題がある。そこで、第1図の実施例では、第
2因に示すように振動子アレイ21において隣接する比
較的少数(例えば5個)の振動子で送信素子群31を構
成し、それらの振動子から対象物に向けて収束超音波を
照射する一方、他の離散的に位置する振動子で送信素子
群31より開口面積の大きい受信素子群32を構成して
対象物からの反射超音波を受信し、それらの受信信号を
振動子切換器24から複数個の増幅器25を介して遅延
回路26および加算器27で処理するように、回路を構
成している。
Such switching to a transmitting element or a receiving element by the transducer switch 24 may be performed by switching and scanning for each transducer as in the conventional example shown in FIG. Since the synthesis process is performed from data for each child, the amount of calculation is large, resulting in problems such as a decrease in calculation speed and a complicated calculation processing unit. Therefore, in the embodiment shown in FIG. 1, as shown in the second factor, the transmitting element group 31 is composed of a relatively small number (for example, 5) of adjacent oscillators in the oscillator array 21, and from these oscillators, the target While emitting focused ultrasound toward an object, another discretely located transducer constitutes a receiving element group 32 having a larger aperture area than the transmitting element group 31 to receive reflected ultrasound from the object, The circuit is configured such that the received signals are processed from the transducer switch 24 through a plurality of amplifiers 25 and a delay circuit 26 and an adder 27.

以下、第1図(a)の実施例による超音波の送受信で対
象物Xの映像が得られることを説明する。
Hereinafter, it will be explained that an image of the object X can be obtained by transmitting and receiving ultrasonic waves according to the embodiment shown in FIG. 1(a).

まず第3図に示すように、振動子アレイ21に形成され
た送信素”子群31の中心を原点とし、アレイの送受信
面を(x 、 y)平面とする座標系を考える。図にお
いて振動子の幅を文、送信素子群31の振動子間隔をI
T、受信素子群32の振動子間隔をliF、送信素子群
31の開口長さをXTおよびYT、受信素子群32の開
口長さをXFおよびYkとすると、この実施例の場合1
r=l。
First, as shown in FIG. 3, consider a coordinate system in which the origin is the center of the transmitting element group 31 formed in the transducer array 21, and the transmitting and receiving surface of the array is the (x, y) plane. The width of the transducer is I, and the transducer spacing of the transmitting element group 31 is I.
T, the transducer spacing of the receiving element group 32 is liF, the aperture lengths of the transmitting element group 31 are XT and YT, and the aperture lengths of the receiving element group 32 are XF and Yk. In this example, 1
r=l.

XT <XF! 、YT=Y* であ6゜今、送信素子
群の1振動子の位置を 1’T = (XT 、 Vr 、 0)とすれば、送
信する超音波の時間領域および周波数領域は夫々次のよ
うに定められる。
XT <XF! , YT=Y* and 6° Now, if the position of one transducer in the transmitting element group is 1'T = (XT, Vr, 0), the time domain and frequency domain of the transmitted ultrasound are as follows, respectively. It is determined as follows.

5v(rr、t) S7 (1’7 、ω) ここで、ω1.ω2は夫々送信される超音波に含まれる
最小および最大の角周波数で、ω1=ω2でもよい、T
oは時間幅である。
5v (rr, t) S7 (1'7, ω) Here, ω1. ω2 are the minimum and maximum angular frequencies included in the transmitted ultrasound, respectively, and ω1 = ω2 may be T.
o is the time width.

次に、原点から距離 r= (x、y、z) の位置にある対象物の反射係数を、簡便のため周波数に
依存しないものとしてP (r)とし、受信素子群の1
振動子の位置を t’l = (X1e、 ’ltz * 0)とすれば
、受信される反射超音波は次のように表わされる。
Next, the reflection coefficient of an object located at a distance r = (x, y, z) from the origin is assumed to be frequency-independent for the sake of simplicity, and is assumed to be P (r), and 1 of the receiving element group is
If the position of the transducer is t'l = (X1e, 'ltz * 0), the received reflected ultrasound is expressed as follows.

SR(rI!、rv、t) =fP  (1’)ST(r7.  t−tc)dr 
   (3)S(< (rp 、 r7 、 (、))
=f  P  (r)ST  (r7  、  ω)e
xp(−jωtc)dr(Cは超音波の速度)は遅延時
間を示す。
SR(rI!, rv, t) = fP (1')ST(r7.t-tc)dr
(3) S(< (rp, r7, (,))
= f P (r)ST (r7, ω)e
xp(-jωtc)dr (C is the speed of the ultrasonic wave) indicates the delay time.

