JPS6211831A - Waveguide type optical switching element - Google Patents

Waveguide type optical switching element

Info

Publication number
JPS6211831A
JPS6211831A JP4184485A JP4184485A JPS6211831A JP S6211831 A JPS6211831 A JP S6211831A JP 4184485 A JP4184485 A JP 4184485A JP 4184485 A JP4184485 A JP 4184485A JP S6211831 A JPS6211831 A JP S6211831A
Authority
JP
Japan
Prior art keywords
waveguide
waveguides
distance
optical switch
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4184485A
Other languages
Japanese (ja)
Other versions
JPH0364048B2 (en
Inventor
Hideaki Okayama
秀彰 岡山
Keisuke Watanabe
敬介 渡辺
Shigehiro Kusumoto
楠本 茂宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4184485A priority Critical patent/JPS6211831A/en
Publication of JPS6211831A publication Critical patent/JPS6211831A/en
Publication of JPH0364048B2 publication Critical patent/JPH0364048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Abstract

PURPOSE:To relieve the preparing conditions for obtaining a cross state and to obtain a high extinction ratio by changing the widths of the 1st and 2nd waveguides according to the distance in the waveguide direction of an optical switch so as to maintain the adequate difference in the equiv. refractive index between the 1st and 2nd waveguides. CONSTITUTION:The 1st and 2nd waveguides 21, 22 are formed to a substrate consisting of LiNbO3-z or the like. Electrodes 23, 24 are respectively provided on the waveguides 21, 22. The width of the wave guide 21 is successively increased according to the increase of the waveguide distance z from the start point (z=0) of the guided wave of the optical switching element which is the one end edge of the electrodes 23, 24 to increase the equiv. refractive index together with the waveguide distance. The 2nd waveguide 22 is disposed to curve with respect to the 1st waveguide 21 to change the coupling coefft. between the waveguides 21 and 22 according to the increase of the waveguide distance.

Description

【発明の詳細な説明】 (産業−にの利用分野) この発明は導波型光スイッチ素子、特に導波路中を進む
光の進行方向を電気的に制御111来る導波型光スイッ
チ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a waveguide type optical switch element, and particularly to a waveguide type optical switch element in which the traveling direction of light traveling through a waveguide is electrically controlled 111.

(従来の技術) 従来、方向性結合器を用いた、偏波依存性のない光スイ
ッチ素子が提案されている(文献I:App1. Ph
ys、Lett、35(10) 、 15 Novem
ber 1979 、 p74B−750及び文献IF
 : IEEE JO口RNAL OFQUANTUM
 ELECTRONIC3,QE−18(10)、(1
982)、p +772−177!3)。
(Prior Art) Conventionally, an optical switch element using a directional coupler and having no polarization dependence has been proposed (Reference I: App 1. Ph
ys, Lett, 35(10), 15 Novem
ber 1979, p74B-750 and literature IF
: IEEE JO RNAL OFQUANTUM
ELECTRONIC3, QE-18 (10), (1
982), p +772-177!3).

ここに開示されている光スイッチ素子はLiNb0の基
板にTiを拡散して導波路を形成したタイプのものであ
る。この構造は、第5図に平面図で概略的に示すように
、幅が一定で直線ストライプ状の第一導波路lと、幅が
一定でかつ一定の曲率の曲線ストライプ状の第二導波路
2とを基板−Lに設け、さらに第一導波路l」二に第一
電極3を設け、第二導波路2上に第二電極4及び第三電
極5を設けた構造となでいる。第一電極3をアース側電
極とし、第二及び第三電極4及び5を制御電極として用
いている。
The optical switch element disclosed herein is of a type in which a waveguide is formed by diffusing Ti into a LiNb0 substrate. As schematically shown in a plan view in FIG. 5, this structure consists of a first waveguide l in the form of a straight stripe with a constant width and a second waveguide in the form of a curved stripe with a constant width and a constant curvature. 2 is provided on the substrate L, a first electrode 3 is provided on the first waveguide 1'2, and a second electrode 4 and a third electrode 5 are provided on the second waveguide 2. The first electrode 3 is used as a ground side electrode, and the second and third electrodes 4 and 5 are used as control electrodes.

