JPS62119843A - Rotation anode x-ray generation device - Google Patents

Rotation anode x-ray generation device

Info

Publication number
JPS62119843A
JPS62119843A JP26024185A JP26024185A JPS62119843A JP S62119843 A JPS62119843 A JP S62119843A JP 26024185 A JP26024185 A JP 26024185A JP 26024185 A JP26024185 A JP 26024185A JP S62119843 A JPS62119843 A JP S62119843A
Authority
JP
Japan
Prior art keywords
coolant
anode
rotation
passage
rotating anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26024185A
Other languages
Japanese (ja)
Other versions
JPH0580782B2 (en
Inventor
Masaki Yamabe
山部 正樹
Yoshitaka Kitamura
北村 芳隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26024185A priority Critical patent/JPS62119843A/en
Publication of JPS62119843A publication Critical patent/JPS62119843A/en
Publication of JPH0580782B2 publication Critical patent/JPH0580782B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high speed rotation of the captioned rotation anode, by providing, injection and ejection passages for injecting and ejecting a coolant into a cooling passage provided in the rotation anode, in the direction where the inflow pressure hardly interfere the rotation of said anode. CONSTITUTION:In case of the captioned device, electron beams 15 are irradiated from an electron gun 8 to a rotation anode 1 with a coolant passage 10, and the generated X-ray therein is radiated through a transmission window 9. Besides, a coolant injection passage 22 and an ejection passage 23 intercommunicated to the coolant passage 10, are provided to a housing 21 supporting the rotation anode 1. In this case, the injection passage 22 is provided in the approximately tangential direction reversely to the rotating direction of the anode 1, while the ejection passage 23 is provided in the approximately tangential direction identically to the rotating direction thereof. Therefore, the inflow pressure of the coolant 17 is hardly allowed to interfere the rotation of the anode 1, thereby the coolant 17 is injected and ejected with no resistance so that it is possible to improve the performance of the captioned device in order that the coolant 17 is preferably contributed to obtain the high speed rotation of the anode 1.

Description

【発明の詳細な説明】 〔概要〕 回転陽極X線発生装置、時に回転陽極に内設した冷却路
に冷却剤を注入し排出させる構成において、 回転陽極を支持するハウジングに設けた冷却剤注入路の
冷却剤流れが、回転陽極の回転を妨げることなくスムー
ズに回転陽極に流入し、陽極白の冷却路を通過した冷却
剤が、スムーズに冷却剤排出路へ送出されるようにした
ことにより、装置の高性能化を実現したものである。
[Detailed Description of the Invention] [Summary] In a rotating anode X-ray generator, in which a coolant is injected into and discharged from a cooling path provided inside the rotating anode, the coolant injection path is provided in a housing that supports the rotating anode. The coolant flow smoothly flows into the rotating anode without interfering with the rotation of the rotating anode, and the coolant that has passed through the anode white cooling path is smoothly sent to the coolant discharge path. This achieves higher performance of the device.

〔産業上の利用分野〕[Industrial application field]

本発明は回転陽極X線発生装置、特に冷却剤の通路が内
設された回転陽極を具えた装置の改良に関する。
The present invention relates to an improvement in a rotating anode X-ray generating device, and more particularly to a device having a rotating anode with internal coolant passages.

高密度集積回路のパターニング技術において、数人〜数
10人の波長領域の軟X線によるパターン転写は、回折
および散乱の形容がきわめて小ざいことにより解像能力
が高く、微細且つ精密な転写手段として注目されており
、現在のところ最も実用的なX線発生装置として、電子
ビーム衝撃型が使用されている。中でも回転陽極を使用
した電子ビーム衝撃型は、陽極回転数の高速化による陽
極冷却効果の増大により入射電子ビームパワーを大きく
してX線出力を増大できる利点がある。
In patterning technology for high-density integrated circuits, pattern transfer using soft X-rays in the wavelength range of several to several tens of people has high resolution due to extremely small diffraction and scattering features, and is a fine and precise transfer method. The electron beam impact type is currently being used as the most practical X-ray generator. Among these, the electron beam bombardment type using a rotating anode has the advantage of increasing the incident electron beam power and increasing the X-ray output by increasing the anode cooling effect by increasing the anode rotation speed.

