JPS62116844A - Central monitor and control system for air-conditioning machine - Google Patents

Central monitor and control system for air-conditioning machine

Info

Publication number
JPS62116844A
JPS62116844A JP60255558A JP25555885A JPS62116844A JP S62116844 A JPS62116844 A JP S62116844A JP 60255558 A JP60255558 A JP 60255558A JP 25555885 A JP25555885 A JP 25555885A JP S62116844 A JPS62116844 A JP S62116844A
Authority
JP
Japan
Prior art keywords
control
weather
control constant
air
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60255558A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osanawa
博之 長縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP60255558A priority Critical patent/JPS62116844A/en
Publication of JPS62116844A publication Critical patent/JPS62116844A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Abstract

PURPOSE:To permit respective terminal controllers to carry out the automatic control of air conditioning employing optimum control constants every day and realize stabilized air- conditioning throughout a year by a method wherein the optimum value of a necessary control constant is operated every day throughout a year and a day having the nearest pattern in reference the weather forecast and a standard weather data of the day is selected while the control constant of that day is commanded from the CPU to respective terminal controllers. CONSTITUTION:A proper control constant is assumed in the CPU 10 as an initial value and the control condition of an air-conditioning space is simulated by employing the control constant to decide whether an excessive amount (difference) is exceeding predetermined upper and lower limits or not based on the result of the simulation whereby the control constant is corrected when the difference has exceeded the upper or lower limit to determine the optimum control constant. The control constant and the latest weather information, sent by a weather satellite and inputted by an operating means 61, are analyzed in the CPU 10 and a weather condition, optimum for an anticipated weather condition, is determined by a control constant determining means 63 while collating it with a standard weather data and, thereafter, the optimum control constants are commanded to respective terminal controllers 301-30n from the CPU 10 by a control constant commanding means 64.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビルディング等の空気調和機の中央監視制御シ
ステムにおいて中央装置からの指令に基づき各空気調和
機に接続した端末制御器が空気調和機を自動制御する分
散制御型中央監視制御システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a central monitoring and control system for air conditioners in buildings, etc., in which a terminal controller connected to each air conditioner automatically controls the air conditioners based on commands from the central device. This invention relates to a distributed control central supervisory control system.

従来の技術 一般にビルディングにおける空気調和機の中央監視制御
システムでは、中央装置から伝送路を介して与えられる
制御指令に応じて該当空気調和機を自動制御する分散制
御型のシステムが普及している(たとえば特公昭57−
172131号公報)。
Conventional Technology In general, in central monitoring and control systems for air conditioners in buildings, distributed control systems that automatically control the air conditioners in accordance with control commands given from a central device via a transmission line have become widespread ( For example, the special public service in 1977-
172131).

発明が解決しようとする問題点 しかしながら、前記従来の中央監視制御システムでは一
般に各端末制御器が実行すべき空調自動制御の制御定数
は対象空調空間の熱的特性によって異なるため、各端末
制御器毎に建物の完成前後に現場調整を行なうことによ
り決定していた。しかし、前記現場調整には大変な労力
を要していた。
Problems to be Solved by the Invention However, in the conventional central monitoring and control system, the control constants for automatic air conditioning control to be executed by each terminal controller generally vary depending on the thermal characteristics of the target air-conditioned space. The decision was made through on-site adjustments before and after the building was completed. However, the on-site adjustment required a great deal of effort.

また、前記現場調整は建物の完成前後に行なうものであ
るが、これによって決定される制御定数は季節毎に変動
する対象空調空間の熱的特性の限られた部分しか満足す
ることができず、年間を通じて季節毎に最適な制御定数
を決定し安定した自動制御を実行することは困難であっ
た。
Furthermore, although the on-site adjustment is performed before and after the building is completed, the control constants determined by this adjustment can only satisfy a limited portion of the thermal characteristics of the target air-conditioned space, which vary from season to season. It has been difficult to determine optimal control constants for each season throughout the year and to implement stable automatic control.

