JPS62119377A - Operation controller for ice machine - Google Patents

Operation controller for ice machine

Info

Publication number
JPS62119377A
JPS62119377A JP25902885A JP25902885A JPS62119377A JP S62119377 A JPS62119377 A JP S62119377A JP 25902885 A JP25902885 A JP 25902885A JP 25902885 A JP25902885 A JP 25902885A JP S62119377 A JPS62119377 A JP S62119377A
Authority
JP
Japan
Prior art keywords
ice
making
water
temperature sensor
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25902885A
Other languages
Japanese (ja)
Other versions
JP2771531B2 (en
Inventor
飯塚 良三
柿沼 盈
重夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60259028A priority Critical patent/JP2771531B2/en
Publication of JPS62119377A publication Critical patent/JPS62119377A/en
Application granted granted Critical
Publication of JP2771531B2 publication Critical patent/JP2771531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、板体にそって製氷用水を流下させ、前記板体
の表面に氷を形成する製氷機の運転制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an operation control device for an ice making machine that causes ice making water to flow down along a plate to form ice on the surface of the plate.

(ロ)従来の技術 例えば特公昭58−17391号公報には製氷室の氷結
部内に熱電対の接点を配置し、前記製氷室に生成する氷
の温度変化に対応して発生する前記熱電対の起電力が一
定値に達した際、該熱電対が接続された差動増幅回路に
一定の出力電圧を生じさせ、この出力電圧によりリレー
を付勢してホットガス弁を開放し、除氷な行うよう構成
する自動電子製氷制御装置が開示されている。
(b) Conventional technology For example, in Japanese Patent Publication No. 58-17391, a contact point of a thermocouple is arranged in the freezing part of the ice-making compartment, and the contact point of the thermocouple that occurs in response to the temperature change of the ice formed in the ice-making compartment is When the electromotive force reaches a certain value, a certain output voltage is generated in the differential amplifier circuit connected to the thermocouple, and this output voltage energizes the relay to open the hot gas valve and perform deicing. An automatic electronic ice making control device is disclosed that is configured to perform the following steps.

p→ 発明が解決しようとする問題点 上記従来の技術において、製氷部内に成長した氷と熱電
対との接触により、氷の成長を検知することはできるが
、製氷運転終了後の除霜操作により製氷室より氷が落下
して除氷が完了したとき、この除氷完了を検出する適当
な検出装置を熱電対の他に設けなければならないという
問題点が発生していた。本発明は前記問題点を解決する
ことを目的とする。
p→ Problems to be Solved by the Invention In the above-mentioned conventional technology, the growth of ice can be detected by the contact between the ice that has grown in the ice-making section and the thermocouple; When ice falls from the ice making room and deicing is completed, a problem arises in that, in addition to the thermocouple, an appropriate detection device must be provided to detect the completion of deicing. The present invention aims to solve the above problems.

に)問題点を解決するための手段 本発明は上記問題点を解決するために、表面にそって製
氷用水が流されて該表面に氷か形成される板体と間隔を
存して設けられ、前記氷の表面を流れるml記喪氷用水
を検知して信号を出力するセッサと、該センサから前記
信号を入力して動作して製氷噴出信号を出力する氷検出
回路とを備えた製氷機の運転制御装置において、前記氷
検出回路から製氷検出信号の発生に基づいてさらに前記
氷を成長させて前記センサに接触させるために十分な時
間遅延させて製氷運転を停止させるための信号を出力す
る遅延タイマ回路を備えた製氷機の運転制御装置を提供
するものである。
B) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a plate body that is spaced apart from the plate body on which ice-making water is flowed along the surface to form ice on the surface. , an ice making machine comprising: a processor that detects ml of ice-water flowing on the surface of the ice and outputs a signal; and an ice detection circuit that operates upon receiving the signal from the sensor and outputs an ice-making spouting signal. In the operation control device, based on the generation of the ice-making detection signal from the ice detection circuit, a signal is output for stopping the ice-making operation after delaying the ice for a sufficient time to further grow the ice and bring it into contact with the sensor. The present invention provides an operation control device for an ice maker equipped with a delay timer circuit.

(川 作用 製氷運転により板体の表面に次第に氷が形成され、この
氷の表面を流れる水にセンサが接触して信号を出力し、
氷検出回路が製氷検出信号を出力して、遅延タイマ回路
の動作により遅延してから製氷運転は停止され、この遅
延の間に前記板体の氷はさらに成長して前記センナに密
着する。
(During the ice-making operation, ice gradually forms on the surface of the plate, and the sensor comes into contact with the water flowing on the surface of the ice and outputs a signal.
The ice detection circuit outputs an ice making detection signal, and after a delay due to the operation of the delay timer circuit, the ice making operation is stopped, and during this delay, the ice on the plate further grows and adheres to the senna.