〔従来の技術〕[Conventional technology]

第2図は従来技術になる電子ビーム衝撃型X線転写装置
の要部を示す側断面図(イ)と、そのA−A断面図(I
])およびB−B断面図(ハ)である。
Figure 2 shows a side sectional view (A) showing the main parts of a prior art electron beam impact type X-ray transfer device and its AA sectional view (I).
]) and a BB sectional view (c).

第2図において、1は金属にてなる回転陽極、2は回転
陽極1の回転軸、3は回転陽極1を収容した真空室、4
ば回転陽極1を支持するハウジング、5は回転軸2を支
持する軸受、6は真空室3とハウジング4との間隙を気
密封止する真空シール、7は冷却剤シール、8は電子銃
、9はX線透過窓であり、回転陽極1と回転軸2の内部
を連通ずる冷却剤流通路10は、一端がハウジング4に
設けた環状の溝11に対向して開口し、他端がハウジン
グ4に設けた環状の溝12に対向して開口する。
In FIG. 2, 1 is a rotating anode made of metal, 2 is a rotating shaft of the rotating anode 1, 3 is a vacuum chamber housing the rotating anode 1, and 4 is a rotating anode made of metal.
5 is a housing that supports the rotating anode 1; 5 is a bearing that supports the rotating shaft 2; 6 is a vacuum seal that hermetically seals the gap between the vacuum chamber 3 and the housing 4; 7 is a coolant seal; 8 is an electron gun; is an X-ray transparent window, and a coolant flow passage 10 that communicates the inside of the rotating anode 1 and the rotating shaft 2 has one end opening facing an annular groove 11 provided in the housing 4, and the other end opening facing the annular groove 11 provided in the housing 4. The opening faces the annular groove 12 provided in the opening.

そして、溝11にはハウジング4に穿設した冷却剤注入
路13が連通し、溝12にはハウジング4に穿設した冷
却剤排出路14が連通している。
A coolant injection path 13 formed in the housing 4 communicates with the groove 11, and a coolant discharge path 14 formed in the housing 4 communicates with the groove 12.

かかる装置において、冷却剤注入路13を介し冷却剤1
7を冷却剤流通路10内に注入し、真空室3を所定の真
空度にして回転軸2を所定速度で回転させ、電子銃8か
ら発射させた電子ビーム15を回転陽極1の斜面に照射
する。すると、回転陽極1は電子ビーム15の照射され
た部分でX線16を発射し、X線16の一部はX線透過
窓9を透過し、真空室3の下方に配置した試料室(図示
せず)に出射する。
In such a device, the coolant 1 is supplied through the coolant injection path 13.
7 is injected into the coolant flow path 10, the vacuum chamber 3 is brought to a predetermined degree of vacuum, the rotating shaft 2 is rotated at a predetermined speed, and the slope of the rotating anode 1 is irradiated with an electron beam 15 emitted from the electron gun 8. do. Then, the rotating anode 1 emits X-rays 16 at the part irradiated by the electron beam 15, and a part of the X-rays 16 is transmitted through the X-ray transmission window 9, and is transmitted through the sample chamber (Fig. (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来装置において、回転陽極10回転速度は該陽極
の冷却効率に影響し、高速度回転が望まれる。そのため
、軸受5は旧来のボールベアリングに変えて、空気軸受
が使用されるようになった。
In the above-mentioned conventional apparatus, the rotation speed of the rotating anode 10 affects the cooling efficiency of the anode, and high-speed rotation is desired. Therefore, instead of the conventional ball bearing, an air bearing has been used as the bearing 5.

一方、従来の冷却剤注入路13および冷却剤排出路14
は、第2図(II+) 、 (71)に示す如く回転軸
2の半径方向に形成されていた。
On the other hand, the conventional coolant injection path 13 and coolant discharge path 14
was formed in the radial direction of the rotating shaft 2, as shown in FIG. 2 (II+) and (71).