この素子構造において、電極3の−L側端縁から下側端
縁の方向を導波方向とし及びこの−L側端縁からの導波
距離を2とし電極3の下側端縁までの導波距離(素子長
)をLとする。また、第一及び第二導波路l及び2間の
間隔なdとし、この間隔dは第二及び第三電極4及び5
の中間で最小となるように距#2に応じて順次に変化す
る構造となっている。この構造では、第二導波路2上の
第二及び第三電極4及び5にそれぞれ等しい電圧を可変
印加すると、あるしきい値電圧以−1−の広い範囲にわ
たって高い消光比(すなわち比の値が大きい)のパー(
Bar)状態が得られる。
In this element structure, the waveguide direction is from the -L side edge to the lower edge of the electrode 3, and the waveguiding distance from the -L side edge is 2, and the waveguide direction from the -L side edge to the lower edge of the electrode 3 is set to 2. Let L be the wave distance (element length). Also, the distance d between the first and second waveguides l and 2 is defined as the distance d between the second and third electrodes 4 and 5.
The structure is such that the distance changes sequentially according to the distance #2 so that the distance becomes the minimum in the middle of the distance #2. In this structure, when equal voltages are variably applied to the second and third electrodes 4 and 5 on the second waveguide 2, a high extinction ratio (i.e., ratio value) is obtained over a wide range of -1- above a certain threshold voltage. is large) of par (
Bar) state is obtained.

第5図に示す従来構造の光スイッチ素子は、このような
性質をもった(しきい値をもった)バー状態が得られる
現象を利用したものである。
The conventional optical switch element shown in FIG. 5 utilizes the phenomenon of obtaining a bar state having such properties (having a threshold value).

一般に、方向性結合器を用いた光スイッチ素子では、先
ず、結合長が素子長に一致するように作製し、二分割さ
れた第二及び第三電極4及び5にそれぞれ十及び−の゛
電圧を印加して結合長の微調整を図り、一方の導波路1
又は2の入力ポート(z = O)に入力した光りを他
方の導波路2又はlに乗り移らせてその出力ボート(Z
=L)から出力させる、いわゆる、クロス(cross
)状態を得ている。
Generally, in an optical switch element using a directional coupler, first, the coupling length is made to match the element length, and a voltage of 10 and - is applied to the second and third electrodes 4 and 5, which are divided into two. was applied to finely adjust the coupling length, and one waveguide 1
Alternatively, the light input to the input port of 2 (z = O) can be transferred to the other waveguide 2 or 1 and the output port (Z
=L), the so-called cross
) is getting the state.

他方、一方の導波路1又は2の入力ボートに入力した光
を直進させて同一の導波路l又は2の出力ボートから出
力させる。いわゆる、バー状態は、第二及び第三電極4
及び5に一様に同一の電圧を印加して得ている。
On the other hand, the light input to the input port of one waveguide 1 or 2 is made to travel straight and output from the output port of the same waveguide 1 or 2. The so-called bar state is the second and third electrode 4
and 5 by uniformly applying the same voltage.

ところで、通常、基板に使用しているLiNbO3の異
常光に対する電気光学効果は常光に対するよりも三倍大
きく、これがため、異常光の等価屈折率差は常光のそれ
よりも3倍大きい。従って、常光に対しバー状態が得ら
れるような電圧を印加しておけば、異常光に対して高い
消光比の八−状態を得ることが出来る。
By the way, the electro-optic effect of LiNbO3 used in the substrate for extraordinary light is usually three times greater than for ordinary light, and therefore the equivalent refractive index difference of extraordinary light is three times greater than that of ordinary light. Therefore, if a voltage is applied to obtain a bar state for ordinary light, an eight-state with a high extinction ratio can be obtained for extraordinary light.

また、常光及び異常光に対してクロス状態を得るには、
常光及び異常光の両方に対して結合長が一致しかつこの
結合長が素子長とほぼ一致するように設計と作成条件を
決定し、そして、二分割電極4及び5に十及び−の電圧
をそれぞれ印加して結合長の微調整を行って素子長と結
合長とを完全に一致させれば良い。
Also, to obtain a cross state for ordinary light and extraordinary light,
The design and manufacturing conditions are determined so that the coupling lengths match for both ordinary light and extraordinary light, and this coupling length almost matches the element length, and voltages of 0 and - are applied to the two-part electrodes 4 and 5. The element length and the bond length may be perfectly matched by applying each voltage and finely adjusting the bond length.

(発明が解決しようとする問題点) 上述した方V、では、常光及び異常光の両方に対して高
い消光比のバー状態を容易に得ることが出来る。
(Problems to be Solved by the Invention) In method V described above, a bar state with a high extinction ratio for both ordinary light and extraordinary light can be easily obtained.

しかしながら、−1−述したように、偏光の種類により
電気光学効果の大きさが異なることに起因し。
However, as mentioned above, this is due to the fact that the magnitude of the electro-optic effect differs depending on the type of polarized light.