上記(3)、(4)式は1個の送信素子による超音波を
受信した場合であるから、送信素子群全体を考えると、 s*(rr、t’T、t) drdr7   (5) SR(t’12 、 t’7 、 (11)eexp(
−jωt() dr dr7   (6)ただし。
Equations (3) and (4) above are for the case where ultrasonic waves are received by one transmitting element, so considering the entire transmitting element group, s*(rr, t'T, t) drdr7 (5) SR (t'12, t'7, (11) eexp(
−jωt() dr dr7 (6) However.

A、=XT・YT  (送信素子群の開口面a)に記(
6)式を (2)式で除すると、対象物Xのホログラム
H(rr 、 r7 、ω)が求められ、これを逆フー
リエ変換すると、対象物Xと振動子アレイ21との間の
超音波の伝搬時間情報h (r2 。
A, = XT・YT (Aperture surface a of transmitting element group) is written (
By dividing equation (6) by equation (2), the hologram H (rr, r7, ω) of the object Propagation time information h (r2.

r7.t)が得られる。すなわち、 であるから、 A Cr1P、r71 L) dωdrdr7  (8) ここで、W=ω2−ω1は帯域幅である。r7. t) is obtained. That is, Because it is, A Cr1P, r71 L) dωdrdr7 (8) Here, W=ω2−ω1 is the bandwidth.

この超音波伝搬時間情報h (t”* 、rT* t)
に基づき、受信素子群32の各振動子に対して次のよう
な開口合成処理を施すことにより、対象物Xの3次元反
射率分布すなわち3次元再生像が得られる。すなわち、 ただし、 rr = (XI 、 YI 、 ZI )A2 =X
* −YP  (受信素子群の開口面積)この(8)式
は、第1図に示した装置の遅延回路26によるd延処理
と加算器27による合成処理を施すことで実現でき、l
ラインの超音波反射像を得る。
This ultrasonic propagation time information h (t”*, rT* t)
By performing the following aperture synthesis processing on each vibrator of the receiving element group 32 based on , a three-dimensional reflectance distribution, that is, a three-dimensional reconstructed image of the object X can be obtained. That is, where rr = (XI, YI, ZI)A2 =X
* -YP (Aperture area of receiving element group) This equation (8) can be realized by performing d delay processing by the delay circuit 26 and synthesis processing by the adder 27 of the device shown in FIG.
Obtain an ultrasound reflection image of the line.

そして、第2図に示したように隣接する振動子から成る
送信素子群31と離散的に位置する振動子−から成る受
信素子群32の両方について順次位置を走査することに
より、1フレームの超音波映像を得ることができる。
As shown in FIG. 2, by sequentially scanning the positions of both the transmitting element group 31 made up of adjacent transducers and the receiving element group 32 made up of discretely located transducers, You can get sound wave images.

以下、(9)式に基づいて再生像の解析を行う。Hereinafter, the reconstructed image will be analyzed based on equation (9).

まず、 (9)式に (8)式を代入すると、P  (
r)exp(j Φ)  dωdrdr7  dr2た
だし、 Φ=ω(tl  tc) =  (Irx  rt I+Ir* −rx  Il
 r−rt l  I ?”[−rll) (11)こ
こで、Z工#Z=αとおくと、フレネル近似により Vr   ’S’ Vr)           (12)α となる。
First, by substituting equation (8) into equation (9), we get P (
r) exp(j Φ) dωdrdr7 dr2 However, Φ=ω(tl tc) = (Irx rt I+Ir* −rx Il
r-rt l I? ”[-rll) (11) Here, if Z-work #Z=α, then Vr 'S' Vr) (12) α is obtained by Fresnel approximation.

従って、(12)式を(10)式に代入してωについて
持分を行うと、次式が得られる。
Therefore, by substituting equation (12) into equation (10) and calculating the equity for ω, the following equation is obtained.

1 (t”x ) = f P (r) exp(jΦ
1)φ−f  exp (jΦ2 1  drvT r
 T φ−1exp (jΦ3)dr* ARr F! *5inc(−(zI−z))dr   (13に こで、 5lnc (−(Z I   Z )  )上記(13
)式のrTによる積分項を計算すると、次のようになる
1 (t”x) = f P (r) exp(jΦ
1) φ−f exp (jΦ2 1 drvT r
T φ−1exp (jΦ3)dr* ARr F! *5inc (-(zI-z)) dr (13 days, 5lnc (-(Z I Z) ) above (13
) Calculating the integral term by rT in the equation results in the following.

