JPS62119159A - Direct bond brick containing high cr203 for refinement vessel - Google Patents

Direct bond brick containing high cr203 for refinement vessel

Info

Publication number
JPS62119159A
JPS62119159A JP60258597A JP25859785A JPS62119159A JP S62119159 A JPS62119159 A JP S62119159A JP 60258597 A JP60258597 A JP 60258597A JP 25859785 A JP25859785 A JP 25859785A JP S62119159 A JPS62119159 A JP S62119159A
Authority
JP
Japan
Prior art keywords
weight
cao
brick
direct bond
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60258597A
Other languages
Japanese (ja)
Other versions
JPH0262513B2 (en
Inventor
宇都 重俊
利弘 礒部
大崎 博右
八百井 英雄
誠二 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Nippon Steel Corp
Original Assignee
Harima Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd, Nippon Steel Corp filed Critical Harima Refractories Co Ltd
Priority to JP60258597A priority Critical patent/JPS62119159A/en
Publication of JPS62119159A publication Critical patent/JPS62119159A/en
Publication of JPH0262513B2 publication Critical patent/JPH0262513B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCaO系フラックスを添加して高級鋼を精製す
る精錬処理容器において、Cr2O,及びAl2O.の
含有量を調整し、前記フラックスとの反応を抑えて耐用
性を向上させた精錬処理容器円高(、r、o、含有ダイ
レクトボンド煉瓦に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a refining processing vessel for refining high-grade steel by adding CaO-based flux. This relates to a direct bond brick containing smelting treatment container yen high (, r, o), which has improved durability by adjusting the content of the flux and suppressing the reaction with the flux.

〔従来の技術〕[Conventional technology]

真空脱ガス処理は真空にして鋼中の水素を除去する目的
から鋼中成分の調整化、温度の均−化及び大量処理化ま
でその機能が拡大されて製鋼工程に加えられ連続鋳造の
稼働率向上に寄与している。
Vacuum degassing treatment has expanded its functions from the purpose of removing hydrogen in steel by creating a vacuum, to adjusting the components in steel, equalizing temperature, and mass processing, and has been added to the steelmaking process, increasing the operation rate of continuous casting. Contributing to improvement.

近年は、真空脱ガス処理時にCaO系フラックス粉体を
添加し脱硫黄及び脱酸素が行われ極低硫鋼等の高級鋼を
精製するようになってきた。この真空脱ガス処理容器の
内張材としては、従来からダイレクトボンドマグネシア
クロム質煉瓦が最も多く使用されている。該煉瓦は高純
度の焼結マグネシアに低シリカのクロム鉄鉱を組合せ、
さらに必要に応じて少量のCr、○、微粉や適量の電融
マグクロ原料を配合して1,700℃以上の高温で焼成
したものである。煉瓦全体に含まれるCr2O3で見る
と主流は10〜20重量%のダイレクトボンドマグネシ
アクロム質煉瓦であるが、特開昭59−190257号
のようにCr2O3含有量30重量%前後の煉瓦も一部
で使用されている。
In recent years, high-grade steels such as ultra-low sulfur steels have been refined by adding CaO-based flux powder during vacuum degassing treatment to remove sulfur and oxygen. Direct bond magnesia chromium bricks have traditionally been most commonly used as the lining material for vacuum degassing containers. The brick combines high-purity sintered magnesia with low-silica chromite,
Furthermore, if necessary, a small amount of Cr, O, fine powder, and an appropriate amount of electrofused tuna raw material are blended and fired at a high temperature of 1,700° C. or higher. Looking at the Cr2O3 contained in the whole brick, the mainstream is direct bonded magnesia chromium brick with a content of 10 to 20% by weight, but there are also some bricks with a Cr2O3 content of around 30% by weight, as shown in JP-A-59-190257. It is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したダイレクトボンドマグネシア質煉瓦は熱スポー
ル、溶鋼流摩耗及び溶鋼による侵食に優れており、真空
脱ガス処理容器の内張材として使用されてきた。しかし
ながら、高級鋼への指向から溶鋼中へCa Oフラック
スの添加が行われるようになり、このCaO系フラック
ス粉体の煉瓦への浸透によって化学的侵食及び組織の劣
化が著しく耐用性は大きく低下してきた。従って、前記
フラックスの添加処理率の増加に伴いダイレクトボンド
マグネシアクロム質煉瓦の改善が急速に求められるよう
になってきた。
The above-mentioned direct bonded magnesia brick has excellent resistance to thermal spall, flow wear of molten steel, and erosion by molten steel, and has been used as a lining material for vacuum degassing processing vessels. However, with the trend toward high-grade steel, CaO flux has been added to molten steel, and this CaO-based flux powder permeates into bricks, causing chemical erosion and structural deterioration, which significantly reduces durability. Ta. Therefore, with the increase in the flux addition treatment rate, there has been a rapid demand for improvements in direct bond magnesia chromium bricks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる問題点を主成分としてMgOとC
r2O,からなり、煉瓦全体に含まれるC r2O3が
36〜60重量%、Al2O.が10重量%以下で、か
つ煉瓦全体の15〜50重量%を占める0、1mm以下
の微粉部中のCrz○3が46〜80重量%からなる精
錬処理容器用高Cr2O、含有ダイレクトボンド煉瓦に
よって解決した。
The present inventors have solved this problem by using MgO and C as main components.
Cr2O3 contained in the whole brick is 36 to 60% by weight, Al2O. By a high Cr2O-containing direct bond brick for refining processing vessels, which has a content of 10% by weight or less and 46% to 80% by weight of Crz○3 in the fine powder part of 0.1 mm or less, which accounts for 15% to 50% by weight of the whole brick. Settled.

