JPS62119194A - Molecular beam source - Google Patents

Molecular beam source

Info

Publication number
JPS62119194A
JPS62119194A JP25999185A JP25999185A JPS62119194A JP S62119194 A JPS62119194 A JP S62119194A JP 25999185 A JP25999185 A JP 25999185A JP 25999185 A JP25999185 A JP 25999185A JP S62119194 A JPS62119194 A JP S62119194A
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
cracker
pbn
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25999185A
Other languages
Japanese (ja)
Inventor
Takashi Mizutani
隆 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25999185A priority Critical patent/JPS62119194A/en
Publication of JPS62119194A publication Critical patent/JPS62119194A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled molecular beam source wherein the flow of heat into a crucible is reduced and capable of easily controlling the intensity of a group-V molecular beam by using PBN at the high temp. part for decomposing a group-V tetratomic molecule, namely the raw material of a III-V compd. semiconductor, into a diatomic molecule, and inserting a perforated PBN sheet. CONSTITUTION:The crucible 1, a cracker part 2 which is the high-temp. part for cracking, and a connecting part 3 for connecting the crucible and the cracker part are formed with a high-purity PBN material which is not decomposed even at high temp. The perforated sheet 4, for example, is inserted between the crucible 1 and the cracker part 2 and between the crucible 1 and the connecting part 3 so that the c axis is paralleled with the heat flow. Then the crucible 1 charged with As 8 and the cracker part 2 are heated with respectively independent heaters 5 and 6. The temp. of the crucible 1 (as well as the cracker part 2) is monitored by a thermocouple 7. At this time, since heat conduction is controlled by the sheet 4, a stable molecular beam with less impurities can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は■族の2原子分子を発生する分子線の純度向上
と分子線強度の制御性向上を同時に実現する分子線源に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molecular beam source that simultaneously improves the purity of a molecular beam that generates group (III) diatomic molecules and improves the controllability of the molecular beam intensity. .

〔従来の技術〕[Conventional technology]

従来、G、A、等の■−V族化合物半導体を分子線結晶
成長法によって成長させる場合に金属G、と固木のA、
をそれぞれ別のるつぼに入れ、これを真空中で加熱して
分子線とし、基板結晶に供給してその上に成長層を得て
いた。この時A。
Conventionally, when growing ■-V group compound semiconductors such as G, A, etc. by the molecular beam crystal growth method, metal G and hard wood A,
They were placed in separate crucibles and heated in vacuum to form molecular beams, which were then supplied to the substrate crystal to form a growth layer on top of it. At this time A.

は4原子分子として供給されるのであるが、これを熱分
解して2原子分子にすれば結晶の品質が良くなる筈であ
るとの報告がなされるようになった。
is supplied as a four-atomic molecule, but it has been reported that the quality of the crystal should improve if it is thermally decomposed into diatomic molecules.

例えばマックス・ブランク研究所のキンツエル氏らは1
982年のアプライド・フィジックス(Applied
  Physics)の第A28巻の167〜173頁
に掲載の論文の中で、4原子分子から2原子分子に変え
ることによって深い準位が減少したと報告した。フィリ
ップス研究所のニーブ氏らも同様の報告を1980年の
アプライド・フィジックス・レターズ(Applied
Physics  Letters)の第36巻の31
1頁にしている。ところが成長したG、A。
For example, Mr. Kintzell of the Max Blank Institute et al.
Applied Physics in 982
In a paper published in Volume A28, pages 167-173 of Physics), they reported that deep levels were reduced by changing from a tetraatomic molecule to a diatomic molecule. Neave et al. of the Phillips Institute published a similar report in Applied Physics Letters in 1980.
31 of Volume 36 of Physics Letters)
It's one page. However, G and A have grown up.

の不純物濃度は3 X 1016cm−3以上であって
、高純度結晶が得られないという欠点があった。
The impurity concentration is 3 x 1016 cm-3 or more, which has the disadvantage that high-purity crystals cannot be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

深い準位はあるもののキャリアー濃度が1014C11
−3台のものが得られる4原子分子を使った成長に対し
て結晶の純度が劣った理由は、4原子分子を2原子分子
に熱分解する部分に使用する材料にあるとされている。
Although there is a deep level, the carrier concentration is 1014C11
The reason why the purity of the crystal was inferior to that obtained using tetraatomic molecules, which yielded three crystals, is said to be due to the material used in the part that thermally decomposes the tetraatomic molecules into diatomic molecules.