従って、注入路13から注入した冷却剤17の圧力は、
回転軸2にブレーキを掛けるように作用すると共に、流
通路10から排出路14に送り込まれ゛る冷却剤17も
回転軸2の回転を妨げる抵抗となり、回転軸2の回転速
度が損なわれるという問題点があったO 〔問題点を解決するための手段〕 第1図は本発明の一実施例になる電子ビーム衝撃型X線
転写装置の要部を示す側断面図(イ)と、そのC−C断
面図(ロ)およびD−D断面図(ハ)である。
Therefore, the pressure of the coolant 17 injected from the injection path 13 is
The problem is that the coolant 17 that acts to apply a brake to the rotating shaft 2 and is also sent from the flow path 10 to the discharge path 14 acts as a resistance that prevents the rotation of the rotating shaft 2, thereby impairing the rotational speed of the rotating shaft 2. [Means for solving the problem] Figure 1 is a side cross-sectional view (A) showing the main parts of an electron beam impact type X-ray transfer device according to an embodiment of the present invention, and its C -C sectional view (b) and DD sectional view (c).

第2図と共通部分に同一符号を使用した第1図において
、ハウジング21は環状の溝24に連通ずる冷却剤注入
路22と、環状の溝25に連通ずる冷却剤排出路23を
設けてなる。
In FIG. 1, in which the same reference numerals are used for common parts as in FIG. .

上記問題点は第1図に示すように、回転陽極に電子ビー
ムを照射しx′!FAを発生させる回転陽極X線発生装
置において、 冷却路10の内股された回転陽極1を支持するハウジン
グ21が、 回転陽極1の回転方向と反対のほぼ接線方向に疎通し冷
却路10に冷却剤17を注入する注入路22と、回転陽
極1の回転方向と同一のほぼ接線方向に疎通し冷却路1
0から冷却剤17を排出する排出路23とを設けてなる
ことを特徴とする回転陽極X線発生装置により解決され
る。
The above problem can be solved by irradiating the rotating anode with an electron beam, as shown in Figure 1. In a rotary anode X-ray generator that generates FA, a housing 21 that supports the rotary anode 1 that is folded inside the cooling passage 10 communicates with the cooling passage 10 in a substantially tangential direction opposite to the rotational direction of the rotary anode 1 . An injection path 22 for injecting 17 and a cooling path 1 that communicates almost tangentially to the direction of rotation of the rotating anode 1
This problem is solved by a rotating anode X-ray generator characterized in that it is provided with a discharge passage 23 for discharging the coolant 17 from the rotary anode X-ray generator.

〔作用〕[Effect]

上記の手段によれば、冷却剤の注入圧力が回転軸の回転
方向に作用し、回転軸の回転を妨げることなく冷却剤を
回転陽極に流入させるため、流体抵抗が減少すると共に
、冷却路を通過し排出される冷却剤を排出路に送り込む
流体抵抗が減少するため、該回転軸は従来と同じ動力源
を使用し従来よりも高速化が実現できる。
According to the above means, the injection pressure of the coolant acts in the direction of rotation of the rotating shaft, allowing the coolant to flow into the rotating anode without interfering with the rotation of the rotating shaft, reducing fluid resistance and opening the cooling path. Since the fluid resistance that forces the coolant to pass through and be discharged into the discharge passage is reduced, the rotating shaft can use the same power source as the conventional one and achieve higher speed than the conventional one.

〔実施例〕〔Example〕

以下に、第1図を用いて本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、従来のハウジング4に相当するハウジ
ング21は、左端に真空室3を装着し、軸受5.真空シ
ール6、冷却剤シール7等を収容し、従来の溝11に相
当する溝24と、従来の溝12に相当する溝25と、従
来の冷却剤注入路13に相当する冷却剤注入路22と、
従来の冷却剤排出路14に相当する冷却剤排出路23を
設けてなる。
In FIG. 1, a housing 21, which corresponds to the conventional housing 4, has a vacuum chamber 3 attached to its left end, and a bearing 5. A groove 24 corresponding to the conventional groove 11, a groove 25 corresponding to the conventional groove 12, and a coolant injection passage 22 corresponding to the conventional coolant injection passage 13, which accommodate the vacuum seal 6, the coolant seal 7, etc. and,
A coolant discharge passage 23 corresponding to the conventional coolant discharge passage 14 is provided.