〔作用〕[Effect]

従来のCr2O3含有量が30重量%のダイレクトボン
ドマグネシアクロム質煉瓦をCao系フラッグス処理用
真空脱ガス容器の内張材に使用した後の外来成分の侵入
量及び組織の変化を観察したところ、CaOが5〜6重
量%、S i O,が2〜3重量%の侵入量が認められ
る。また稼働面下3mm程度までのマグネシアクリンカ
−は0.1mmを超える粒子が結晶粒界より組織崩壊あ
るいは結晶粒の再結晶が進んでいた。
After using a conventional direct bonded magnesia chromium brick with a Cr2O3 content of 30% by weight as the lining material for a vacuum degassing container for Cao flags processing, we observed the amount of foreign components infiltrated and changes in the structure, and found that CaO 5 to 6% by weight of S i O, and 2 to 3% by weight of S i O, were observed. Further, in the magnesia clinker up to about 3 mm below the operating surface, grains larger than 0.1 mm had undergone structural collapse or crystal grain recrystallization from the grain boundaries.

しかし2O.1mm以下の微粉部に分布するクロム鉄鉱
には組織の劣化は認められず健在であることに着目し、
CaOに安定なりロム鉄鉱を増す実験を重ねた結果2O
.1mm以下のCr2O3及び煉瓦全体のCr2O,含
有量がある範囲で顕著な効果があることを見出した。さ
らにクロム鉄鉱中のAQ□○、含有量と相関があること
も判明した。
However, 2O. Focusing on the fact that the chromite distributed in the fine powder part of 1 mm or less has no structural deterioration and is in good health.
As a result of repeated experiments to stabilize CaO and increase lomite, 2O
.. It has been found that Cr2O3 of 1 mm or less and Cr2O of the entire brick have a remarkable effect within a certain range of content. Furthermore, it was also found that there is a correlation with the AQ□○ content in chromite.

またCaO系フラックス等の外来成分の侵透を完全に防
止することは困難であるため、1,800℃以上で焼成
して見掛気孔率を少くとも17%以下にするのが望まし
いこともわかった。
It was also found that since it is difficult to completely prevent the penetration of foreign components such as CaO-based flux, it is desirable to reduce the apparent porosity to at least 17% by firing at a temperature of 1,800°C or higher. Ta.