すなわち、4原子分子を使う成長では高純度で高熱でも
分解しないPBN (Pyrolitic  boro
n  n1tride)をるつぼ材料として用いるのに
対して、2原子分子を使う成長では熱分解する部分に石
英(S+0□)やT、などの金属を使うため、高い温度
による石英の分解やT3とV族材料との反応によって、
不純物が成長層に取り込まれてしまうためである。
In other words, PBN (pyrolitic boro
n n1tride) is used as the crucible material, whereas in growth using diatomic molecules, metals such as quartz (S+0□) and T are used in the part that thermally decomposes. By reaction with group materials,
This is because impurities are taken into the growth layer.

従来技術の問題点は高熱部の材料選択にあるのだから、
そこに高純度のPBN等を使用すれば良いのであるが、
この場合には別の問題が生ずる。
The problem with the conventional technology lies in the selection of materials for the high-temperature parts.
It would be better to use high-purity PBN etc.
Another problem arises in this case.

クラッカー部にPBNのチューブを使用すると、その製
法上の理由によりPBNのa軸はチューブの法線方向を
向き、チューブの面内方向はa軸となる。PBNの熱伝
導度はC軸方向に小さく、a軸方向に大きくて、その値
は800℃において、それぞれ0.007cal −5
ec−’−am−’−℃−’と0.15 c a l−
s e c−’−cm−” ”C−1である。
When a PBN tube is used in the cracker part, the a-axis of the PBN is oriented in the normal direction of the tube due to the manufacturing method, and the in-plane direction of the tube is the a-axis. The thermal conductivity of PBN is small in the C-axis direction and large in the a-axis direction, and the value is 0.007 cal -5 at 800°C.
ec-'-am-'-℃-' and 0.15 c a l-
sec-'-cm-""C-1.

PBNチューブに対しクラッカー部を支えるだけの強度
を与えるには肉厚を1關程にしなければならないが、そ
のためにクラッカー部からるつぼへの熱の伝導量は0.
5 am程度の厚さの金属のチューチ・・と変わらない
程大きくなる。このためクラッカー部からるつぼへの熱
の流入によってるつぼの温度が上がり、V族分子線の強
度を制御することができない。これはクラッカー部に必
要な温度が1000°C程度であるのに対し、るつぼに
必要な温度は300℃にすぎないからである。
In order to give the PBN tube enough strength to support the cracker part, the wall thickness must be reduced to about 1 inch, but for this reason the amount of heat conducted from the cracker part to the crucible is 0.
It will be as big as a metal tube with a thickness of about 5 am. Therefore, the temperature of the crucible increases due to the flow of heat from the cracker portion into the crucible, making it impossible to control the intensity of the group V molecular beam. This is because the temperature required for the cracker part is about 1000°C, whereas the temperature required for the crucible is only 300°C.

本発明の目的は、以上の不具合を解決し、高純度のPB
N材料を使いながら、強度も保ち、かつクラッカー部か
らるつぼへの熱の流入を小さくしてV族分子線の強度制
御を容易にした新規なりラッカ一部つき分子線源を提供
することにある。
The purpose of the present invention is to solve the above-mentioned problems and to produce high-purity PB.
The object of the present invention is to provide a new molecular beam source with a part of lacquer that uses N material, maintains its strength, and reduces the inflow of heat from the cracker part to the crucible, making it easy to control the intensity of group V molecular beams. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明の要旨とするところは不純物の成長層への混入
を防止するため高熱部であるクラッカー部に高純度のP
BN等を用いて上記問題を解決すると共に11II+程
度の゛厚さを持ったPBHのクラッカー部とるつぼの間
を1箇所ないし複数箇所切断し、その部分にPBN板を
a軸が熱の流れ方向に平行となるように挿入することに
よって、PBNのC軸方向の小さな熱伝導率を利用して
熱の伝導を抑制することである。
The gist of this invention is that high-purity P is added to the cracker part, which is a high-temperature part, in order to prevent impurities from entering the growth layer.
In addition to solving the above problem using BN, etc., cut one or more places between the cracker part and the crucible of PBH with a thickness of about 11II+, and place a PBN plate in that part so that the a-axis is in the direction of heat flow. By inserting the PBN so as to be parallel to the C-axis direction, heat conduction is suppressed by utilizing the small thermal conductivity of PBN in the C-axis direction.