て、クロス状態を得る場合に両方の光を制御しようとす
ると、一方のみの光を制御する場合に比べて等価屈折率
差や、結合係数の値等の作製条件の許容範囲が著しく狭
くなり、これがため、高い消光比を得ることは容易でな
かった。
Therefore, when trying to control both lights to obtain a cross state, the tolerance range for manufacturing conditions such as the equivalent refractive index difference and the value of the coupling coefficient becomes significantly narrower than when controlling only one light. For this reason, it has not been easy to obtain a high extinction ratio.

この発明の目的はクロス状態を得るための作製条件を緩
和し、高い消光比を得しかも簡単の電圧制御によって動
作する導波型光スイッチ素子を提供することにある。
An object of the present invention is to provide a waveguide type optical switch element which can ease the manufacturing conditions for obtaining a cross state, obtain a high extinction ratio, and operate by simple voltage control.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、相互間
の結合係数が、相芽間の間隔を光スイッチの導波方向の
距離に応じて順次に変えることによって、この距離に応
じて順次に変わるように設けられた第一及び第二導波路
と、これら導波路に関連させて設けられた電極とを基板
−にに具える導波型光スイッチ素子において、 これら第一及び第二導波路の等価屈折率差が前述の距離
に応じて変化しかつ光スイッチ素子の導波距離の中点で
零となるようにこれら第一及び第二導波路の両者又は一
方の幅をこの距離に応じて変化させてなる ことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, the mutual coupling coefficient is adjusted so that the spacing between the phase buds is sequentially adjusted according to the distance in the waveguide direction of the optical switch. A waveguide type optical switch comprising, on a substrate, first and second waveguides provided so as to change sequentially according to the distance, and electrodes provided in relation to these waveguides. In the element, the first and second waveguides are arranged such that the equivalent refractive index difference between the first and second waveguides changes according to the above-mentioned distance and becomes zero at the midpoint of the waveguide distance of the optical switch element. It is characterized in that the width of both or one of the two is changed according to this distance.

きらに、この発明の実施に当っては、これら第一及び第
二導波路の等価屈折率差をその距離に応じて一定の割合
で変化させるようにこれら一方又は両者の導波路の幅を
変化させてなるのが好適である。
Furthermore, in carrying out the present invention, the width of one or both of these waveguides is changed so that the equivalent refractive index difference between the first and second waveguides is changed at a constant rate depending on the distance between the first and second waveguides. It is preferable to let it.

さらに、これら第一及び第二導波路の両者又は一方の幅
を一定の割合で変化させ、これら導波路を、導波路間の
前述の間隔が前述の中点で最小となりかつこの導波路が
点対称となるように、配置するのが好適である。
Furthermore, the width of both or one of these first and second waveguides is varied at a constant rate, and these waveguides are arranged so that the above-mentioned spacing between the waveguides is the minimum at the above-mentioned midpoint and this waveguide is at a point. It is preferable to arrange them symmetrically.

さらに、この発明の実施に当り、電極を制御電極及びア
ース側電極とし、この制御電極を前述の第一導波路上に
設け、このアース側電極をこれら第一及び第二導波路外
に設けるのが好適である。
Furthermore, in carrying out the present invention, the electrodes are used as a control electrode and a ground side electrode, the control electrode is provided on the first waveguide, and the ground side electrode is provided outside of the first and second waveguides. is suitable.

(作用) この発明によれば、二つの導波路間の間隔を導波方向の
導波距離に応じて変化させることにより、結合係数に重
み付けを行っていることに追加して、導波路の幅を変化
させることによって導波路間の等価屈折率差に、素子中
央部で零となりかつ両端縁に向うに従って増大するよう
に、重み付けを行っているので、クロス状態を得るため
の等価屈折率差の範囲が広くなり、従って、偏波依存性
のない光スイッチ素子を構成した場合に容易にクロス状
態が得られる。
(Function) According to this invention, in addition to weighting the coupling coefficient by changing the interval between two waveguides according to the waveguide distance in the waveguide direction, the width of the waveguide is By changing the value, the equivalent refractive index difference between the waveguides is weighted so that it becomes zero at the center of the element and increases toward both edges. The range is wide, and therefore, a cross state can be easily obtained when an optical switch element without polarization dependence is constructed.

さらに、結合係数の値に対する条件が緩やかになるので
、偏波依存性のない光スイッチ素子を構成した場合、常
光及び異常光の結合係数を一致させる必要がない。
Furthermore, since the conditions for the value of the coupling coefficient are relaxed, when an optical switch element without polarization dependence is constructed, it is not necessary to match the coupling coefficients of ordinary light and extraordinary light.

さらに、パー状態に対しては、偏波によらず高い消光比
が得られる。
Furthermore, for the Par state, a high extinction ratio can be obtained regardless of polarization.