ここで、 とおくと、(14)式は = 1sinc Cfl u) 愉[5ine (XT u> *m (,2TM) ]
m 5Inc (Y7 v)(17) となる。ただし、 (δはデルタ関数)であり、木はコンボリユーシヨン(
たたみ込み)を示す。
Here, if we set, equation (14) is = 1sinc Cflu u) yu[5ine (XT u> *m (,2TM) ]
m 5 Inc (Y7 v) (17). However, (δ is the delta function), and the tree is a convolution (
convolution).

従って、(17)式において変数Uを横軸にとった時の
送信素子群のビームパターンは、第4図(a)に示すよ
うになる。
Therefore, when the variable U is taken on the horizontal axis in equation (17), the beam pattern of the transmitting element group is as shown in FIG. 4(a).

同様に、(13)式のryによる積分項を計算すると、
次のようになる。
Similarly, when calculating the integral term by ry in equation (13), we get
It will look like this:

=立5ine (文U) * [5inc (XRu)零m(JL*u)]串5i
ne (Y2 v )            (19
)従って、(19)式において変数Uを横軸にとった時
の受信素子群のビームパターンは、第4図(b)に示す
ようになる。
= 5ine (text U) * [5inc (XRu) zero m (JL*u)] skewer 5i
ne (Y2 v ) (19
) Therefore, when the variable U is plotted on the horizontal axis in equation (19), the beam pattern of the receiving element group is as shown in FIG. 4(b).

上記の(+7)、 (19)式を(13)式に代入する
ことにより、再生像は 1 (rx ) = f P (r) expNΦ1)
・(見5inc (文u))2 ・ [5inc (XT u)*m (Jar  u)
]−[5inc (XRu) *m C1tz u)]
esinc(Y2O) ・5inc(Y2 υ) となる、従って、変数Uを横軸にとると、第4図(C)
に示すようなビームパターンが得られる。
By substituting the above (+7) and equation (19) into equation (13), the reconstructed image is 1 (rx) = f P (r) expNΦ1)
・(See5inc (文 u))2 ・[5inc (XT u)*m (Jar u)
]-[5inc (XRu) *m C1tz u)]
esinc(Y2O) ・5inc(Y2 υ) Therefore, if the variable U is plotted on the horizontal axis, Figure 4 (C)
A beam pattern as shown in is obtained.

第4図(a)、 (b)かられかるように、送信素子群
31および受信素子群32のビームパターンは、振動子
アレイ21の形状すなわち振動子幅(交)、振動子間隔
(立下、交k)、開口幅(X、、X、)と、振動子切換
器24による素子群の選定によって決定されるが、この
場合、受信素子群32を離散的に選定することで受信ビ
ームパターンにグレーティングローブが発生する。従っ
て、この影響を最小にするように送信素子群31の選定
を行うことが必要であり、そのためには、受信ビームパ
ターンのグレーティングローブピーク値に送信ビームパ
ターンのゼロクロスを重ね合わせるように、即ち1 /
 XT = 1 / l *となるように、振動子アレ
イの形状設計と素子群の選定を行えばよい、これにより
、第4図(e)のようにグレーティングローブが除去さ
れたビームパターンが得られる。
As can be seen from FIGS. 4(a) and 4(b), the beam patterns of the transmitting element group 31 and the receiving element group 32 are determined by the shape of the transducer array 21, that is, the transducer width (cross), the transducer spacing (falling , exchange k), aperture width (X, , grating lobes are generated. Therefore, it is necessary to select the transmitting element group 31 so as to minimize this influence, and to do so, it is necessary to select the transmitting element group 31 so that the zero crossing of the transmitting beam pattern is superimposed on the grating lobe peak value of the receiving beam pattern. /
All you need to do is design the shape of the transducer array and select the element group so that XT = 1 / l *. By doing this, a beam pattern with grating lobes removed as shown in Figure 4(e) can be obtained. .