さらに、季節毎に最適な制御定数を予測決定し、季節毎
に制御定数を変更していくシステムが実現されたとして
も、毎日の天候の変化による対象空調空間の熱的特性の
変動には対応できず、不適な制御定数を用いて自動制御
をする日が多数発生し、真に年間を通じて安定した自動
制御を実行するには到らなかった。
Furthermore, even if a system that predicts and determines the optimal control constants for each season and changes the control constants for each season is realized, it will not be able to cope with fluctuations in the thermal characteristics of the target air-conditioned space due to daily changes in weather. There were many days when automatic control was performed using inappropriate control constants, and it was not possible to perform automatic control that was truly stable throughout the year.

本発明は前記従来の問題に留意し、現場調整工数を極少
とした上で、各空調空間毎に年間を通じて最適な制御定
数を用いて自動制御できる空気調和機の中央監視制御シ
ステムを提供するにある。
The present invention takes into account the above-mentioned conventional problems and provides a central monitoring and control system for air conditioners that can automatically control each air-conditioned space using optimal control constants throughout the year while minimizing the number of on-site adjustment steps. be.

問題点を解決するだめの手段 本発明は、分散設置された複数の空気調和機の集中管理
を行なう中央装置と、前記空気調和機にそれぞれ対応し
て設けられ前記中央装置から与えられる指令に基づき該
当する空気調和機を自動制御する複数の端末制御器と、
前記複数の端末制御器と前記中央装置とを結合する共通
の伝送路とからなり、前記中央装置は、あらかじめ入力
された標準気象・データに基づき前記端末制御器が自動
制御を実行する場合に必要とする制御定数を演算する制
御定数演算手段(60)と、気象情報入力手段と、前記
気象情報入力手段により人力された気象情報を解析し天
気予報を決定する天気予報決定手段と、前記天気予報決
定手段により決定された天気予報データと前記標準気象
データとを照合し前記制御定数を決定する制御定数決定
手段と、前記制御定数決定手段が決定した制御定数を前
記各端末制御器に指令する制御定数指令手段とを備えた
ものである。
Means for Solving the Problems The present invention provides a central device that centrally manages a plurality of distributed air conditioners, and a system that is provided corresponding to each of the air conditioners and based on commands given from the central device. multiple terminal controllers that automatically control the applicable air conditioners,
It consists of a common transmission line that connects the plurality of terminal controllers and the central device, and the central device is necessary when the terminal controller executes automatic control based on standard weather/data input in advance. a control constant calculation means (60) for calculating a control constant, a weather information input means, a weather forecast determination means for determining a weather forecast by analyzing the weather information manually input by the weather information input means, and the weather forecast control constant determining means for determining the control constant by comparing the weather forecast data determined by the determining means with the standard weather data; and control for instructing each terminal controller to use the control constant determined by the control constant determining means. constant command means.

作用 本発明は、前記構成によって、中央装置において標準気
象データに基づいて各空調空間の制御状態をシミュレー
ションし空調自動制御を実行する場合に必要な制御定数
の最適値を年間を通じて各日に対して、演算し、当日の
天気予報と標準気象データを照合し最も近いパターンの
日を選定し中央装置より各端末制御器に該当日の制御定
数を指令することにより、各端末制御器が毎日最適な制
御定数を用いて空調自動制御を実行し、年間を通じて安
定した空調空間を現出することができることとなる。
According to the above-described configuration, the present invention simulates the control state of each air-conditioned space based on standard weather data in the central device, and determines the optimum value of the control constant necessary for executing automatic air-conditioning control for each day throughout the year. , calculates, compares the weather forecast for that day with standard weather data, selects the day with the closest pattern, and then instructs each terminal controller to control constants for the corresponding day from the central device. By using control constants to automatically control air conditioning, it is possible to create a stable air-conditioned space throughout the year.

実施例 第1図は本発明の空気調和機の中央監視制御システムの
実施例の構成図、第2図は制御定数を決定する原理の室
内温度変化図、第3図は制御定数演算用のプログラムの
一例の70−チャート、第4図は空調空間の制御状態を
シミュレーション用プログラムの一例であるフローチャ
ート、を示す。
Embodiment FIG. 1 is a configuration diagram of an embodiment of the central monitoring and control system for an air conditioner according to the present invention, FIG. 2 is an indoor temperature change diagram showing the principle of determining control constants, and FIG. 3 is a program for calculating control constants. FIG. 4 shows a flowchart of an example of a program for simulating the control state of an air-conditioned space.