(へ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第3図は本発明に係る製氷機の概略縦断面図で、+11
、(1)は間隔を存して略平行に設けられた板体で、例
えばステンレスで構成されている。又、(2)は板体(
1)、(1)の上部に設けられた製氷運転用の散水パイ
プ、(P)は給水パイプで、この給水パイプ(P)の一
端は水道管(図示せず)に接続され、他端は散水パイプ
(P、)に連続し、給水パイプ(P)Kは水道水の給水
を制御する電磁弁+41)が設けられている。さらに、
(3)は板(1)、(1)の下方に設けられた貯水タン
クで、(3P)はオーバーフローパイプである。ここで
、板体(1)、(1)は左右上下の方向に適当間隔を存
して設けた複数個の製氷核(4)、(4)・・・を含ん
でいる。そして、これら製氷核(4)、(4)・・・は
例えば銅等の熱伝導のよい金属にスズメッキしたもので
ある。
FIG. 3 is a schematic longitudinal cross-sectional view of the ice maker according to the present invention, and shows +11
, (1) are plates provided substantially parallel to each other with an interval, and are made of stainless steel, for example. Also, (2) is a plate (
1), the sprinkler pipe for ice making operation installed on the top of (1), (P) is a water supply pipe, one end of this water supply pipe (P) is connected to a water pipe (not shown), and the other end is connected to a water pipe (not shown). Continuing from the sprinkler pipe (P, ), the water supply pipe (P)K is provided with a solenoid valve +41) for controlling the supply of tap water. moreover,
(3) is a water storage tank provided below the plates (1) and (1), and (3P) is an overflow pipe. Here, the plates (1), (1) include a plurality of ice-making nuclei (4), (4), etc. provided at appropriate intervals in the horizontal, vertical, and vertical directions. These ice-making cores (4), (4), etc. are made of a metal with good thermal conductivity, such as copper, plated with tin.

さらに、相対向した製氷核(4)、(4)の間には冷凍
装置を構成する蒸発管(5)、(5)が熱伝導的に伝持
されている。ここで、冷凍装置は第6図に示したように
電動田縮機(2e、送風機(41)によって強制空冷さ
れる凝縮器(42、減圧装置としての膨張弁+43)、
蒸発管(5)を環状に接続して構成される。又、(6)
は貯水タンク(3)と散水パイプ(2)どの間にわたさ
れた送水管で、この送水管には送水ポンプ(力が設けら
れている。さらに(S)はサーミスタ等の温度センサで
、この温度センサは板体(11と間隔を存し製氷核(4
)と相対向して設けられている。
Further, evaporation tubes (5), (5) constituting a refrigeration device are thermally conductively transferred between the opposing ice-making nuclei (4), (4). Here, as shown in FIG. 6, the refrigeration system includes an electric compressor (2e), a condenser (42, an expansion valve +43 as a pressure reducing device) that is forcedly air-cooled by a blower (41),
It is constructed by connecting evaporation tubes (5) in an annular manner. Also, (6)
is a water pipe that runs between the water storage tank (3) and the sprinkler pipe (2), and this water pipe is equipped with a water pump (power).Furthermore, (S) is a temperature sensor such as a thermistor, and this water pipe is equipped with a water pump (powered). The temperature sensor has a plate (11) and an interval between the ice making core (4).
).

さらに、第1図は製氷機の概略運転回路のブロック図を
示し、(8)は温度センナ(S)に接続された氷検出回
路、(9)は遅延タイマ回路で、この遅延タイマ回路は
、氷検出回路(8)から製氷検出信号を入力してからさ
らに氷が成長して温度センサ(S)に接触するのに十分
な時間製氷運転を@続させるだめの回路である。又、1
01は遅延タイマ回路(9)から製氷完了信号を入力す
る出力回路で、この出力回路の出力に基づいて製氷運転
が制御される。
Furthermore, FIG. 1 shows a block diagram of the general operation circuit of the ice maker, in which (8) is an ice detection circuit connected to a temperature sensor (S), and (9) is a delay timer circuit. This circuit is designed to continue the ice making operation for a time sufficient for the ice to grow and contact the temperature sensor (S) after receiving the ice making detection signal from the ice detecting circuit (8). Also, 1
Reference numeral 01 denotes an output circuit that receives an ice-making completion signal from the delay timer circuit (9), and the ice-making operation is controlled based on the output of this output circuit.

上記第1図のブロック図において、製氷運転により氷が
次第に成長して、氷の表面を流れる略0°Cの水が温度
センサ(SIK接触し、温度センサ(S)の端子電圧が
上昇すると氷検出回路(8)は動作して製氷検出信号を
遅延タイマ回路(9)へ出力するっここで、@4己製氷
機の概略運転1司路は例えば外気温度が高(凝縮温度が
高いために製氷能力が低いとぎでも、安定て動作するよ
うに構成しである。このため、遅延タイマ回路(9)は
製氷検出信号を人力してから動作し、さらに氷が成長し
て温度センサ(S)に接触するのに十分な時間例えば2
分経過してから製氷完了信号を出力回路00)へ出力す
るよって動作する。出力回路00)は製氷完了信号を入
力して動作して製氷運転停止信号を出力し、それに基づ
いて圧縮機(至)及び送水ポンプ(7)が停止すること
により、蒸発管(5)への冷媒循環及び散水パイプ(2
)からの水の散水は停止し、製氷運転は停止される。
In the block diagram shown in Figure 1 above, ice gradually grows during ice-making operation, water at approximately 0°C flowing on the surface of the ice comes into contact with the temperature sensor (SIK), and when the terminal voltage of the temperature sensor (S) increases, the ice grows. The detection circuit (8) operates and outputs an ice-making detection signal to the delay timer circuit (9). It is configured to operate stably even when the ice making capacity is low.For this reason, the delay timer circuit (9) operates after inputting the ice making detection signal manually, and as the ice grows, the temperature sensor (S) for a sufficient period of time, e.g. 2
It operates by outputting an ice making completion signal to the output circuit 00) after a minute has elapsed. Output circuit 00) operates upon receiving the ice-making completion signal and outputs an ice-making operation stop signal.Based on this, the compressor (to) and water pump (7) are stopped, thereby stopping the supply to the evaporator pipe (5). Refrigerant circulation and watering pipes (2
) and the ice-making operation is stopped.

