JPS62116247A - Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working body - Google Patents
Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working bodyInfo
- Publication number
- JPS62116247A JPS62116247A JP25745485A JP25745485A JPS62116247A JP S62116247 A JPS62116247 A JP S62116247A JP 25745485 A JP25745485 A JP 25745485A JP 25745485 A JP25745485 A JP 25745485A JP S62116247 A JPS62116247 A JP S62116247A
- Authority
- JP
- Japan
- Prior art keywords
- monolithic refractory
- refractory construction
- working body
- drying
- construction body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
現在、製鉄所では、例えば、高炉傾注樋、出銑樋、取鍋
等の内張りに不定形耐火物が使用され、必要に応じてそ
の内張りを張り替える補修が実施されている。この内張
りのような不定形耐火物施工体は、加水混合線して施工
した後、型枠を外して加熱乾燥される。[Detailed Description of the Invention] [Field of Industrial Application] Currently, in steel works, monolithic refractories are used for lining blast furnace tilting troughs, tapping troughs, ladles, etc. Repairs are being carried out to replace the lining. A monolithic refractory construction body such as this lining is constructed by adding water to the mixture line, then removing the formwork and heating and drying it.
本発明は、このような不定形耐火物施工体の加熱乾燥工
程において乾燥終了時点を検出する、不定形耐火物施工
体の乾燥終了検出方法及びこの方法に使用される不定形
耐火物施工体用乾燥度測定素子に関するものである。The present invention provides a method for detecting the completion of drying of a monolithic refractory construction body, which detects the end point of drying in the heating drying process of such a monolithic refractory construction body, and a method for detecting the completion of drying of a monolithic refractory construction body used in this method. This invention relates to a dryness measuring element.
(従来技術〕
高炉傾注樋等の不定形耐火物施工体には、水をバインダ
として使用するものや、コンクリートのように加水混練
して流し込み施工し、更に、振動施工をするものが多い
。このような不定形耐火物施工体は施工後、例えば、バ
ーナで加熱乾燥される。もし、不定形耐火物施工体の施
工後の乾燥が不十分であると、この後に、耐火物として
使用される前に、または、その使用の開始によって80
0℃以上に加熱される時に不定形耐火物施工体内部の自
由水が蒸発し、その蒸気圧の上昇により爆裂が発生する
。このような爆裂は、不定形耐火物施工体に損傷を与え
、また、周囲の作業者を障害する恐れがあるので、極力
防止する必要がある。(Prior art) In the case of monolithic refractory construction bodies such as blast furnace tilting troughs, there are many that use water as a binder, or that are mixed and poured with water like concrete, and are then constructed using vibration. After construction, such a monolithic refractory construction body is heated and dried using a burner, for example. If the drying of the monolithic refractory construction body after construction is insufficient, it may be used as a refractory after this. 80 years before or by the commencement of its use.
When heated to 0°C or higher, free water inside the monolithic refractory construction evaporates, and an explosion occurs due to the increase in vapor pressure. Such explosions can damage the monolithic refractory construction body and pose a hazard to surrounding workers, so it is necessary to prevent them as much as possible.
上述の如き爆裂の発生には不定形耐火物施工体に使用す
る材料の通気率と引っ張り強度が大きく関係しているこ
とが知られている。すなわち、不定形耐火物施工体内部
の自由水の飽和水蒸気圧が不定形耐火物施工体の引っ張
り強度を越えると爆裂が生じる。従って、上述の加熱乾
燥は、経験的に求められた、自由水の飽和水蒸気圧が不
定形耐火物施工体の引っ張り強度を越えない程度の温度
で実施されている。It is known that the occurrence of the above-mentioned explosion is largely related to the air permeability and tensile strength of the material used for the monolithic refractory construction body. That is, when the saturated water vapor pressure of free water inside the monolithic refractory construction exceeds the tensile strength of the monolithic refractory construction, an explosion occurs. Therefore, the above-mentioned heating drying is carried out at a temperature determined empirically such that the saturated vapor pressure of free water does not exceed the tensile strength of the monolithic refractory construction body.
また、従来は不定形耐火物施工体の加熱乾燥を終了する
か否かは不定形耐火物施工体の温度を検出し、その温度
が所定の基準温度まで上昇したか否かによって決定され
ている。すなわち、施工時に不定形耐火物施工体に熱電
対を埋設し、加熱乾燥時に不定形耐火物施工体の温度を
監視し、不定形耐火物施工体の温度が経験上求められた
所定の基準温度、例えば150℃以上になると乾燥が終
了したものとみなされている。In addition, conventionally, whether or not to finish heating drying of a monolithic refractory construction body was determined by detecting the temperature of the monolithic refractory construction body and determining whether or not the temperature rose to a predetermined reference temperature. . In other words, a thermocouple is buried in the monolithic refractory construction during construction, the temperature of the monolithic refractory construction is monitored during heating and drying, and the temperature of the monolithic refractory construction is set to a predetermined reference temperature determined empirically. For example, when the temperature reaches 150° C. or higher, drying is considered to have been completed.