本発明の詳細な説明する。The present invention will be described in detail.

図において’1 (tのはビル内に分散設置された空気
調和機20□〜2onの集中管理を行なう中央装置、3
0□〜30nは中央装置(lO)から与えられる指令に
応じて各々該当する空気調和機201〜20nを自動制
御する端末制御器で、内部構成は一般的なマイクロコン
ピュータである。(40)は中央装置(lo)と端末制
御器30□〜30nを結合するための伝送路で、中央装
置00)と端末制御器301〜30nの有する伝送手段
により中央装置(10)からの指令を各端末制御器30
□〜30r1 に与え、また各端末制御器30□〜30
]1からの情報が中央装置に送られ共通に使用される。
In the figure, '1 (t) is the central unit that centrally controls the air conditioners 20□~2on installed distributed within the building.
0□ to 30n are terminal controllers that automatically control the corresponding air conditioners 201 to 20n, respectively, according to commands given from the central unit (lO), and the internal configuration is a general microcomputer. (40) is a transmission line for coupling the central device (lo) and the terminal controllers 30□ to 30n, and commands from the central device (10) are transmitted through the transmission means of the central device 00) and the terminal controllers 301 to 30n. Each terminal controller 30
□~30r1, and each terminal controller 30□~30
]1 is sent to the central unit for common use.

(50)は気象衛生から送られてくる気象情報を中央袋
11ft (10)が受信するためのパラボラアンテナ
であり、気象情報を中央装置(lのに入力するためのイ
ンターフェース回路を内蔵している。
(50) is a parabolic antenna for the central bag 11ft (10) to receive weather information sent from the meteorological sanitary station, and has a built-in interface circuit for inputting the weather information to the central unit (1). .

中央装置(10)は、あらかじめ入力された標準気象デ
ータに基づき端末制御器30□〜30nが自動制御を実
行する場合に必要とする制御定数をあらがじめ演算する
制御定数演算手段(6o)と、パラボラアンテナ(50
)を介して気象衛生より気象情報を直接入力する気象情
報人力手段(61)と、気象情報入力手段(61)によ
り入力された気象情報を解析し、当日の天気予報を決定
する天気予報決定手段(62)と、天気予報決定手段(
62)により決定した天気予報と標準気象データを照合
し最適な制御定数を決定する制御定数決定手段(63)
と、この決定された制御定数を各端末制御器30□〜3
0nに中央装置(+0)を介して伝送路(40)を介し
て指令する制御定数指令手段(64)とから構成されて
いる。
The central device (10) includes a control constant calculation means (6o) that calculates in advance control constants required when the terminal controllers 30□ to 30n execute automatic control based on standard weather data input in advance. and a parabolic antenna (50
), a weather information manual means (61) that directly inputs weather information from the meteorological station; and a weather forecast determining means that analyzes the weather information input by the weather information input means (61) and determines the weather forecast for the day. (62) and weather forecast determination means (
Control constant determining means (63) that compares the weather forecast determined by 62) with standard weather data and determines the optimal control constants.
Then, the determined control constant is transmitted to each terminal controller 30□ to 3.
The control constant command means (64) provides commands to the control constants 0n via the transmission line (40) via the central device (+0).

次に第2図〜第4図により制御定数演算手段(60)の
原理を説明する。
Next, the principle of the control constant calculating means (60) will be explained with reference to FIGS. 2 to 4.

一般に空気調和においては空気調和機20 〜20i 
     n に設けた種々のアクチュエータを適切に駆動して空調空
間の環境を適正に保っていくが、その中で特に影響の大
きい冷温水制御弁の開度をP工制御する場合を例とする
と基本式(11および動作式(2)は次のように表わさ
れる。
In general, air conditioners 20 to 20i
The environment of the air-conditioned space is maintained appropriately by appropriately driving the various actuators installed in the air conditioner, but the basics are as follows: Equation (11) and operation equation (2) are expressed as follows.