以上、第1図の実施例について説明したが、本発明はこ
れに限られるものではない。例えば、第1図の実施例に
おける遅延回路26と加算器27のアナログ回路をA/
D変換器とディジタル演算回路に置き換え、このディジ
タル演算回路で遅延合成処理を行うようにしてもよい、
これにより、演算処理の精度を高めることができる。ま
た、本発明は診断装置に限らず、水中ソナー等の撮像装
置面に広く適用できるものである。
Although the embodiment shown in FIG. 1 has been described above, the present invention is not limited thereto. For example, the analog circuits of the delay circuit 26 and adder 27 in the embodiment of FIG.
It is also possible to replace it with a D converter and a digital arithmetic circuit, and perform delay synthesis processing with this digital arithmetic circuit.
This makes it possible to improve the precision of arithmetic processing. Further, the present invention is not limited to diagnostic devices, but can be widely applied to imaging devices such as underwater sonar.

(発明の効果) 以上のように、本発明によれば、複数個の超音波送受信
用振動子を配列して成る振動子アレイと、該振動子アレ
イ中の振動子を順次切り換えて超音波の送受信を行う切
換手段と、該振動子アレイ中の振動子で受信した超音波
から合成処理により対象物の反射像を得る合成処理手段
とを備えた超音波撮像装置において、振動子アレイ中の
超音波送信用振動子を駆動する信号の周波数を変化させ
、それに応じた超音波反射像を得るようにしたので、反
射像のビームパターンを加算平均することで、サイドロ
ーブのようなノイズの影響を除去し、再生像に十分なS
/N比をとることができるという効果が得られる。
(Effects of the Invention) As described above, according to the present invention, there is provided a transducer array formed by arranging a plurality of ultrasonic transmitting/receiving transducers, and a transducer array that sequentially switches the transducers in the transducer array to transmit ultrasonic waves. In an ultrasonic imaging apparatus equipped with a switching means for transmitting and receiving, and a synthesis processing means for obtaining a reflected image of an object through synthesis processing from ultrasonic waves received by the transducers in the transducer array, By changing the frequency of the signal that drives the sound wave transmitting transducer and obtaining ultrasound reflection images accordingly, we can eliminate the effects of noise such as side lobes by averaging the beam patterns of the reflection images. Remove and reproduce enough S.
/N ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第2図は振
動子走査の説明図、第3図は振動子アレイと対象物の座
標系を示す図、第4図は超音波ビームパターンを示す図
、第5図は従来例を示す図である。 1−−−一振動子アレイ、 2−一一一パルス発生器、 3−一一一増幅器、 4−一一一振動子切換器、 5−一一一増幅器、 6−−−−A / D変換器、 7−−−−ラインメモリ、 8−一一一フレームメモリ、 9−一一一演算部、 10−−−−ディジタルスキャンコンへ−夕、11−−
−一表示器、 21−−−一振動子アレイ、 22−−−−パルス発生器、 23−−−一増幅器、 24−−−一振動子切換器、 25−−−一増幅器、 26−−−−遅延回路、 27−−−−加算器、 28−−−−A / D変換器。 29−−−−ティジタルスキャンコンバータ。 30−−−一表示器、 31−−−一送信素子群、 32−−−−受イ、: 、H−f一群。 持前出願人     工:l技術院艮 等々カ 違工業
技術院長の指定代理人 佐藤孝平 工業技術院長の復代理人  弁理士 性向 進特訂出願
人     株式会社東京S1器代理人       
  ブr理士 Y[内 進第1図(bl (側ニ灸収司愛パルづ一回1合(22)のイ列)22a
只吸玉を昏 第2図
Fig. 1 is a diagram showing the configuration of an embodiment of the present invention, Fig. 2 is an explanatory diagram of transducer scanning, Fig. 3 is a diagram showing the transducer array and the coordinate system of the object, and Fig. 4 is an ultrasonic wave. A diagram showing a beam pattern, FIG. 5, is a diagram showing a conventional example. 1----1 transducer array, 2-111 pulse generator, 3-111 amplifier, 4-111 transducer switching device, 5-111 amplifier, 6----A/D Converter, 7---line memory, 8-111 frame memory, 9-111 arithmetic unit, 10---to digital scan controller, 11--
- one display, 21-- one transducer array, 22-- pulse generator, 23-- one amplifier, 24-- one transducer switch, 25-- one amplifier, 26-- --Delay circuit, 27---Adder, 28---A/D converter. 29 ---- Digital scan converter. 30---One display, 31---One transmitting element group, 32---Receiver: , one H-f group. Previous applicant: Designated agent of the Director of the Institute of Industrial Science and Technology Sub-agent of Kohei Sato, Director of the Institute of Industrial Science and Technology Patent attorney Susumu Special applicant: Tokyo S1ki Co., Ltd. Agent
Br Physician Y
Figure 2 of just sucking balls