さらに、電圧を印加するのはバー状態の場合だけである
ので、電圧制御が簡単かつ容易となる。
Furthermore, since voltage is applied only in the bar state, voltage control becomes simple and easy.

(実施例) 以下、図面を参照して、この発明の実施例につき説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(A)はこの発明の導波型光スイッチ素子の一実
施例を概略的に示す線図である。同図において、21及
び22は第一及び第二導波路で、これらは基板に形成さ
れている。尚、この基板として例えばLiNbO3−Z
等のような、図の紙面に垂直な方向の電場に対して、ポ
ッケルヌ効果による屈折率の変化が大きい物質で形成S
れた基板を用いている。23及び24はこれら導波路2
1及び22上にそれぞれ設けた第一及び第二電極であり
、これら電極の一方の端縁を光スイッチ素子の導波の出
発点(Z−0の点)とし、他方の端縁を導波の終点(z
=Lの点)とする。
FIG. 1(A) is a diagram schematically showing an embodiment of the waveguide type optical switch element of the present invention. In the figure, 21 and 22 are first and second waveguides, which are formed on the substrate. Incidentally, as this substrate, for example, LiNbO3-Z
S made of a material that has a large change in refractive index due to the Pockerne effect in response to an electric field in a direction perpendicular to the paper plane of the figure, such as
It uses a polished board. 23 and 24 are these waveguides 2
1 and 22, respectively, one edge of these electrodes is used as the starting point for waveguide of the optical switch element (point Z-0), and the other edge is used as the waveguide point. end point (z
= point L).

この実施例においては、z=0の点から導波距離(伝搬
距離ともいう)2の増加に応じて21の幅を順次に広げ
、こうすることにより、等価屈折率が導波距離とともに
増加するように設計しである。一般には、この幅の増加
に従って等価屈折率は大きくなる。
In this example, the width of 21 is sequentially widened from the point z=0 as the waveguide distance (also referred to as propagation distance) 2 increases, and by doing this, the equivalent refractive index increases with the waveguide distance. It is designed as such. Generally, the equivalent refractive index increases as the width increases.

さらに、第二導波路22は第一導波路21に対しである
曲率を以って湾曲させて配置して、これら導波路21及
び22間の間隔dが素子の中点で最小となりかつ2の増
大に従って変化するように構成し、これにより21及び
22間の結合係数が導波距離Zの増大に応じて変化する
ようになしている。一般には、この間隔が拡がるにつれ
て結合係数は小さくなる。
Further, the second waveguide 22 is arranged so as to be curved with a certain curvature relative to the first waveguide 21, so that the distance d between these waveguides 21 and 22 is the minimum at the midpoint of the element, and The coupling coefficient between 21 and 22 is configured to change as the waveguide distance Z increases. Generally, as the spacing increases, the coupling coefficient decreases.

さらに、この実施例においては、従来の場合と異なり、
導波路構造により完全なりロス状態が得られるので、制
御電極として二分割電極を用いる必要がない。
Furthermore, in this embodiment, unlike the conventional case,
Since the waveguide structure provides a completely lossy state, there is no need to use a two-part electrode as a control electrode.

次に、第2図を参照して、第1図(A)に示す構造の光
スイッチ素子の動作原理につき説明する。
Next, with reference to FIG. 2, the operating principle of the optical switch element having the structure shown in FIG. 1(A) will be explained.

このような構造において、第一及び第二電極23及び2
4に電圧を印加しない場合及び十及び−の電圧を印加し
た場合の各導波路21及び22の等側屈折率n、1  
、  nl、及びn、A、l  、 nblを第2図に
それぞれ示す。同図において、横軸に伝搬距離(導波距
M)Zをプロットして示し及び縦軸に等側屈折率”ef
fをプロットして示す。
In such a structure, the first and second electrodes 23 and 2
Isometric refractive index n, 1 of each waveguide 21 and 22 when no voltage is applied to 4 and when voltages of 10 and - are applied
, nl, and n, A, l, nbl are shown in FIG. 2, respectively. In the figure, the horizontal axis plots the propagation distance (waveguide length M) Z, and the vertical axis shows the equilateral refractive index "ef".
f is plotted and shown.

先ず、クロス状態につき説明する。クロス状態を得るた
めに、第一及び第二電極23及び24に電圧を印加しな
いとする。この場合、第2図に示すように、等側屈折率
na、  nb は伝搬距離2の小さいところでは、n
、<nl、、であり、素子の中点であるz=1/2Lの
点ではna =rrl)である。さらに、2が大きいと
ころでは、na > nl)となっている。
First, the cross state will be explained. In order to obtain a crossed state, it is assumed that no voltage is applied to the first and second electrodes 23 and 24. In this case, as shown in FIG. 2, the isolateral refractive indexes na, nb are n
, <nl, , and at the point z=1/2L, which is the midpoint of the element, na =rrl). Furthermore, where 2 is large, na > nl).