ここでMVは弁の位置出力、θは計測値の設定値よりの
偏差、K は比例ゲイン、T1は積分時間、τはサンプ
ル周期を表わす。そしてこの式におけるKp + ’:
ll’ 1 + τ等の制御定数が適切に選定されると
第2図のように空調空間内の温度は速かに制定され行き
過ぎ量も小さいが、制御定数が不適切な場合は室内温度
がハンチングをし、制定時間が長くなり、行き過ぎ量も
大きくなる。
Here, MV is the valve position output, θ is the deviation of the measured value from the set value, K is the proportional gain, T1 is the integration time, and τ is the sampling period. And Kp + ' in this formula:
If the control constants such as ll' 1 + τ are appropriately selected, the temperature in the air-conditioned space will be established quickly and the amount of excess will be small, as shown in Figure 2, but if the control constants are inappropriate, the indoor temperature will decrease. Hunting occurs, the establishment time becomes longer, and the amount of overshoot becomes larger.

次に、本発明の一実施例として行き過ぎ量に着目した場
合の制御定数演算の過程を第3図のフローチャートを用
いて説明する。
Next, as an embodiment of the present invention, the process of calculating control constants when focusing on the overshoot amount will be explained using the flowchart shown in FIG.

中央装置(10)において、ステップ(70)で適当な
制御定数を初期値として仮定し、ステップ(71)でこ
の制御定数を用いて空調空間の制御状態をシミュレーシ
ョンし、この結果に基づき行き過ぎ量(偏差)が所定の
上下限を越えることがなかったかどうかをステップ(7
2)で判定し、偏差が上下限を越えた場合はステップ(
73)で制御定数を修正しステップ(71)から繰り返
すことにより最適な制御定数を決定するものである。
In the central device (10), a suitable control constant is assumed as an initial value in step (70), the control state of the air-conditioned space is simulated using this control constant in step (71), and the overshoot amount ( Check whether the deviation) did not exceed the predetermined upper and lower limits.
2), and if the deviation exceeds the upper and lower limits, step (
The optimum control constant is determined by modifying the control constant in step 73) and repeating from step (71).

また制御状態をシミュレーションするプログラム(71
)概要を第4図を用いて説明する。
There is also a program (71) that simulates the control state.
) The outline will be explained using Fig. 4.

まずステップ(80)で対象とする空調空間の形状、建
築構造から演算される熱的特性等を設定する建物データ
(81)および対象とする空調空間を空調する空気調和
機の能力、アクチュエータの構成制御定数等を設定する
機器データ(82)を入力し、これらを演算してステッ
プ(83)で初期設定とする。次にステップ(84)〜
ステップ(SS)の時間ループの中で空調空間の制御状
態を演算するもので、まずステップ(84)ではシミュ
レーションを実行すべき日の標準気象データ(85)を
入力し、この外乱に対する空気調和機の空調制御をステ
ップ(86)で計算しステップ(87)では外乱と空調
制御の結果より室内環境が計算され、その結果をステッ
プ(88)で保存し、出力するものである。そして、保
存された計算結果(89)が第3図におけるステップ(
72)に渡されるものである。
First, in step (80), building data (81) sets the shape of the target air-conditioned space, thermal characteristics calculated from the building structure, etc., the ability of the air conditioner to air-condition the target air-conditioned space, and the configuration of the actuator. Device data (82) for setting control constants, etc. are input, and these are calculated and initialized in step (83). Next step (84) ~
The control state of the air conditioned space is calculated in the time loop of step (SS). First, in step (84), the standard weather data (85) of the day on which the simulation is to be executed is input, and the air conditioner is The air conditioning control is calculated in step (86), the indoor environment is calculated from the disturbance and the results of the air conditioning control in step (87), and the results are stored and output in step (88). The saved calculation result (89) is then used as the step (
72).

このようにして、中央装置(20)において、制御定数
、演算手段(61)により入力した最新の気象衛星より
送られてきた気象情報を解析し、天気予報決定手段(6
2)により当日の天気予報を決定する。
In this way, in the central unit (20), the control constants and the calculation means (61) analyze the weather information sent from the latest meteorological satellite input, and the weather forecast determination means (61) analyzes the weather information sent from the latest meteorological satellite.
2) determines the weather forecast for the day.