Claims (1)

【特許請求の範囲】[Claims] 複数個の超音波送受信用振動子を配列して成る振動子ア
レイと、該振動子アレイ中の振動子を順次切り換えて超
音波の送受信を行う切換手段と、該振動子アレイ中の振
動子で受信した超音波から開口合成処理により対象物の
反射像を得る像再生処理手段とを備えた超音波撮像装置
において、前記振動子アレイ中の超音波送信用振動子を
駆動する信号の周波数を変化させ、それに応じた反射像
を得て平均するようにしたことを特徴とする超音波撮像
装置。
A transducer array comprising a plurality of ultrasonic transducer transducers arranged, a switching means for sequentially switching the transducers in the transducer array to transmit and receive ultrasonic waves, and a transducer in the transducer array. In an ultrasonic imaging device comprising an image reproduction processing means for obtaining a reflected image of a target object from received ultrasonic waves by aperture synthesis processing, the frequency of a signal for driving an ultrasonic transmission transducer in the transducer array is changed. 1. An ultrasonic imaging device characterized in that a reflected image is obtained and averaged accordingly.
JP60261797A 1985-11-21 1985-11-21 Ultrasonic image pickup device Granted JPS62121355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261797A JPS62121355A (en) 1985-11-21 1985-11-21 Ultrasonic image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261797A JPS62121355A (en) 1985-11-21 1985-11-21 Ultrasonic image pickup device

Publications (2)

Publication Number Publication Date
JPS62121355A true JPS62121355A (en) 1987-06-02
JPH0546224B2 JPH0546224B2 (en) 1993-07-13

Family

ID=17366846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261797A Granted JPS62121355A (en) 1985-11-21 1985-11-21 Ultrasonic image pickup device

Country Status (1)

Country Link
JP (1) JPS62121355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510512A (en) * 2006-11-24 2010-04-02 ビーピー シッピング リミテッド Shipboard underwater sonar system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125741A (en) * 1981-01-28 1982-08-05 Fujitsu Ltd Ultrasonic diagnostic apparatus
JPS5841348A (en) * 1981-09-04 1983-03-10 Fujitsu Ltd Ultrasonic wave probe
JPS59214437A (en) * 1983-05-19 1984-12-04 株式会社東芝 Ultrasonic diagnostic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125741A (en) * 1981-01-28 1982-08-05 Fujitsu Ltd Ultrasonic diagnostic apparatus
JPS5841348A (en) * 1981-09-04 1983-03-10 Fujitsu Ltd Ultrasonic wave probe
JPS59214437A (en) * 1983-05-19 1984-12-04 株式会社東芝 Ultrasonic diagnostic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510512A (en) * 2006-11-24 2010-04-02 ビーピー シッピング リミテッド Shipboard underwater sonar system

Also Published As

Publication number Publication date
JPH0546224B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
CN108778530B (en) Ultrasound imaging with sparse array probe
JP3862793B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JPH09313487A (en) Method and device for ultrasonic three-dimensional photographing
JP2007152127A (en) Ultrasonic imaging transducer array for synthetic aperture
JPH067350A (en) Ultrasonic imaging apparatus
JP2002306477A (en) Method and apparatus for transmitting and receiving ultrasonic waves, and method and apparatus for ultrasonic photographing using the same
JPH0614928A (en) Beam former
KR20080039446A (en) Ultrasound imaging system and method for flow imaging using real-time spatial compounding
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JP5513976B2 (en) Ultrasonic diagnostic equipment
JP5247330B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
JPS62121355A (en) Ultrasonic image pickup device
JP4071864B2 (en) Ultrasonic wave transmitter and ultrasonic imaging device
JPWO2019208767A1 (en) Ultrasonic system and control method of ultrasonic system
JPS62121356A (en) Ultrasonic image pickup device
JP2001238883A (en) Ultrasound diagnostic equipment
JPS62121353A (en) Ultrasonic image pickup device
JP3444546B2 (en) Ultrasound diagnostic equipment
JP2001037757A (en) Ultrasonic beam scanning method and device and ultrasonic image pickup device
JP2002301071A (en) Ultrasonic imaging method and apparatus
JP7313944B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JPS62121357A (en) Ultrasonic image pickup device
JPS58127185A (en) Ultrasonic wave receiving circuit
JPS62121354A (en) Ultrasonic image pickup device
KR20180097285A (en) The Ultrasonic Probe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term