この状態を得るために、第1図(A)に示す構造では、
導波路21の幅がz=0の点からz=Lの点に向うに従
って、テーパ状に拡げていると共に、素子の中点で両導
波路21及び22の幅を等しくしである。
In order to obtain this state, in the structure shown in FIG. 1(A),
The width of the waveguide 21 widens in a tapered manner from the point z=0 toward the point z=L, and the widths of both waveguides 21 and 22 are made equal at the midpoint of the element.

ところでクロス状態を得るための条件は、nを伝搬距離
2の一次関数とし、及び結合係数をKo exp(−(
z−L/2) 2/ r)として、結合方程式から求め
られる。但し、Lは素子長、r及びKOは導波路間隔に
より決まる定数である。この場合、第5図に示すように
伝搬距離2に対して第一導波路21の等側屈折率が変化
しない(Δn=0)時は、−に述したKoとrの値によ
り、第1図(A)に示す構造の片方の導波路の入力ボー
ト(z=0)から入力された光が出力ボート(z=L)
まで進む間に何回これら二つの導波路21及び22間を
移り合うかが決定されることになる(文献二I参照)。
By the way, the conditions for obtaining a cross state are that n is a linear function of propagation distance 2, and the coupling coefficient is Ko exp(-(
z−L/2) 2/ r) is obtained from the bond equation. However, L is the element length, and r and KO are constants determined by the waveguide spacing. In this case, when the isolateral refractive index of the first waveguide 21 does not change with respect to the propagation distance 2 (Δn=0) as shown in FIG. The light input from the input port (z=0) of one waveguide in the structure shown in Figure (A) is transmitted to the output port (z=L).
It is determined how many times these two waveguides 21 and 22 are to be changed over the course of the process (see Reference 2I).

ここで、第一導波路21の等側屈折率が、第5図に示し
た場合のように、変化しない(Δn=0)とした時に、
光が両導波路21及び22間を移り合う回数が3回置−
1−となるようにK。及びrを設定している場合(第3
図(^))には、第1図(A)に示すように、第一導波
路21の幅の拡がり角度を太きくしていって、素子両端
(z=0.z=L)における等側屈折率n 及びn の
差△nを充分大きくしていくと (△n≧Ko/(2π
/入))、第3図(B)及び(C)で示したようなりロ
ス状態(消光比−2odB)が得られる。なお、ここで
第3図(A)〜(C)は伝搬距離2と光パワーとの関係
を示す特性曲線図で、いずれもr=500とし、かつ、
K。
Here, when it is assumed that the isolateral refractive index of the first waveguide 21 does not change (Δn=0) as in the case shown in FIG.
The number of times the light moves between both waveguides 21 and 22 is 3 times.
K so that it becomes 1-. and r is set (third
As shown in FIG. 1(A), the expansion angle of the width of the first waveguide 21 is increased to create equal sides at both ends of the element (z=0.z=L). If the difference △n between the refractive indices n and n is made sufficiently large, (△n≧Ko/(2π
/in)), a loss state (extinction ratio -2 odB) as shown in FIGS. 3(B) and 3(C) is obtained. Note that FIGS. 3(A) to 3(C) are characteristic curve diagrams showing the relationship between propagation distance 2 and optical power, in which r = 500, and
K.

−〇、15とした時、(A)はΔn/に、=0のとき、
(B)は△n / K o ” 1.3/(271/入
)のとき及び(C)は△n / K o = 4 / 
(2Z /入)のときをそれぞれ示し、さら番孔これら
図において、点線は光を入力した導波路の光パワーを示
し及び実線は光を入力させなかった導波路の光パワーを
示している。
-〇, when 15, (A) is Δn/, when = 0,
(B) is when △n/K o ” 1.3/(271/in) and (C) is when △n/K o = 4/
In these figures, the dotted line indicates the optical power of the waveguide into which light is input, and the solid line indicates the optical power of the waveguide into which no light is input.