〔作用〕[Effect]

PBNは熱的に安定で高純度なものが入手できるため、
クラッカー部のように1000℃前後の高熱を必要とす
る所に適する。PBNのC軸方向の熱伝導率はa軸方向
の1/20と小さいことを利用し、熱の伝導方向の途中
に熱の流れに対しa軸が平行になるよう置けば熱伝導を
大きく抑制できる。
PBN is thermally stable and highly purified, so
Suitable for places that require high heat of around 1000°C, such as cracker parts. Taking advantage of the fact that the thermal conductivity of PBN in the C-axis direction is 1/20 of that in the a-axis direction, heat conduction can be greatly suppressed by placing it in the middle of the heat conduction direction so that the a-axis is parallel to the heat flow. can.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

(第1の実施例) 第1図は本発明の第1の実施例を説明するための概念図
である。PBNでできたるつぼ1とクラッカー部2.お
よびるつぼと連結部3の間に穴のあいたPBN板を挟ん
だ。クラッカー部とるつぼはそれぞれ独立したヒータ5
,6で加熱し、るつぼの温度は熱電対7でモニタした。
(First Embodiment) FIG. 1 is a conceptual diagram for explaining a first embodiment of the present invention. Crucible 1 made of PBN and cracker part 2. A PBN plate with holes was sandwiched between the crucible and the connecting portion 3. The cracker part and crucible each have independent heaters 5.
, 6, and the temperature of the crucible was monitored with a thermocouple 7.

クラッカー部も熱電対でモニタしたが図示はしていない
。るつぼには100グラムの固型ヒ素8を入れた。クラ
ッカー部を800℃まで加熱したところ、るつぼのヒー
タに電力を供給しない状態で約200℃となり、るつぼ
のヒータにわずかな電力を供給してるつぼの温度を約3
00°Cとすることにより、80%の2原子分子を含む
ヒ素分子線をlXl0−’Torrの分子線強度で安定
に供給することができた。同時に01の分子線を供給し
て1μm/hの成長速度で3μm成長し、ホール測定を
行なったところ、キャリアー濃度は約lXl0”Ω″3
のn型を示し、従来の方法に較べて約1桁の高純度成長
層が得られた。
The cracker section was also monitored with a thermocouple, but not shown. 100 grams of solid arsenic 8 was placed in a crucible. When the cracker part was heated to 800℃, the temperature reached approximately 200℃ without power being supplied to the crucible heater, and by supplying a small amount of power to the crucible heater, the temperature of the crucible was raised to approximately 3℃.
By setting the temperature to 00°C, it was possible to stably supply an arsenic molecular beam containing 80% diatomic molecules with a molecular beam intensity of 1X10-'Torr. At the same time, a molecular beam of 01 was supplied to grow 3 μm at a growth rate of 1 μm/h, and hole measurements were performed. The carrier concentration was approximately lXl0"Ω"3
The growth layer showed an n-type structure, and a grown layer with purity about one order of magnitude higher than that of the conventional method was obtained.

(第2の実施例) 第2図は本発明の第2の実施例を説明するための概念図
で、第1の実施例に、更に連結部を2分割し、ここにも
穴のあいたPBN板を挿入したものである。第2図にお
いて第1図と同じ数字の部分は同じ名称、同じ機能を果
すものである。第1の実施例に較べ熱伝導の抑制が大き
くすることができたため、クラッカー部を1000℃ま
で昇温することができた。
(Second Embodiment) Fig. 2 is a conceptual diagram for explaining the second embodiment of the present invention. A board was inserted. In FIG. 2, parts with the same numbers as in FIG. 1 have the same names and perform the same functions. Since heat conduction could be suppressed to a greater degree than in the first example, the temperature of the cracker section could be raised to 1000°C.

このため、2原子分子を90%以上含むヒ素分子線をl
Xl0−’Torrの分子線強度で安定に供給すること
ができた。得られたG、A、成長層のキャリアー濃度は
1−2X10”cm−’で高純度成長層が得られた。
For this reason, an arsenic molecular beam containing more than 90% of diatomic molecules is
It was possible to stably supply the molecular beam with a molecular beam intensity of Xl0-'Torr. The carrier concentration of the G, A, and growth layers thus obtained was 1-2×10"cm-', and a high-purity growth layer was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明により得られた分子線源は
従来のV族2原子分子を作るための分子線源に較べて安
定で不純物の少ない分子線を得ることができ、高品質の
結晶を成長できる。
As explained above, the molecular beam source obtained by the present invention can obtain a molecular beam that is more stable and has fewer impurities than the conventional molecular beam source for making group V diatomic molecules, and can produce high-quality crystals. can grow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するための概念図
、第2図は本発明の第2の実施例を説明するための概念
図である。 1・・・るつぼ、2・・・クラッカー部、3・・・連結
部、4・・・穴のあいたPBN板、5,6・・・ヒータ
、7・・・熱電対、8・・・ヒ素。 $ 7 凹 $  2 7!I
FIG. 1 is a conceptual diagram for explaining a first embodiment of the present invention, and FIG. 2 is a conceptual diagram for explaining a second embodiment of the present invention. 1... Crucible, 2... Cracker part, 3... Connecting part, 4... PBN board with holes, 5, 6... Heater, 7... Thermocouple, 8... Arsenic . $ 7 dent $ 2 7! I