そして、制御定数決定手段(63)によりこの予想され
る気象条件と最も適合する気象条件を標準気象データ(
85)と照合することにより決定し、制御定数指令手段
(64)により中央装置(」O)より各端末制御器30
1〜30nに指令するものである。
Then, the control constant determining means (63) determines the standard meteorological data (
85), and the control constant command means (64) sends each terminal controller 30 from the central device ('O).
1 to 30n.

以上のように本発明の実施例によれば、中央装置(10
)において当日の気象条件に最も適合した制御定数を決
定し、各端末制御器30□ 〜30nが指令された制御
定数を使用して自動制御を実行することにより、常に最
適な制御定数が用いられることになる。
As described above, according to the embodiment of the present invention, the central device (10
) determines the control constant that best suits the weather conditions of the day, and each terminal controller 30□ to 30n executes automatic control using the commanded control constant, so that the optimal control constant is always used. It turns out.

なお、本発明の実施例では、気象衛星より送られる気象
情報を中央装置(10)が直接入力し天気予報を行なう
ものとしたが、気象情報として情報サービス会社等を通
じて公衆電話回線を介して天気図等を入力し解析すれば
、さらに精度の高い天気予報を決定することができる。
In the embodiment of the present invention, the central unit (10) directly inputs weather information sent from a weather satellite to make a weather forecast. By inputting and analyzing charts, etc., it is possible to determine even more accurate weather forecasts.

発明の効果 本発明の構成のように、中央装置において毎日の天候変
化に部した制御定数を予想、決定していくことにより、
制御定数の現場調整は最小となり、各端末制御器は自動
的に常に最適な制御定数を用いて空調自動制御を実行で
きることとなり、管理者の労力を大幅に削減した上で年
間を通じて安定した空調空間を現出でき、省エネルギー
あるいは快適性の維持という実用的効果を生ずる。
Effects of the Invention As in the configuration of the present invention, by predicting and determining control constants related to daily weather changes in the central device,
The on-site adjustment of control constants is minimized, and each terminal controller can automatically and always use the optimal control constants to perform automatic air conditioning control, greatly reducing the administrator's labor and creating a stable air-conditioned space throughout the year. This has the practical effect of saving energy or maintaining comfort.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空気調和機の中央監視制御
システムの構成図、第2図は制御定数を決定する原理の
室内温度変化図、第3図は制御定数演算用のプログラム
の一例のフローチャート、第4図は空調空間の制御状態
をシミュレーションするためのプログラムの一例である
フローチャート、を示す。 lO:中央装置  20 〜20・・・空気調和機l 
      n 30 〜30  ・・・端末制御器  40:伝送器I
        n 50:パラボラアンテナ  61:気象情報入力手段 
 62;天気予報決定手段 63:制御定数決定手段  64:制御定数指令手段 特許出願人   松下精工株式会社 代理人弁理士   阿 部   功 □p¥1間 第2図
Fig. 1 is a configuration diagram of a central monitoring and control system for an air conditioner according to an embodiment of the present invention, Fig. 2 is an indoor temperature change diagram showing the principle of determining control constants, and Fig. 3 is a diagram of a program for calculating control constants. An example of a flowchart, FIG. 4, shows a flowchart of an example of a program for simulating the control state of an air-conditioned space. lO: Central unit 20 to 20...Air conditioner l
n 30 to 30...Terminal controller 40: Transmitter I
n 50: Parabolic antenna 61: Weather information input means
62; Weather forecast determining means 63: Control constant determining means 64: Control constant command means Patent applicant: Matsushita Seiko Co., Ltd. Patent attorney Isao Abe □p¥1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 分散設置された複数の空気調和機の集中管理を行なう中
央装置と、前記空気調和機にそれぞれ対応して設けられ
、前記中央装置から与えられる指令に基づき該当する空
気調和機を自動制御する複数の端末制御器と、前記複数
の端末制御器と前記中央装置とを結合する共通の伝送路
とからなり、前記中央装置はあらかじめ入力された標準
気象データに基づき前記端末制御器が自動制御を実行す
る場合に必要とする制御定数を演算する制御定数演算手
段(60)と、気象情報入力手段と、前記気象情報入力
手段により入力された気象情報を解析し天気予報を決定
する天気予報決定手段と、前記天気予報決定手段により
決定された天気予報データと前記標準気象データとを照
合し前記制御定数を決定する制御決定手段と、前記制御
定数決定手段が決定した制御定数を前記各端末制御器に
指令する制御定数指令手段とを備えた空気調和機の中央
監視制御システム。
A central device centrally manages a plurality of air conditioners installed in a distributed manner, and a plurality of air conditioners provided corresponding to each of the air conditioners and automatically controlling the corresponding air conditioners based on commands given from the central device. It consists of a terminal controller and a common transmission path that connects the plurality of terminal controllers and the central device, and the central device allows the terminal controller to perform automatic control based on standard weather data input in advance. a control constant calculation means (60) that calculates control constants required for the case; a weather information input means; and a weather forecast determination means that analyzes the weather information input by the weather information input means and determines a weather forecast; control determining means for determining the control constants by comparing the weather forecast data determined by the weather forecast determining means with the standard weather data; and commanding the control constants determined by the control constant determining means to each of the terminal controllers. A central monitoring and control system for an air conditioner, comprising a control constant command means for controlling.
JP60255558A 1985-11-13 1985-11-13 Central monitor and control system for air-conditioning machine Pending JPS62116844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255558A JPS62116844A (en) 1985-11-13 1985-11-13 Central monitor and control system for air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255558A JPS62116844A (en) 1985-11-13 1985-11-13 Central monitor and control system for air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62116844A true JPS62116844A (en) 1987-05-28