従来例と比較すると、第5図に示す従来の光スイッチ素
子の場合には、第3図(A)に示すように素子長と結合
長とが一致していなければ、第二及び第三電極4及び5
に十及び−の電圧をそれぞれ印加して、素子長と結合長
とを一致させてクロス状態を得るようにするが、この場
合には、第3図(A)に示すような状態では最適な電圧
値からのずれの許容範囲が狭いので(−20dB) 、
電圧によって生じる一様な等側屈折率変化Δne の許
容範囲も狭く、これがため、両偏光の電気光学効果の大
きさが異なる常光及び異常光の両偏光に対し同時にクロ
ス状態をttすることは不可能である。
In comparison with the conventional example, in the case of the conventional optical switch element shown in FIG. 5, if the element length and the coupling length do not match as shown in FIG. 3(A), the second and third electrodes 4 and 5
By applying voltages of 10 and -, respectively, the element length and the bond length are matched to obtain a cross state. In this case, the state shown in Figure 3 (A) is optimal. Since the tolerance range for deviation from the voltage value is narrow (-20dB),
The tolerance range for the uniform isolateral refractive index change Δne caused by voltage is also narrow, and for this reason, it is impossible to create a cross state at the same time for both ordinary and extraordinary polarized light, which have different electro-optic effects. It is possible.

しかし、この実施例のように、導波路21の幅を導波方
向に沿ってテーパ状に幅広に変化させておくと、構造的
に広い等側屈折率変化△n8の範囲でクロス状態を得る
ことが出来、従って、光スイッチ素子の製作条件を大き
く緩和させることが出来る。
However, if the width of the waveguide 21 is varied in a tapered manner along the waveguide direction as in this embodiment, a cross state can be obtained within a structurally wide range of isolateral refractive index change Δn8. Therefore, the manufacturing conditions of the optical switch element can be greatly relaxed.

次に、第4図(A)及びCB)を参照して、八−状態に
つき説明する。第4図(A)及び(B)は第3図(A)
〜(C)と同様な伝搬距離と光パワーとの関係を示した
特性曲線図である。これらはr = 500、KO=O
,I5及び△n / K o = 1.37 (2π/
入)での条件で示したものであり、<A)の場合には△
n ’ / K o = 1.? / (27j /入
)及び(B)の場合にはΔn ’ /Ko = 6/ 
C27Li入)である。そして、図中、点線は光を入力
した導波路の光パワーであり、実線は光を入力させなか
った方の導波路の光パワーである。
Next, the eight-state will be explained with reference to FIGS. 4(A) and CB). Figure 4 (A) and (B) are Figure 3 (A)
It is a characteristic curve diagram showing the relationship between propagation distance and optical power similar to (C). These are r = 500, KO = O
, I5 and △n/K o = 1.37 (2π/
In the case of <A), △
n'/Ko = 1. ? / (27j /in) and in the case of (B), Δn' /Ko = 6/
(contains C27Li). In the figure, the dotted line represents the optical power of the waveguide into which light is input, and the solid line represents the optical power of the waveguide into which light is not input.

バー状態を得るためには、電極23及び24に十及び−
の電圧をそれぞれ印加する。この場合には、導波路21
及び22間には第2図に示すように等側屈折率差△n゛
が生ずる。この時、この種の方向性結合器の性質により
導波路21の入カポ−) (Z−〇)から入力された光
は導波路22にはほとんど移ることはなく、導波路21
の出力ボート(Z=L)から出力される。
To obtain the bar state, the electrodes 23 and 24 must be
Apply a voltage of . In this case, the waveguide 21
As shown in FIG. 2, an isolateral refractive index difference Δn′ occurs between and 22. At this time, due to the properties of this type of directional coupler, the light input from the input capacitor (Z-) of the waveguide 21 hardly transfers to the waveguide 22;
is output from the output port (Z=L).

この実施例では、従来の光スイッチ素子と同様に、ある
△ l(電圧)以−にでは、−18dB以下に消光比が
低下することはない(第4図(A)及び(B))。
In this embodiment, as with the conventional optical switch element, the extinction ratio does not decrease below -18 dB at a certain Δl (voltage) (FIGS. 4(A) and 4(B)).

第1図(B)はこの発明の他の実施例を示し、この場合
には、第一及び第二導波路21及び22の両方の幅をテ
ーパ状に変え、第一導波路21では導波距離に従って広
くし、第二導波路22では狭くし、しかも、両導波路2
1及び22に導波距離りの中点で間隔が最小となるよう
な曲率を設けて入力された導波路によって特性にバラツ
キが生じるのを防止している。
FIG. 1(B) shows another embodiment of the present invention, in which the widths of both the first and second waveguides 21 and 22 are tapered, and the first waveguide 21 has a waveguide It is widened according to the distance, narrowed in the second waveguide 22, and both waveguides 2
1 and 22 are provided with a curvature such that the interval is minimum at the midpoint of the waveguide distance to prevent variations in characteristics due to the input waveguide.