又、第2図は製氷機の運転制御回路で、第1図と同符号
のものは同様なものとする。
Further, FIG. 2 shows an operation control circuit for the ice maker, and the same reference numerals as in FIG. 1 are the same.

第2図の05は温度センサ(Slに直列接続された定電
流ダイオード、氷検出回路(8)の(16)は第1増幅
器、0ηはヒステリジスコンパレータである第1比e5
で、温度セッサ(S)の端子電圧は第1抵抗(R8)を
介して第1増幅器0111のマイナス入力端子に入力さ
れると共に、第2抵抗(R2)と第1コンデンサ(C1
)とを介して第1増幅器(I61のグラス入力端子に入
力され、さらに第1比較器0hのマイナス入力端子に入
力される。又、(R5)は第1増幅器(161の帰還回
路を構成する第3抵抗、(R4)は第4抵抗、(R2)
は第1比較器(171の帰還回路を構成する第5抵抗で
ある。■は遅延タイマ回路(9)の第2増幅器で、第1
比較器Uηの出力端子は第1ダイオード(DI)を介し
て第2増幅器(2)のマイナス入力端子に接続されてい
る。又、(Ro)、(R1)は第2増幅器■のマイナス
入力端子の基準入力電圧を決める第6、第7抵抗、(R
8)は抵抗(R,)と直列接続された第8抵抗で、抵抗
(R,)と第8抵抗(R8)との中点は第2増幅器α男
のプラス入力端子に接続されている。さらに、(R8)
は第2増幅器四の帰還回路を構成する第9抵抗、(D2
)と(R+o)は夫々第2ダイオードと第10抵抗、(
D、)と(Rn)は夫々第3ダイオードと第11抵抗、
(C2)は第2コンデンサである。
05 in Figure 2 is a temperature sensor (constant current diode connected in series with Sl, (16) of the ice detection circuit (8) is the first amplifier, 0η is a hysteresis comparator, and the first ratio e5
The terminal voltage of the temperature sensor (S) is input to the negative input terminal of the first amplifier 0111 via the first resistor (R8), and is also input to the second resistor (R2) and the first capacitor (C1).
) is input to the glass input terminal of the first amplifier (I61, and further input to the negative input terminal of the first comparator 0h.) Also, (R5) constitutes the feedback circuit of the first amplifier (161). The third resistor, (R4) is the fourth resistor, (R2)
is the fifth resistor that constitutes the feedback circuit of the first comparator (171).■ is the second amplifier of the delay timer circuit (9);
The output terminal of the comparator Uη is connected to the negative input terminal of the second amplifier (2) via the first diode (DI). Furthermore, (Ro) and (R1) are the sixth and seventh resistors, (R
8) is an eighth resistor connected in series with the resistor (R,), and the midpoint between the resistor (R,) and the eighth resistor (R8) is connected to the positive input terminal of the second amplifier α male. Furthermore, (R8)
is the ninth resistor (D2) that constitutes the feedback circuit of the second amplifier 4;
) and (R+o) are the second diode and the tenth resistor, respectively (
D, ) and (Rn) are the third diode and the eleventh resistor, respectively.
(C2) is a second capacitor.

又、Qυは第2比較器で、上記第2ダイオード(D2)
は第2増幅器■の出力端子から第2比較器(2+)のマ
イナス入力端子への方向が順方向になるように接続され
、第3ダイオード(D、)は第2比較器営υのマイナス
入力端子から第2増幅器(2)への方向が順方向になる
ように接続されている。又、(R+t)と(R18)は
夫々第2比較器飢のプラス入力端子の基準入力電圧を決
める第12抵抗と第13抵抗、(RI4)は・帰還回路
を構成する第14抵抗である。
Also, Qυ is a second comparator, and the second diode (D2)
is connected so that the direction from the output terminal of the second amplifier ■ to the negative input terminal of the second comparator (2+) is the forward direction, and the third diode (D,) is connected to the negative input terminal of the second comparator υ. The connection is such that the direction from the terminal to the second amplifier (2) is the forward direction. Further, (R+t) and (R18) are the 12th and 13th resistors that respectively determine the reference input voltage of the positive input terminal of the second comparator, and (RI4) is the 14th resistor that constitutes the feedback circuit.