煉瓦全体に含まれるCr2O3を36〜60重量%とす
るのは、第2図から明らかなようにCa O侵食に対す
る安定を高めるためであり、36重量%未満ではCaO
及び5in2の侵入によるMgOの崩壊によって耐食性
の低下を期たす。逆にその量が60重量%を超えると焼
結性の不足により組織強度が小さくやはり耐食性が低下
する。またAQ2O3が1o重量%以下にしたのは第3
図の如<10重量%を超えるとCaO及び5in2の侵
入によって煉瓦成分のMgoが反応し、モンチセライト
を生成する。この時点で煉瓦に含有するAQ2O3はモ
ンチセライトの溶融点を低下させる作用を生起するから
である。
The reason why the Cr2O3 contained in the whole brick is set to 36 to 60% by weight is to increase stability against CaO erosion, as is clear from Figure 2, and if it is less than 36% by weight, CaO
Corrosion resistance is expected to decrease due to the collapse of MgO due to the invasion of 5in2. On the other hand, if the amount exceeds 60% by weight, the structural strength will be low due to insufficient sinterability, and the corrosion resistance will also be reduced. Also, it was the 3rd time that AQ2O3 was kept below 10% by weight.
As shown in the figure, when the content exceeds <10% by weight, Mgo, which is a brick component, reacts due to the intrusion of CaO and 5in2, producing monticerite. This is because the AQ2O3 contained in the brick at this point has the effect of lowering the melting point of monticerite.

0.1mm以下の粒度の限定は、その組成による外来成
分に対する化学的抵抗性に大きく寄与すると同時に微粉
の焼結による細孔分布に影響を与え外来成分の物理的な
侵透作用を防止するためである。従って、微粉は粒度分
布の全体に占める比率が低くても物理特性に与える影響
は大きい、2O11mm以下の粒度分布は15〜50%
がのぞましい。15%以下の場合は、粗、細粒間を充填
する微粒の不足をきたし充填不良による高気孔率化を生
じマトリックスの溶損を促進する。又、50%以上の場
合は高圧充填が不可能であり且つ成形時のラミネーショ
ンの発生率が高くなり製品化が困難となる。
The particle size is limited to 0.1 mm or less because its composition greatly contributes to chemical resistance against foreign components, and at the same time it affects the pore distribution due to sintering of the fine powder and prevents the physical penetration of foreign components. It is. Therefore, even if the proportion of fine powder in the total particle size distribution is low, it has a large effect on physical properties, and the particle size distribution of 2O11 mm or less is 15 to 50%.
It's amazing. If it is less than 15%, there will be a shortage of fine grains filling between the coarse and fine grains, resulting in high porosity due to poor filling and promoting erosion of the matrix. Moreover, if it is more than 50%, high-pressure filling is impossible and the incidence of lamination during molding is high, making it difficult to commercialize the product.

さらに2O 、1 m m以下の微粉部のCr2O3を
46〜80重量%に限定したのは第4図のCaO−Cr
2O3の二成分系に示す如(Cr203/ CaO=、
75/25の点よりCr2O3の富化された側に液相生
成温度の高い温度領域(Cr2O37 CaO〉3)が
あり、微粉部へのCaO侵入比率が15%程度あるとC
r、Oaは〔15%X3=4F5%〕で少くとも46重
量%必要である。すなわち、第1図の微粉部のCr2O
3含有量と溶損比から明らかなように46重量%未満で
はCaOの侵入によって微粉部に液相生成温度の低い組
成ができて耐食性が低下する。80重量%を超えるとC
r2O。
Furthermore, the content of Cr2O3 in the fine powder part of 2O and 1 mm or less was limited to 46 to 80% by weight in the case of CaO-Cr shown in Fig. 4.
As shown in the binary system of 2O3 (Cr203/CaO=,
There is a temperature region where the liquid phase formation temperature is high (Cr2O37 CaO〉3) on the Cr2O3 enriched side from the 75/25 point, and if the CaO penetration ratio into the fine powder part is about 15%, C
r and Oa are required to be at least 46% by weight [15%X3=4F5%]. That is, Cr2O in the fine powder part in Figure 1
As is clear from the 3 content and the erosion ratio, if the CaO content is less than 46% by weight, a composition with a low liquid phase formation temperature is created in the fine powder part due to the intrusion of CaO, resulting in a decrease in corrosion resistance. If it exceeds 80% by weight, C
r2O.