第1図(C)はこの発明のさらに他の実施例を示し、こ
の場合には、第一導波路21−1−のみに第二電極24
を設け、第一電極23をその左側に第一導波路21から
外して設け、しかも、第二導波路22の上には電極を設
けない構造となしている。このようにすることにより、
KTNやPLZTのようなカー効果を示す物質に対して
動作する光スイッチ素子構造となる。
FIG. 1(C) shows still another embodiment of the present invention, in which the second electrode 24 is provided only in the first waveguide 21-1-.
is provided, and the first electrode 23 is provided on the left side thereof apart from the first waveguide 21, and in addition, no electrode is provided above the second waveguide 22. By doing this,
This provides an optical switch element structure that operates on substances exhibiting the Kerr effect, such as KTN and PLZT.

(発明の効果) 一上述した説明からも明らかなように、この発明の導波
型光スイッチ素子によれば、クロス状態を得るための等
側屈折率差の範囲が広いため、偏波依存のない光スイッ
チを構成した場合でも、容易にクロス状態を得ることが
出来る。
(Effects of the Invention) (1) As is clear from the above explanation, according to the waveguide type optical switch element of the present invention, the range of isolateral refractive index difference for obtaining a cross state is wide, so polarization dependence is reduced. Even if an optical switch is configured without any cross state, a cross state can be easily obtained.

また、この発明によれば、結合係数の値に対する条件が
緩和されるので、偏波依存のない光スイッチを構成した
場合でも、常光及び異常光の両側光の結合係数を一致さ
せる必要はない。
Further, according to the present invention, the conditions for the value of the coupling coefficient are relaxed, so even if an optical switch without polarization dependence is configured, it is not necessary to match the coupling coefficients of the ordinary light and the extraordinary light on both sides.

さらに、この発明によれば、偏波によらずして高い消光
比のバー状態を得ることが出来る。
Further, according to the present invention, a bar state with a high extinction ratio can be obtained regardless of polarization.

さらに、この発明によれば、電極に電圧を印加するのは
バー状態を得る場合だけであるので、従来よりも電圧制
御が簡単かつ容易となる。
Furthermore, according to the present invention, voltage is applied to the electrodes only when a bar state is obtained, making voltage control simpler and easier than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)はこの発明の導波型光スイッチ素
子の構造を説明するための略図的平面図、第2図はこの
発明の説明に供する、動作時における等側屈折率の変化
を示す特性曲線図、第3図(A)〜(G)及び第4図(
A)及び(B)はこの発明の導波型光スイッチ素子の動
作を説明するための伝搬距離と光パワーとの関係を示す
特性曲線図、 第5図は従来の導波型光スイッチ素子の説明に供する略
図的平面図である。 21・・・第一導波路、   22・・・第二導波路2
3・・・第一電極、    24・・・第二電極。 I  C− へ   − ト  −d                    
−ム、\t1−ムJ(’M−−ムーx/J ど−ど) −一         ロコ 一ノ                \ノ′手続補正
書 昭和61年6月411
FIGS. 1(A) to (C) are schematic plan views for explaining the structure of the waveguide type optical switch element of the present invention, and FIG. 2 is an isolateral refractive index during operation for explaining the present invention. Characteristic curve diagrams showing changes in , Figures 3 (A) to (G) and Figure 4 (
A) and (B) are characteristic curve diagrams showing the relationship between propagation distance and optical power to explain the operation of the waveguide type optical switch element of the present invention. FIG. 2 is a schematic plan view for explanation. 21...First waveguide, 22...Second waveguide 2
3...first electrode, 24...second electrode. I C- to -d
-mu, \t1-muJ ('M--mu x/J do-do) -1 locoichino \no' Procedural Amendment June 1986 411

Claims (4)