さらK(RI5)は出力回路00)の第15抵抗、(T
R)は第2比較器シ1)の出力端子が第15抵抗(R1
、)を介してペースに接続されたトランジスタ、(RC
)はリレー(旬のリレーコイルで、リレーコイル(RC
)はトランジスタ(TR)Kより通電が制御される。又
、(D4)は第4ダイオードである。
Furthermore, K (RI5) is the 15th resistor of the output circuit 00), (T
R), the output terminal of the second comparator S1) is connected to the 15th resistor (R1).
, ) connected to the pace through a transistor, (RC
) is a relay (a popular relay coil, a relay coil (RC
) is controlled to be energized by a transistor (TR) K. Further, (D4) is a fourth diode.

田は圧縮機α1及び送水ポンプ(7)への通電を制御す
る通電制御回路で、(5)は交流′電源、(R8)はリ
レー(R)のリレースイッチ、弼は始tvJ装置である
1 is an energization control circuit that controls energization to the compressor α1 and water pump (7), (5) is an AC power source, (R8) is a relay switch for a relay (R), and 2 is a TVJ device.

以下、上記運転制御回路の動作について説明する。例え
ば製氷機の使用者がその日鯖めて製氷機を使用するため
に電源を投入したときには、定電流ダイオード西を介し
て温度センサ(Slは通電され次第に温度は上昇する。
The operation of the operation control circuit will be explained below. For example, when an ice maker user turns on the power to use the ice maker for the day, the temperature sensor (Sl) is energized via the constant current diode, and the temperature gradually rises.

又、第1コンデンサ(C1)は第2抵抗(R2)を介し
て次第に充′亀され、第1増幅器(16)のマイナス入
力端子の電圧(以下マイナス側人力′戒圧という)はプ
ラス入力端子の電圧(以下プラス側入力電圧という)よ
り高く、第1増幅器(161の出力は低い。又、第1比
較器0hのマイナス側入力電圧は温度センサ(S)の端
子電圧と等しくプラス側入力電圧より高く、第1比較器
(1′Dはローレベル信号(以下Lレベル信号という)
を出力する。このため、第2増幅器四の出力′電圧は高
く、第2比較器c!DはLレベル信号を出力する。この
Lレベル信号によりトランジスタ(TI’()はオフ状
態を継続して、リレーコイル(RC)は非通電で、リレ
ースイッチ(R8)はオフなため、送水ポンプ(力及び
圧縮機COは運転を開始しない。以後第1コンデンサ(
C1)の充電電圧は次第に高くなる、又、温度センサ(
Slは次第Vc温度上昇してその端子電圧は次第に低下
するため、例えば電源を投入してから略10秒経過して
第1コンデンサ(C1)の充電電圧よりも温度センサ(
S)の端子電圧が低くなると、第1コンデンサ(C1)
は放電を開始する。
Also, the first capacitor (C1) is gradually charged through the second resistor (R2), and the voltage at the negative input terminal (hereinafter referred to as negative input voltage) of the first amplifier (16) is the voltage at the positive input terminal. (hereinafter referred to as the positive input voltage), and the output of the first amplifier (161) is low. Also, the negative input voltage of the first comparator 0h is equal to the terminal voltage of the temperature sensor (S), and the positive input voltage higher, the first comparator (1'D is a low level signal (hereinafter referred to as L level signal)
Output. Therefore, the output 'voltage of the second amplifier 4 is high and the second comparator c! D outputs an L level signal. Due to this L level signal, the transistor (TI'()) continues to be off, the relay coil (RC) is de-energized, and the relay switch (R8) is off, so the water pump (power and compressor CO) is not operated. It does not start.After that, the first capacitor (
The charging voltage of C1) gradually increases, and the temperature sensor (
As the Vc temperature of Sl gradually increases and its terminal voltage gradually decreases, for example, approximately 10 seconds after the power is turned on, the temperature sensor (
When the terminal voltage of S) becomes low, the first capacitor (C1)
starts discharging.

その後も第1増幅器tt61のマイナス側入力電圧は温
度センサ(S)の端子電圧の低・下と共に低下するため
、プラス側入力電圧より低くなり第1増幅器u61の出
力電圧は上昇する。そして、第1増幅器(161の出力
電圧と第1比較器(1′Dのマイナス側入力覗圧との差
が所定値以上になると、第1比戦器(17+は]・イレ
ベル信号(以下Hレベル信号という)と出力する。そし
て、第2増幅器■の出力′電圧は低くなり、第2比較器
Cυのプラス側入力電圧はマイナス側入力電圧より高く
なり、第2比較器QυはI−Iレベル信号を出力してト
ランジスタ(TR)はオンする。トランジスタ(TR)
のオンによりリレースイッチ(R8)もオンして送水ポ
ンプ(7)及び圧縮機印は運転を1ボ始する。このため
、製氷機の蒸発管(5)には冷媒が流れ、又、散水ポン
プ(2)から製氷用水が流れ、製氷核(4)、(4)・
・・を中心に氷が次第に形成される。
After that, the negative input voltage of the first amplifier tt61 decreases as the terminal voltage of the temperature sensor (S) decreases, so it becomes lower than the positive input voltage, and the output voltage of the first amplifier u61 increases. When the difference between the output voltage of the first amplifier (161) and the negative input peeking pressure of the first comparator (1'D) exceeds a predetermined value, the first comparator (17+) outputs an error level signal (hereinafter referred to as H). Then, the output 'voltage of the second amplifier ■ becomes low, the positive side input voltage of the second comparator Cυ becomes higher than the negative side input voltage, and the second comparator Qυ outputs I-I The transistor (TR) is turned on by outputting a level signal.Transistor (TR)
When turned on, the relay switch (R8) is also turned on, and the water pump (7) and compressor start operation. Therefore, the refrigerant flows into the evaporation tube (5) of the ice maker, and the water for ice making flows from the sprinkler pump (2), causing the ice making nuclei (4), (4),
Ice gradually forms around...