の高融点性によって微粉部の焼結性が損われ強度が小さ
くなって耐食性を低下させるからである。
This is because the high melting point of the powder impairs the sinterability of the fine powder portion, resulting in a decrease in strength and corrosion resistance.

〔実施例〕〔Example〕

以下、実施例について説明する。 Examples will be described below.

実施例I RH真空脱ガス容器の下部槽側壁に第1表に示すように
本発明品、比較品及び従来品を張合せ200ch使用し
た。その内40ch分にはCaOフラックスを添加処理
した結果、溶損速度(mm/ c h )比で本発明品
は従来品に比して約70%比較品に対しては40%良好
であった。
Example I A product of the present invention, a comparative product, and a conventional product were laminated together and used for 200 channels as shown in Table 1 on the side wall of the lower tank of a RH vacuum degassing container. As a result of adding CaO flux to 40 channels, the product of the present invention was approximately 70% better than the conventional product and 40% better than the comparative product in terms of erosion rate (mm/ch). .

実施例2 実施例1と同一場所に本発明品、比較品及び従来品を張
合せ450ch使用した。その内27Oah分にCaO
フラックスを添加処理した結果。
Example 2 In the same place as in Example 1, the present invention product, comparative product, and conventional product were laminated together and used for 450 channels. Of that, 27 Oah is CaO.
Results of flux addition treatment.

溶損速度(mm/ c h )比で本発明は従来品より
約80%比較品に対して35%良好であった。
In terms of erosion rate (mm/ch) ratio, the present invention was about 80% better than the conventional product and 35% better than the comparative product.

以上から明らかなように本発明品はCaOの侵入による
マトリックスの変質が殆んどなく溶損速度は1〜4 m
 m / c hと従来品の1/3〜115と非常に優
れた結果が確認できた。
As is clear from the above, in the product of the present invention, there is almost no change in matrix quality due to the intrusion of CaO, and the erosion rate is 1 to 4 m.
Very excellent results were confirmed, with m/ch being 1/3 to 115 of the conventional product.

〔発明の効果〕〔Effect of the invention〕

本発明はCaO系フラックスを添加して高級鋼を精製す
る精錬処理炉のダイレクトボンド系内張り煉瓦をCr2
O3含有量から36〜60重量%。
The present invention is a direct bond type lining brick of a refining processing furnace for refining high-grade steel by adding CaO type flux.
36-60% by weight from O3 content.

Al2O.含有量が10重量%以下、見掛気孔率17%
以下でかつ0 、1 m m以下の微粉部のCr。
Al2O. Content is 10% by weight or less, apparent porosity 17%
and 0.1 mm or less of Cr in the fine powder part.

03含有量が46〜80重量%にしたので、CaO及び
Sin、の侵入によるMgOの崩壊防止が図れさらに液
相生成温度の低い組織の生成防止が図れる為、耐食性の
大巾改善がなされ、溶損速度が低下し、炉寿命が延長す
ることにより精錬コストの低減が図れると共に補修サイ
クルも長くなり省力化を図れる等の多大な効果を奏する
ものである。
Since the 03 content is 46 to 80% by weight, it is possible to prevent the collapse of MgO due to the intrusion of CaO and Sin, and also to prevent the formation of a structure with a low liquid phase formation temperature. This reduces the loss rate and extends the life of the furnace, thereby reducing refining costs and lengthening the repair cycle, resulting in significant labor savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.1mm以下の後粉部のCr2O,含有量(
重量%)と溶損比%との関係を示す。 第2図はCr2O3含有量(重量%)と煉瓦の溶損比(
%)との関係を示す。 第3図は煉瓦のAl2O.含有量(重量%)と溶損寸法
(mm)との関係を示す。 第4図はCaO−Cr2O,系成分の状態図である。 特許出願人   播磨耐火煉瓦株式会社第1図 0.1mm以下の微粉部のCr2O3@有!!(重量Z
)第3図 A1203含有!(重量Z)
Figure 1 shows the Cr2O content (
% by weight) and the erosion ratio %. Figure 2 shows the Cr2O3 content (wt%) and brick erosion ratio (
%). Figure 3 shows the Al2O of bricks. The relationship between content (weight %) and erosion dimension (mm) is shown. FIG. 4 is a phase diagram of CaO-Cr2O system components. Patent applicant: Harima Refractory Brick Co., Ltd. Figure 1: Cr2O3 in the fine powder part of 0.1 mm or less! ! (Weight Z
) Figure 3 Contains A1203! (Weight Z)