Family

ID=17280389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255558A Pending JPS62116844A (en) 1985-11-13 1985-11-13 Central monitor and control system for air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62116844A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224931A (en) * 1990-01-31 1991-10-03 Kajima Corp Opening/closing control method for opening/closing type dome structure
US6276438B1 (en) * 1995-09-12 2001-08-21 Thomas R. Amerman Energy systems
WO2002090914A1 (en) * 2001-05-03 2002-11-14 Emerson Retail Services Inc. Model-based alarming
JP2002349926A (en) * 2001-05-25 2002-12-04 Daikin Ind Ltd Air conditioner control method, air-conditioning system, and air conditioner
JP2003074943A (en) * 2001-09-03 2003-03-12 Daikin Ind Ltd Method and system for controlling air conditioning
US6585036B2 (en) 1995-09-12 2003-07-01 Enlink Geoenergy Services, Inc. Energy systems
US6860320B2 (en) 1995-09-12 2005-03-01 Enlink Geoenergy Services, Inc. Bottom member and heat loops
US7017650B2 (en) 1995-09-12 2006-03-28 Enlink Geoenergy Services, Inc. Earth loop energy systems
US7490477B2 (en) 2003-04-30 2009-02-17 Emerson Retail Services, Inc. System and method for monitoring a condenser of a refrigeration system
AU2007214381B2 (en) * 2001-05-03 2010-01-28 Emerson Climate Technologies Retail Solutions, Inc. Model-based alarming
US8065886B2 (en) 2001-05-03 2011-11-29 Emerson Retail Services, Inc. Refrigeration system energy monitoring and diagnostics
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9395711B2 (en) 2009-05-29 2016-07-19 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224931A (en) * 1990-01-31 1991-10-03 Kajima Corp Opening/closing control method for opening/closing type dome structure
US6585036B2 (en) 1995-09-12 2003-07-01 Enlink Geoenergy Services, Inc. Energy systems
US6276438B1 (en) * 1995-09-12 2001-08-21 Thomas R. Amerman Energy systems
US7017650B2 (en) 1995-09-12 2006-03-28 Enlink Geoenergy Services, Inc. Earth loop energy systems
US6860320B2 (en) 1995-09-12 2005-03-01 Enlink Geoenergy Services, Inc. Bottom member and heat loops
US8065886B2 (en) 2001-05-03 2011-11-29 Emerson Retail Services, Inc. Refrigeration system energy monitoring and diagnostics
US6990821B2 (en) 2001-05-03 2006-01-31 Emerson Retail Services Inc. Model-based alarming
AU2007214381B2 (en) * 2001-05-03 2010-01-28 Emerson Climate Technologies Retail Solutions, Inc. Model-based alarming
US8316658B2 (en) 2001-05-03 2012-11-27 Emerson Climate Technologies Retail Solutions, Inc. Refrigeration system energy monitoring and diagnostics
WO2002090914A1 (en) * 2001-05-03 2002-11-14 Emerson Retail Services Inc. Model-based alarming
JP2002349926A (en) * 2001-05-25 2002-12-04 Daikin Ind Ltd Air conditioner control method, air-conditioning system, and air conditioner
JP2003074943A (en) * 2001-09-03 2003-03-12 Daikin Ind Ltd Method and system for controlling air conditioning
US7490477B2 (en) 2003-04-30 2009-02-17 Emerson Retail Services, Inc. System and method for monitoring a condenser of a refrigeration system
US7845179B2 (en) 2003-04-30 2010-12-07 Emerson Retail Services, Inc. System and method for monitoring a compressor of a refrigeration system
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10335906B2 (en) 2004-04-27 2019-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9023136B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9046900B2 (en) 2004-08-11 2015-06-02 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9081394B2 (en) 2004-08-11 2015-07-14 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9086704B2 (en) 2004-08-11 2015-07-21 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9021819B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9017461B2 (en) 2004-08-11 2015-04-28 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9304521B2 (en) 2004-08-11 2016-04-05 Emerson Climate Technologies, Inc. Air filter monitoring system
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9690307B2 (en) 2004-08-11 2017-06-27 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9194894B2 (en) 2007-11-02 2015-11-24 Emerson Climate Technologies, Inc. Compressor sensor module
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9395711B2 (en) 2009-05-29 2016-07-19 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US10884403B2 (en) 2011-02-28 2021-01-05 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10234854B2 (en) 2011-02-28 2019-03-19 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9590413B2 (en) 2012-01-11 2017-03-07 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9762168B2 (en) 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10274945B2 (en) 2013-03-15 2019-04-30 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10775084B2 (en) 2013-03-15 2020-09-15 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10443863B2 (en) 2013-04-05 2019-10-15 Emerson Climate Technologies, Inc. Method of monitoring charge condition of heat pump system
US10060636B2 (en) 2013-04-05 2018-08-28 Emerson Climate Technologies, Inc. Heat pump system with refrigerant charge diagnostics
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics

Similar Documents

Publication Publication Date Title
JPS62116844A (en) Central monitor and control system for air-conditioning machine
CN111365828A (en) Model prediction control method for realizing energy-saving temperature control of data center by combining machine learning
US5076346A (en) Air conditioner
Pfeiffer et al. Control of temperature and energy consumption in buildings-a review.
CN104019526B (en) Improve PSO algorithm Fuzzy Adaptive PID temperature and humidity control system and method
US7043339B2 (en) Remote monitoring system for air conditioners
US20010048376A1 (en) Remote monitoring system for air conditioners
US8255085B2 (en) Asymmetrical control system and method for energy savings in buildings
US10724758B2 (en) Heat index thermostat
US10731886B2 (en) HVAC system including energy analytics engine
CN109798646B (en) Variable air volume air conditioner control system and method based on big data platform
CN109612047B (en) Air supply temperature control method of variable air volume air conditioning system
Gao et al. Model-based space temperature cascade control for constant air volume air-conditioning system
CN113108432A (en) Air conditioning system adjusting method and system based on weather forecast
Ambroziak et al. The PID controller optimisation module using Fuzzy Self-Tuning PSO for Air Handling Unit in continuous operation
CN108592353B (en) Control method for air conditioning system
Petrie et al. Energy efficient control methods of HVAC systems for smart campus
CN115307297A (en) Multi-form central air-conditioning energy-saving control system
CN115729093A (en) Mushroom house air conditioner control and regulation method and system
JP2020165642A (en) Air conditioning system, server system, network, method for controlling air conditioning system, and method for controlling network
Lea et al. An HVAC fuzzy logic zone control system and performance results
CN110260481A (en) A method of intervention control being carried out to air-conditioning PLC control system using computer
KR101799754B1 (en) An intelligent homeostasis maintaining system and method for making a comfortable environment
JPS6269053A (en) Central monitor and control system for air conditioner
JPS6217552A (en) Concentrated monitor control for air-conditioner