第4図に示したように氷(30)、G3(+1・・・が
成長して、氷ω)の表面を流れる例えば1 mm以下の
層をなす略0℃の水が温度センサ(S)に接触すると、
温度センサ(S)は@配水により急激に冷やされる。こ
のため温度センサ(81の抵抗値は大きくなり、端子電
圧は増加する。第1増幅器(161のプラス側入力電圧
の上昇は第1コンデンサ(C2)への充電によりマイナ
ス側入力成田の上昇より遅れる。従って、第1増幅器(
Ieのマイナス側入力電圧はプラス側入力電圧より相対
的に高くなり、このため、第1増幅器(161の増幅率
が1以上の例えば1oのときにはその出力電圧は大幅に
低下する。又、第1比較器01のマイナス側入力電圧は
温度センサ(S)の端子電圧の上昇に伴い上昇する。そ
して第1比較器Q71のマイナス側入力11CaEと第
1増幅器(161の出力電圧との差が所定値以上になる
と、第1比較器αηはHレベル信号に代わり製氷検出信
号であるローレベル信号(以下Lレベル信号という)を
出力する。
As shown in Fig. 4, the approximately 0°C water flowing on the surface of the ice (30), G3 (+1... has grown, and the ice ω), forming a layer of 1 mm or less, is the temperature sensor (S). When you come into contact with
The temperature sensor (S) is rapidly cooled down by water distribution. Therefore, the resistance value of the temperature sensor (81) increases, and the terminal voltage increases.The rise in the positive input voltage of the first amplifier (161) lags behind the rise in the negative input voltage due to charging of the first capacitor (C2). .Therefore, the first amplifier (
The negative input voltage of Ie becomes relatively higher than the positive input voltage, and therefore, when the amplification factor of the first amplifier (161) is 1 or more, for example 1o, its output voltage decreases significantly. The negative input voltage of the comparator 01 increases as the terminal voltage of the temperature sensor (S) rises.Then, the difference between the negative input 11CaE of the first comparator Q71 and the output voltage of the first amplifier (161) increases by a predetermined value. At this point, the first comparator αη outputs a low level signal (hereinafter referred to as L level signal) which is an ice making detection signal instead of the H level signal.

第1比較器Uηが出力したLレベル信号は遅延タイマ回
路(9)の第2増幅回路■のマイナス入力端子に与えら
れる。そして、抵抗(旬の抵抗値は大きく端子電圧は高
いため、第2増幅器■のプラス側入力電圧はマイナス側
入力電圧より高い。このため、第2増幅器囚の出力電圧
は高(、この第2増幅器■の出力圧より第2コンデンサ
(C7)は次第に充電される。そして、第2比較器Qυ
のマイナス側入力電圧は次第に上昇して、第1比較器a
ηがLレベル信号を出力してから例えば略1分遅延しで
、第2比較器(21)のマイナス個人力′成圧がプラス
側入力電圧以上になると、第2比較器C!υはHレベル
信号に代わりLレベル信号を出力する。このため、トラ
ンジスタ(TR)はオフしてリレーコイル(RC)は非
通電になり、リレースイッチ(R8)はオフする。従っ
て、圧縮機(至)及び送水ポンプ(7)は非通電になり
双方とも停止して製氷運転は停止する。即ち、第1比較
器(17iが製氷検出信号であるLレベル信号を出力し
てから遅延して製氷運転が停止するため、前記遅延の間
に板体(1)の氷はさらに成長する。このため、製氷運
転が停止したときには、第5図に示したよって氷は温度
センサ(S) K @aしている。
The L level signal outputted by the first comparator Uη is applied to the negative input terminal of the second amplifier circuit (2) of the delay timer circuit (9). Since the resistance value of the resistor is large and the terminal voltage is high, the positive input voltage of the second amplifier ■ is higher than the negative input voltage. Therefore, the output voltage of the second amplifier The second capacitor (C7) is gradually charged by the output pressure of the amplifier ■.Then, the second comparator Qυ
The negative input voltage of the first comparator a gradually increases.
For example, after a delay of approximately one minute after η outputs the L level signal, when the negative personal power 'composition of the second comparator (21) becomes equal to or higher than the positive input voltage, the second comparator C! υ outputs an L level signal instead of an H level signal. Therefore, the transistor (TR) is turned off, the relay coil (RC) is de-energized, and the relay switch (R8) is turned off. Therefore, the compressor (to) and the water supply pump (7) are de-energized, both are stopped, and the ice-making operation is stopped. That is, since the ice-making operation is stopped with a delay after the first comparator (17i) outputs the L level signal that is the ice-making detection signal, the ice on the plate (1) further grows during the delay. Therefore, when the ice-making operation is stopped, the ice is heated to the temperature sensor (S) K@a as shown in FIG.