Claims (2)

【特許請求の範囲】[Claims] (1)主成分としてMgOとCr_2O_3からなり、
煉瓦全体に含まれるCr_2O_3が36〜60重量%
、Al_2O_3が10重量%以下で、かつ煉瓦全体の
15〜50重量%を占める0.1mm以下の微粉部中の
Cr_2O_3が46〜80重量%からなる精錬処理容
器用高Cr_2O_3含有ダイレクトボンド煉瓦。
(1) Consisting of MgO and Cr_2O_3 as main components,
Cr_2O_3 contained in the whole brick is 36-60% by weight
, a high Cr_2O_3-containing direct bond brick for use in a refining processing vessel, comprising 10% by weight or less of Al_2O_3 and 46 to 80% by weight of Cr_2O_3 in the fine powder part of 0.1 mm or less, which accounts for 15 to 50% by weight of the entire brick.
(2)見掛気孔率が17%以下である特許請求の範囲第
1項記載の精錬処理容器用高Cr_2O_3含有ダイレ
クトボンド煉瓦。
(2) The high Cr_2O_3-containing direct bond brick for a refining processing vessel according to claim 1, which has an apparent porosity of 17% or less.
JP60258597A 1985-11-20 1985-11-20 Direct bond brick containing high cr203 for refinement vessel Granted JPS62119159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258597A JPS62119159A (en) 1985-11-20 1985-11-20 Direct bond brick containing high cr203 for refinement vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258597A JPS62119159A (en) 1985-11-20 1985-11-20 Direct bond brick containing high cr203 for refinement vessel

Publications (2)

Publication Number Publication Date
JPS62119159A true JPS62119159A (en) 1987-05-30
JPH0262513B2 JPH0262513B2 (en) 1990-12-25

Family

ID=17322477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258597A Granted JPS62119159A (en) 1985-11-20 1985-11-20 Direct bond brick containing high cr203 for refinement vessel

Country Status (1)

Country Link
JP (1) JPS62119159A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616695U (en) * 1992-07-31 1994-03-04 タキロン株式会社 Reversible translucent device

Also Published As

Publication number Publication date
JPH0262513B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
US5028257A (en) Metallurgical flux compositions
WO2021036974A1 (en) Method for controlling cold-rolled steel defect of titanium-containing ultra-low carbon steel
Buhr et al. The steel industry in Germany–trends in clean steel technology and refractory engineering
CN108465791B (en) Low-nickel high-nitrogen austenitic stainless steel continuous casting crystallizer casting powder
CN113943145A (en) Unburned magnesia carbon brick and preparation method and application thereof
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
US3340076A (en) Fused refractory castings
JPS62119159A (en) Direct bond brick containing high cr203 for refinement vessel
JP5448144B2 (en) Mug brick
JPH02225369A (en) Highly corrosion resistant brick for ladle
NO117628B (en)
JP7481982B2 (en) Manufacturing method of magnesia-chrome bricks
JP3009067B2 (en) Magnesia-Chromia refractories
US5206193A (en) High purity fused grain in the system Al2 O3 -Cr2 O3 -MGO
JP5388305B2 (en) Semili Bond Magnesia-Chrome Brick
KR101403581B1 (en) Flux and the method thereof
JPH07291716A (en) Basic refractory
JP3124799B2 (en) Refractory brick containing low silica fused magnesia clinker
JP2518559B2 (en) Refractory materials and their preparation method
JPH0543306A (en) Burnt refractory of magnesia-chromia
CN116532617A (en) Molten steel rare earth treatment method
KR100402013B1 (en) Method for making slag with waste alumina refratory
KR100340494B1 (en) Ladle slag aid for high clarity steel
Biswas et al. Refractory for Secondary Refining of Steel
JP2022056100A (en) Method for producing magnesia-chrome brick