【特許請求の範囲】[Claims] (1)相互間の結合係数が、相互間の間隔を光スイッチ
の導波方向の距離に応じて順次に変えることによって、
該距離に応じて順次に変わるように設けられた第一及び
第二導波路と、これら導波路に関連させて設けられた電
極とを基板上に具える導波型光スイッチ素子において、 前記第一及び第二導波路の等価屈折率差が前記距離に応
じて変化しかつ該光スイッチ素子の導波距離の中点で零
となるように前記第一及び第二導波路の両者又は一方の
幅を前記距離に応じて変化させてなる ことを特徴とする導波型光スイッチ素子。
(1) The mutual coupling coefficient can be changed by sequentially changing the mutual spacing according to the distance in the waveguide direction of the optical switch.
A waveguide optical switch element comprising, on a substrate, first and second waveguides provided to vary sequentially according to the distance, and electrodes provided in association with these waveguides, Both or one of the first and second waveguides is adjusted such that the equivalent refractive index difference between the first and second waveguides changes according to the distance and becomes zero at the midpoint of the waveguide distance of the optical switch element. A waveguide type optical switch element characterized in that the width is changed according to the distance.
(2)特許請求の範囲第1項記載の導波型光スイッチ素
子において、前記第一及び第二導波路の等価屈折率差を
前記距離に応じて一定の割合で変化させるように前記導
波路の一方又は両者の幅を変化させてなることを特徴と
する導波型光スイッチ素子。
(2) In the waveguide type optical switch element according to claim 1, the waveguide is configured such that the equivalent refractive index difference between the first and second waveguides is changed at a constant rate according to the distance. A waveguide type optical switch element characterized in that the width of one or both of the two is changed.
(3)特許請求の範囲第2項記載の導波型光スイッチ素
子において、前記第一及び第二導波路の両者又は一方の
幅を一定の割合で変化させ、これら導波路を、該導波路
間の前記間隔が前記中点で最小となりかつ該導波路が点
対称となるように、配置してなることを特徴とする導波
型光スイッチ素子。
(3) In the waveguide type optical switch element according to claim 2, the width of both or one of the first and second waveguides is changed at a constant rate, and these waveguides are A waveguide type optical switch element, characterized in that the waveguide is arranged so that the distance between the two is minimum at the midpoint and the waveguide is point symmetrical.
(4)特許請求の範囲第1項記載の導波型光スイッチ素
子において、前記電極を制御電極及びアース側電極とし
、該制御電極を前記第一導波路上に設け、前記アース側
電極を前記第一及び第二導波路外に設けてなることを特
徴とする導波型光スイッチ素子。
(4) In the waveguide type optical switch element according to claim 1, the electrode is a control electrode and a ground side electrode, the control electrode is provided on the first waveguide, and the ground side electrode is connected to the ground side electrode. A waveguide type optical switch element, characterized in that it is provided outside the first and second waveguides.
JP4184485A 1985-03-05 1985-03-05 Waveguide type optical switching element Granted JPS6211831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184485A JPS6211831A (en) 1985-03-05 1985-03-05 Waveguide type optical switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184485A JPS6211831A (en) 1985-03-05 1985-03-05 Waveguide type optical switching element

Publications (2)

Publication Number Publication Date
JPS6211831A true JPS6211831A (en) 1987-01-20
JPH0364048B2 JPH0364048B2 (en) 1991-10-03

Family

ID=12619561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184485A Granted JPS6211831A (en) 1985-03-05 1985-03-05 Waveguide type optical switching element

Country Status (1)

Country Link
JP (1) JPS6211831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983006A (en) * 1988-03-29 1991-01-08 Nec Corporation Polarization-independent optical waveguide switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983006A (en) * 1988-03-29 1991-01-08 Nec Corporation Polarization-independent optical waveguide switch

Also Published As

Publication number Publication date
JPH0364048B2 (en) 1991-10-03

Similar Documents

Publication Publication Date Title
US3920314A (en) Mode conversion and mode separation branched dielectric waveguide element for light
US4448479A (en) Traveling wave, electrooptic devices with effective velocity matching
US7088875B2 (en) Optical modulator
US4157860A (en) Dual polarization electromagnetic switch and modulator
US4070094A (en) Optical waveguide interferometer modulator-switch
US4070092A (en) Active waveguide branch with variable synchronism
US4243295A (en) Polarization-independent optical directional coupler switch/modulator
US4291939A (en) Polarization-independent optical switches/modulators
US4679893A (en) High switching frequency optical waveguide switch, modulator, and filter devices
US6842569B2 (en) Polarization independent broad wavelength band optical switches/modulators
US4866406A (en) Wide-band optical modulator
US4679894A (en) Electrically switched fiber optic directional coupler
KR0138850B1 (en) Te-tm mode converter on polymer waveguide
US7155088B2 (en) Optical modulator and optical modulator array
JPH08101363A (en) Birefringence acoustooptic tunable filter that can be controlled and laser tuned with filter thereof
US4983006A (en) Polarization-independent optical waveguide switch
JPH02232632A (en) Low crosstalk inversion delta beta electrode for directive connector switch
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPS6211831A (en) Waveguide type optical switching element
US4185884A (en) Four port optical internal reflectance switchable coupler
US4199221A (en) Electro-optic thin-film waveguide modulator device
JPS63261219A (en) Optical modulator element
US5495544A (en) Polarization-independent electro-optically switched directional coupler
JPS61208036A (en) Waveguide type optical switching element
JP4104027B2 (en) Directional coupled electro-optic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term