製氷運転終了後、電磁弁t40に開き、給水パイプCP
+を通り散水パイプ(P、)から水道水が上部空間14
51 K給水される。そして、板体(1)、(1)、裂
氷核(4)、(4)、及び蒸発管(5)、(5)は前記
水道水と熱交換して夫々の温度は上昇する。又、横方向
に配列された製氷核(4)と製氷核(4)との間には、
第5図に示したように板体(1)と蒸発管(5)との間
に間隔(ソが存在するため、上部空間(昏に散水された
水道水は間隔(υを通り下方へ流れる。そして、この散
水により板体m、(1)及び製氷核(4)、(4)・・
・の温度は上昇するので、氷は板体(1)、(11及び
製氷核(4)、(4)・・・から剥離して落下する。氷
の落下により氷が温度センサ(S)に接触しなくなると
、温度センサ(S)は自らの発熱又は周囲温度により次
第に温度上昇して端子電圧は次第に低下し、上記と同様
に製氷運転が開始される。又、第1比較器CL7iがH
レベル信号を出力して第2増幅器12(jがLレベル信
号を出力すると、第2コンデンサ(C2)の充電電圧は
第11抵抗(R1、)、第3ダイオード(D、)を介し
て第2増幅器四の出力端子へ引かれ、第2増幅器(2u
からアース側ライン(501へ流れる。
After the ice making operation is completed, open the solenoid valve t40 and close the water supply pipe CP.
Tap water passes through + from the sprinkler pipe (P,) to the upper space 14
51K water is supplied. The plates (1), (1), the ice-breaking nuclei (4), (4), and the evaporation tubes (5), (5) exchange heat with the tap water, and their respective temperatures rise. Moreover, between the ice-making nuclei (4) and the ice-making nuclei (4) arranged in the horizontal direction,
As shown in FIG. .Then, this water sprinkling causes the plate m, (1) and the ice-making cores (4), (4)...
As the temperature of ・ increases, the ice peels off from the plates (1), (11 and the ice making cores (4), (4)...) and falls.As the ice falls, the ice hits the temperature sensor (S). When the temperature sensor (S) is no longer in contact, its temperature gradually rises due to its own heat generation or the ambient temperature, and the terminal voltage gradually decreases, and ice-making operation is started in the same way as above.Also, the first comparator CL7i becomes H.
When the second amplifier 12 (j) outputs a level signal and outputs an L level signal, the charging voltage of the second capacitor (C2) passes through the eleventh resistor (R1,) and the third diode (D,) to the second amplifier 12 (j). The second amplifier (2u
Flows from to the ground side line (501).

従って、製氷運転により板体(1)、(11に氷が成長
して、この氷の表面を流れる水が温度センサ(S)に接
触して氷検出回路(8)が製氷検出信号を出力してから
、実際に製氷運転が停止するまでの間て遅延タイマ回路
(9)の動作により遅延時間を設け、この遅延時間中も
製氷運転を継続させる。このため、板体(1)、(1)
の氷はさらに成長して製氷運転の停+)一時には所定の
犬ぎさ又は厚さの氷を得ることができる。又、氷を温度
センサ(S)に密着させることができるため、離氷運転
により板体(1)、(1)から氷が落下して温度センサ
(S)かも離れたときには、他の検出装置を設ける必要
はなく温度センサ(S)により氷の落下を検知すること
もできる。
Therefore, ice grows on the plates (1) and (11) during the ice-making operation, and water flowing on the surface of the ice contacts the temperature sensor (S), causing the ice detection circuit (8) to output an ice-making detection signal. After that, until the ice-making operation actually stops, a delay time is set by the operation of the delay timer circuit (9), and the ice-making operation is continued during this delay time. )
As the ice grows further, ice of a predetermined size or thickness can be obtained at a time when the ice making operation is stopped. In addition, since the ice can be brought into close contact with the temperature sensor (S), when ice falls from the plates (1), (1) during ice removal operation and also leaves the temperature sensor (S), other detection devices There is no need to provide a temperature sensor (S), and falling ice can be detected by a temperature sensor (S).

尚、上記実施例において、温度センサ(S)をサーミス
タとしたが、温度センサfS)を例えばサーモスタット
又は熱電対等にして、サーモスタンド又は熱電対等が板
体(1)、(11に成長した氷の表面を流れる水に冷や
されたとき、遅延タイマ回路(9)へ製氷検出信号が出
力されるようにしても良い。
In the above embodiment, the temperature sensor (S) was a thermistor, but the temperature sensor (fS) was, for example, a thermostat or a thermocouple, and the thermostand or thermocouple was used to detect the ice that had grown on the plates (1) and (11). An ice-making detection signal may be output to the delay timer circuit (9) when the ice is cooled by water flowing on the surface.