ただし、回転軸2(溝24)の接線方向に傾斜する冷却
剤注入路22の該傾斜は、冷却剤注入圧力が回転軸2の
回転方向に作用する方向、即ち第1図(Ll)に示すよ
うに回転軸2が右回転のとき、回転軸2の上方に形成さ
れた冷却剤注入路22の傾斜は右下がりであり、回転軸
2(溝25)の接線方向に傾斜する冷却剤排出路23の
該傾斜は、流出する冷却剤が低抵抗で流れ込む方向、即
ち第1図(ハ)に示すように回転軸2が右回転のとき、
回転軸2の上方に形成された冷却剤排出路23の傾斜は
右上がりになっている。
However, the inclination of the coolant injection path 22 that is inclined in the tangential direction of the rotating shaft 2 (groove 24) is the direction in which the coolant injection pressure acts in the rotational direction of the rotating shaft 2, that is, as shown in FIG. 1 (Ll). When the rotating shaft 2 rotates to the right as shown in FIG. 23 is the direction in which the outflowing coolant flows with low resistance, that is, when the rotating shaft 2 is rotating clockwise as shown in FIG. 1 (c),
The coolant discharge path 23 formed above the rotating shaft 2 has an upward slope to the right.

かかる装置は、冷却剤注入路22および冷却剤排出路2
3に冷却剤17を流し、回転軸2を回転させると共に、
電子銃8から発射した電子ビーム15を回転陽極1に照
射すると、回転陽極1はX線16を発射する。
Such a device includes a coolant injection path 22 and a coolant discharge path 2.
3, and while rotating the rotating shaft 2,
When the rotating anode 1 is irradiated with an electron beam 15 emitted from the electron gun 8, the rotating anode 1 emits X-rays 16.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷却剤の流入圧力
が回転軸の回転を妨げることなく、冷却剤が回転陽極に
低抵抗で流入し、該回転軸から流出する冷却剤が低抵抗
で流出するようになるため、回転軸の高速化に冷却剤が
寄与し、回転陽極X線発生装置の性能を向上し得た効果
がある。
As explained above, according to the present invention, the inflow pressure of the coolant does not interfere with the rotation of the rotating shaft, the coolant flows into the rotating anode with low resistance, and the coolant flowing out from the rotating shaft has low resistance. Since the coolant flows out, the coolant contributes to increasing the speed of the rotating shaft, which has the effect of improving the performance of the rotating anode X-ray generator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる電子ビーム衝撃型X線
転写装置の要部を示す側断面図(イ)とそのC−C断面
図(II)およびD−D断面図(ハ)、 第2図は従来技術になる電子ビーム衝撃型X線転写装置
の要部を示す側断面図(イ)とそのA−A断面図(0)
およびB−B断面図(ハ) 、 である。 図中において、 1は回転陽極、 15は電子ビーム、 16はX線、 10は冷却路、 21はハウジング、 17は冷却剤、 22は冷却剤注入路、 23は冷却剤排出路、 である。
FIG. 1 is a side sectional view (A) showing the main parts of an electron beam impact type X-ray transfer device according to an embodiment of the present invention, and its CC sectional view (II) and D-D sectional view (C). , Figure 2 is a side sectional view (A) showing the main parts of a conventional electron beam impact type X-ray transfer device and its A-A sectional view (0).
and BB sectional view (c). In the figure, 1 is a rotating anode, 15 is an electron beam, 16 is an X-ray, 10 is a cooling path, 21 is a housing, 17 is a coolant, 22 is a coolant injection path, and 23 is a coolant discharge path.