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に成長すべきIII−V化合物半導体のため
のV族分子線材料が充填されたるつぼと、該るつぼを加
熱することによって発生するV族の4原子分子を更に高
温に加熱することによって分解し2原子分子にするクラ
ッカー部と、るつぼとクラッカー部をつなぐ連結部とか
らなり、上記るつぼとクラッカー部と連結部がPBNで
あり、連結部とクラッカー部の間もしくは連結部とるつ
ぼの間に、穴を持つPBN板を挟み、上記PBN板のC
軸が熱の流れ方向に平行であることを特徴とする分子線
源。
(1) A crucible filled with a group V molecular beam material for a III-V compound semiconductor to be grown on a substrate, and a group V four-atom molecule generated by heating the crucible to an even higher temperature. It consists of a cracker part that decomposes into diatomic molecules, and a connecting part that connects the crucible and the cracker part. A PBN plate with holes is sandwiched between them, and C of the above PBN plate is inserted.
A molecular beam source whose axis is parallel to the direction of heat flow.
(2)連結部が更に複数の部分に分割され、それぞれの
部分の間に穴を持つPBN板を挟み、該PBN板のC軸
が熱の流れ方向に平行である特許請求の範囲第(1)項
記載の分子線源。
(2) The connecting part is further divided into a plurality of parts, and a PBN plate having holes is sandwiched between each part, and the C axis of the PBN plate is parallel to the heat flow direction. Molecular beam source described in ).
JP25999185A 1985-11-19 1985-11-19 Molecular beam source Pending JPS62119194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25999185A JPS62119194A (en) 1985-11-19 1985-11-19 Molecular beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25999185A JPS62119194A (en) 1985-11-19 1985-11-19 Molecular beam source

Publications (1)

Publication Number Publication Date
JPS62119194A true JPS62119194A (en) 1987-05-30

Family

ID=17341767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25999185A Pending JPS62119194A (en) 1985-11-19 1985-11-19 Molecular beam source

Country Status (1)

Country Link
JP (1) JPS62119194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368259B2 (en) 2008-01-11 2013-02-05 Yamaha Hatsudoki Kabushiki Kaisha Linear motor component mounting apparatus and component inspecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368259B2 (en) 2008-01-11 2013-02-05 Yamaha Hatsudoki Kabushiki Kaisha Linear motor component mounting apparatus and component inspecting apparatus

Similar Documents

Publication Publication Date Title
US4147572A (en) Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique
JP4530542B2 (en) Production of bulk single crystals of aluminum nitride, silicon carbide, and aluminum nitride: silicon carbide alloys
CN107955969A (en) A kind of SiC single crystal growing system being persistently fed
US4865659A (en) Heteroepitaxial growth of SiC on Si
JPS62191493A (en) Gas phase epitaxial growth for semiconductor substance
Teramoto Calculation of distribution equilibrium of amphoteric silicon in gallium arsenide
US3096209A (en) Formation of semiconductor bodies
JPH04193799A (en) Production of silicon carbide single crystal
JPS62119194A (en) Molecular beam source
US3767472A (en) Growth of ternary compounds utilizing solid, liquid and vapor phases
JP2000053500A (en) METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JPH02289484A (en) Growing device for single crystal
JPH0416597A (en) Production of silicon carbide single crystal
JP2000001399A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION
JP3932017B2 (en) Method for producing iron silicide crystal
Woelk et al. III-Nitride multiwafer MOCVD systems for blue-green LED material
JPS6350393A (en) Growth method for sic single crystal
Sha et al. Thermodynamic analysis and mass flux of the HgZnTe-HgI2 chemical vapor transport system
JPH0341438B2 (en)
JPS63227007A (en) Vapor growth method
JPH0248495A (en) Method for growing silicon carbide single crystal
JPS60113420A (en) Device for manufacturing semiconductor crystal
JP2000072598A (en) Single silicon carbide crystal and its production
JP2000072597A (en) Single silicon carbide crystal and its production
JPH04119987A (en) Liquid phase epitaxial growth boat