又、第7図は本発明に係る製氷機の製品概略斜視図、第
8図は第7図のA−A線縦断面図で、第3図及び第6図
と同符号のものは同様なものとする。ここで、板体(1
)、(1)の周囲開口は熱伝導性の極めて悪いゴム又は
w脂等によって製作されたカバーcy、1lVCよって
閉塞される。このカバー□□□は上下を尖塔状に形成し
た上部水案内部(30A)と下部水案内部(30B)と
を有し、このうち下部水案内部(30B)には給水通路
61)を形成している。又、製氷運転用の散水パイプ(
2)には上部水案内部(30A) K対向する散水口(
2人)、(2B)が形成され、製氷運転時には、送水管
(6)を通った製氷用水が散水口(2人)、(2B)か
ら上部案内部(30A) K落下し、板体(1)、(1
1及び製氷機(4)、(4)・・・の表面を伝わる。そ
【7て製氷機(4)、(4)・・・の表面に第7図に示
したように個々に独仏したレンズ状の氷C32が形成さ
れる。
7 is a schematic perspective view of the ice maker according to the present invention, and FIG. 8 is a vertical sectional view taken along line A-A in FIG. 7, and the same reference numerals as in FIG. 3 and FIG. shall be taken as a thing. Here, the plate (1
), (1) peripheral openings are closed by covers cy, 1lVC made of rubber or water, etc., which have extremely poor thermal conductivity. This cover □□□ has an upper water guide part (30A) and a lower water guide part (30B) formed in a spire shape at the top and bottom, of which a water supply passage 61) is formed in the lower water guide part (30B). are doing. In addition, water sprinkler pipes for ice making operation (
2) has an upper water guide part (30A) and an opposing water spout (
2 people), (2B) are formed, and during ice making operation, the ice making water that has passed through the water pipe (6) falls from the water sprinkling port (2 people), (2B) to the upper guide part (30A), and the plate body ( 1), (1
1 and the surface of the ice maker (4), (4)... Then, as shown in FIG. 7, individually shaped lens-shaped ice C32 is formed on the surface of the ice making machines (4), (4), . . . .

又、下部水案内部(30B)の下方には、未凍結水を回
収する樋關が設けられ、この砧割は貯水タンク(3)に
連通し℃いる。
Further, a gutter for collecting unfrozen water is provided below the lower water guide part (30B), and this gutter is connected to the water storage tank (3).

又、板体(1)、(1)の間の空間(1a)上部の散水
パイプ(P3)には散水口(Pl)、(P、)が形成さ
れている。そして、製氷運転後の離氷運転時には、散水
口(P、)、(P、)から空間(1a)へ水道水が散水
され、板体(1)、(1)及び製氷機(4)、(4)・
・・の温度は上昇して、氷C3Z ハ板体(11、(1
1及ヒ1fJk核(4)、(4)−6−ら落下する。又
、空間(1a)を下方へ伝わった水道水は排水通路C3
+1を通り樋C3,1へ落下する。
Further, water sprinkling ports (Pl), (P,) are formed in the water sprinkling pipe (P3) above the space (1a) between the plates (1), (1). During the ice removal operation after the ice making operation, tap water is sprinkled from the water sprinkling ports (P, ), (P,) into the space (1a), and the plates (1), (1) and the ice maker (4), (4)・
The temperature of... increases, and the ice C3Z plate (11, (1
1 and 1fJk nuclei (4) and (4)-6- fall. In addition, the tap water that has traveled downward through the space (1a) is drained through the drainage passage C3.
+1 and falls into gutter C3,1.