Claims (1)

【特許請求の範囲】 回転陽極に電子ビームを照射しX線を発生させる回転陽
極X線発生装置において、 冷却路(10)の内設された該回転陽極(1)を支持す
るハウジング(21)が、 該回転陽極(1)の回転方向と反対のほぼ接線方向に疎
通し該冷却路(10)に冷却剤(17)を注入する注入
路(22)と、 該回転陽極(1)の回転方向と同一のほぼ接線方向に疎
通し該冷却路(10)から該冷却剤(17)を排出する
排出路(23)とを設けてなることを特徴とする回転陽
極X線発生装置。
[Claims] In a rotating anode X-ray generator that generates X-rays by irradiating a rotating anode with an electron beam, the housing (21) supports the rotating anode (1) and has a cooling path (10) therein. an injection path (22) that communicates in a substantially tangential direction opposite to the rotation direction of the rotating anode (1) and injects the coolant (17) into the cooling path (10); A rotating anode X-ray generator characterized in that a discharge passage (23) is provided which communicates in substantially the same tangential direction as the direction and discharges the coolant (17) from the cooling passage (10).
JP26024185A 1985-11-20 1985-11-20 Rotation anode x-ray generation device Granted JPS62119843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26024185A JPS62119843A (en) 1985-11-20 1985-11-20 Rotation anode x-ray generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26024185A JPS62119843A (en) 1985-11-20 1985-11-20 Rotation anode x-ray generation device

Publications (2)

Publication Number Publication Date
JPS62119843A true JPS62119843A (en) 1987-06-01
JPH0580782B2 JPH0580782B2 (en) 1993-11-10

Family

ID=17345312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26024185A Granted JPS62119843A (en) 1985-11-20 1985-11-20 Rotation anode x-ray generation device

Country Status (1)

Country Link
JP (1) JPS62119843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459743A (en) * 1987-08-29 1989-03-07 Mc Science Kk X-ray device of rotary anticathode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107264U (en) * 1975-02-25 1976-08-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107264U (en) * 1975-02-25 1976-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459743A (en) * 1987-08-29 1989-03-07 Mc Science Kk X-ray device of rotary anticathode

Also Published As

Publication number Publication date
JPH0580782B2 (en) 1993-11-10

Similar Documents

Publication Publication Date Title
US4622687A (en) Liquid cooled anode x-ray tubes
US4692934A (en) X-ray lithography system
JPH10300900A (en) Rotary target driven by flow of cooling fluid for medical linear accelerator and strong beam linear accelerator, device using it and target cooling method
KR860003625A (en) Filtration device used with X-ray source
JPS6086741A (en) High vacuum rotary anode x-ray tube
JPS5275996A (en) X-ray tube for analysis
JPS62119843A (en) Rotation anode x-ray generation device
EP0118955A3 (en) High power x-ray source with improved anode cooling
FR2501509A1 (en) RADIOGRAPHING DEVICE USING THE ACCELERATOR OF PARTICLES CHARGED WITH A RADIOTHERAPY APPARATUS AND RADIOTHERAPY APPARATUS PROVIDED WITH SUCH A DEVICE
US5519738A (en) Transmission type slow positron beam generating device
US4637042A (en) X-ray tube target having electron pervious coating of heat absorbent material on X-ray emissive surface
US4618972A (en) X-ray source comprising double-angle conical target
JPH0439221B2 (en)
AU700283B2 (en) Neutron beam generator
JPS58212045A (en) Cylindrical twin cathodes for x-ray generator
US3886366A (en) Compton back-scattered radiation source
JP2007503703A (en) X-ray fluorescence source
EP0030453A1 (en) Rotating anode-type X-ray tube and method of generating an X-ray beam
US6904128B2 (en) Device for cooling surface that rotates about a rotation axis and that faces the rotation axis
JP2946378B2 (en) Slow positron beam generator
JP3141343B2 (en) Slow positron beam generator
JPS6266545A (en) Rotary anode x-ray generator
JP4260993B2 (en) X-ray tube
JPH0418420B2 (en)
JPH04138645A (en) X-ray tube