(ト)発明の効果 本発明は上記のような製氷機の運転制御装置であるから
、センサが板体の表面に形成された氷の表面を流れる水
により冷やされ、前配水の成長を検知して氷検出回路が
動作してから製氷運転が停止されるまでに遅延タイマ回
路の動作により十分な遅延時間を設け、この遅延時間中
も製氷運転は継続され板体の氷はさらに成長するため、
製氷運転の停止時には所定の大きさ又は厚さの氷を得る
ことができ、さらに、氷をセンサに密着させて製氷機の
誤動作を回避できると共に、離氷運転により氷が落下し
たとき罠は前記温度センサにより正確に離氷も検知する
ことができる。
(G) Effects of the Invention Since the present invention is an operation control device for an ice maker as described above, the sensor is cooled by the water flowing on the surface of the ice formed on the surface of the plate, and detects the growth of pre-distributed water. A sufficient delay time is provided by the operation of the delay timer circuit between when the ice detection circuit operates and when the ice making operation is stopped. During this delay time, the ice making operation continues and the ice on the plate further grows.
When the ice-making operation is stopped, ice of a predetermined size or thickness can be obtained.Furthermore, it is possible to keep the ice in close contact with the sensor to avoid malfunctions of the ice-making machine, and when the ice falls during the ice-removal operation, the trap is activated as described above. A temperature sensor can also accurately detect ice break-off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明の一実施例を示し、第1図は
製氷機の概略運転回路のブロック図、第2図は製氷機の
運転制御回路図、第3図は製氷機の概略縦断面図、第4
図はセンサに氷の表面を流れる水が接触したときの製氷
機の部分断面図、第5図は氷が温度センサに密着したと
きの製氷機の部分断面図、第6図は冷凍装置の概略冷媒
回路図、第7図は本発明に係る製氷機の製品概略斜視図
、第8図は第7図のA−A線縦断面図である。 (11・・・板体、 (S)・・・温度センサ、 (8
)・・・氷検出回路、 (9)・・・遅延タイマ回路。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 静 夫 第1図
1 to 8 show an embodiment of the present invention, FIG. 1 is a block diagram of a general operating circuit of an ice maker, FIG. 2 is an operation control circuit diagram of an ice maker, and FIG. 3 is a block diagram of an ice maker's operation control circuit. Schematic longitudinal sectional view, 4th
The figure is a partial sectional view of the ice maker when the sensor is in contact with water flowing on the surface of ice, Figure 5 is a partial sectional view of the ice maker when ice is in close contact with the temperature sensor, and Figure 6 is a schematic of the refrigeration system. A refrigerant circuit diagram, FIG. 7 is a schematic perspective view of the ice maker according to the present invention, and FIG. 8 is a vertical sectional view taken along the line A--A in FIG. 7. (11... Plate, (S)... Temperature sensor, (8
)...ice detection circuit, (9)...delay timer circuit. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Shizuo Sano Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、表面にそつて製氷用水が流されて該表面に氷が形成
される板体と間隔を存して設けられ、前記氷の表面を流
れる前記製氷用水を検知して信号を出力するセンサと、
該センサから前記信号を入力して動作して製氷検出信号
を出力する氷検出回路とを備えた製氷機の運転制御装置
において、前記氷検出回路から製氷検出信号の発生に基
づいてさらに前記氷を成長させて前記センサに接触させ
るために十分な時間遅延させて製氷運転を停止させるた
めの信号を出力する遅延タイマ回路を備えたことを特徴
とする製氷機の運転制御装置。
1. A sensor that is provided at a distance from a plate body along which ice-making water is flowed and ice is formed on the surface, and that detects the ice-making water flowing on the surface of the ice and outputs a signal; ,
An operation control device for an ice maker including an ice detection circuit that operates upon receiving the signal from the sensor and outputs an ice-making detection signal, further detecting the ice based on the generation of the ice-making detection signal from the ice detection circuit. An operation control device for an ice making machine, comprising a delay timer circuit that outputs a signal for stopping the ice making operation after a sufficient time delay for the ice to grow and come into contact with the sensor.
JP60259028A 1985-11-19 1985-11-19 Operation control device for ice machine Expired - Lifetime JP2771531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259028A JP2771531B2 (en) 1985-11-19 1985-11-19 Operation control device for ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259028A JP2771531B2 (en) 1985-11-19 1985-11-19 Operation control device for ice machine

Publications (2)

Publication Number Publication Date
JPS62119377A true JPS62119377A (en) 1987-05-30
JP2771531B2 JP2771531B2 (en) 1998-07-02

Family

ID=17328334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259028A Expired - Lifetime JP2771531B2 (en) 1985-11-19 1985-11-19 Operation control device for ice machine

Country Status (1)

Country Link
JP (1) JP2771531B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108073A (en) * 1980-01-29 1981-08-27 Sanyo Electric Co Method of detecting completion of ice making of ice machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108073A (en) * 1980-01-29 1981-08-27 Sanyo Electric Co Method of detecting completion of ice making of ice machine

Also Published As

Publication number Publication date
JP2771531B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US6951113B1 (en) Variable rate and clarity ice making apparatus
US4238930A (en) Ice maker apparatus
US4366679A (en) Evaporator plate for ice cube making apparatus
US5212957A (en) Refgrigerator/water purifier
US5207761A (en) Refrigerator/water purifier with common evaporator
US4370865A (en) Ice-making and fresh water dispensing apparatus
US4086780A (en) Refrigerating apparatus, in particular two-temperature refrigerator
JPH0119016Y2 (en)
JPS62119377A (en) Operation controller for ice machine
US3459005A (en) Selective control for an ice maker
US6988373B2 (en) Method for operating automatic ice-making machine
JP3050114B2 (en) Control method of ice storage type chiller
US3728867A (en) Defrost control system
JP2771530B2 (en) Operation control device for ice machine
JPS5843737Y2 (en) Refrigerator defrost device
KR19990041499U (en) water purifier
JPS6237091Y2 (en)
JPH0615260Y2 (en) Antifreeze device for water heater
JPS5912538Y2 (en) Refrigerator drain pipe clogging prevention device
JPH0218464Y2 (en)
JPS62182564A (en) Operation controller for ice machine
JPS62182566A (en) Operation controller for ice machine
JP3000907B2 (en) Operation control method of ice storage type chiller
JPS5813250Y2 (en) automatic ice maker
JPS5826513B2 (en) Abnormal state detection device for cooling equipment