このようにして乾燥終了とみなされる時点を不定形耐火
物施工体の温度によって判定している従来の方法では、
素材や不定形耐火物施工体の形状によって判定の基卓と
すべき温度が異なることが知られている。従って、新し
く開発された素材を用いて不定形耐火物施工体を形成す
る場合や従来と異なる形状の不定形耐火物施工体を形成
する場合には、その素材や形状に対して適切な加熱温度
や上記基準温度を求めるために、数回の実験を繰り返す
のが通例である。また、この実験段階で加熱乾燥中や加
熱乾燥終了後に800°C以上に加熱する時に爆裂が発
生することも少なくない。特に、組織が緻密なものが多
い高強度の不定形耐火物施工体は、通気率が低いので不
定形耐火物施工体内の水分が抜は離<、大爆裂を起こし
易い。In this conventional method, the point at which drying is considered to be completed is determined based on the temperature of the monolithic refractory construction.
It is known that the temperature that should be used as the basis for determination differs depending on the material and the shape of the monolithic refractory construction body. Therefore, when forming a monolithic refractory construction body using a newly developed material or a monolithic refractory construction body with a shape different from the conventional one, it is necessary to set the appropriate heating temperature for the material and shape. It is customary to repeat the experiment several times in order to determine the above-mentioned reference temperature. Further, at this experimental stage, explosions often occur when heating to 800° C. or higher during heat drying or after heat drying is completed. In particular, high-strength monolithic refractory construction bodies, which often have dense structures, have low air permeability, so water inside the monolithic refractory construction is easily removed and a large explosion occurs.
更に、このような従来の方法では、正確に爆裂発生の危
険が無くなる乾燥終了時点を検出できないので、加熱乾
燥中の爆裂を防止するために大事をとって弱火で、非常
に長時間にわたって加熱乾燥が行われるのが通例である
。従って、実際に乾燥が終了してから言わば無駄な加熱
乾燥が行われることになる。Furthermore, with such conventional methods, it is not possible to accurately detect the end point of drying at which there is no danger of explosion, so in order to prevent explosions during heat drying, special care is taken to heat dry at low heat for a very long time. It is customary to do so. Therefore, wasteful heating and drying is performed after the actual drying is completed.
本発明はこのような事情を考慮してなされたものであっ
て、正確に爆裂の危険がなくなる乾燥終了時点を検出で
きる、不定形耐火物施工体の乾燥終了検出方法及びこの
方法に使用される不定形耐火物施工体用乾燥度測定素子
を提供することを目的とするものである。The present invention has been made in consideration of the above circumstances, and includes a method for detecting the end of drying of a monolithic refractory construction body, which can accurately detect the end point of drying when the danger of explosion is eliminated, and a method used in this method. The object of the present invention is to provide a dryness measuring element for a monolithic refractory construction body.
本発明に係る不定形耐火物施工体の乾燥終了検出方法で
は、上記の目的を達成するために、施工時に一対の電極
を所定の間隔を置いて不定形耐火物施工体の内部に埋設
し、両電極間の抵抗値を測定し、該不定形耐火物施工体
内の自由水が無くなったことを検出することによって該
不定形耐火物施工体の乾燥終了点が検出される。In order to achieve the above-mentioned object, in the drying end detection method of a monolithic refractory construction body according to the present invention, a pair of electrodes are buried inside the monolithic refractory construction body at a predetermined interval during construction, The end point of drying of the monolithic refractory construction body is detected by measuring the resistance value between both electrodes and detecting that free water in the monolithic refractory construction body has disappeared.
該不定形耐火物施工体内の自由水は不定形耐火物施工体
の空隙にたまっており、自由水が蒸散するにつれて両電
極間の電気抵抗値は次第に大きくなる。不定形耐火物施
工体内の自由水が無くなると、両電極が電気的に絶縁さ
れることになる。不定形耐火物施工体内の自由水が無く
なった後は、加熱乾燥によって不定形耐火物施工体から
主として結晶水およびその他の揮発分が蒸発するだけで
あり、中火あるいは強火によって不定形耐火物施工体を
爆裂させることなく乾燥させることができる。従って、
この自由水が無くなる時点を乾燥終了時点とすればよい
。Free water in the monolithic refractory construction body accumulates in the voids of the monolithic refractory construction body, and as the free water evaporates, the electrical resistance value between both electrodes gradually increases. When the free water in the monolithic refractory construction disappears, both electrodes become electrically insulated. After the free water in the monolithic refractory construction is gone, only crystal water and other volatile components will evaporate from the monolithic refractory construction by heating and drying, and the monolithic refractory construction can be completed using medium or high heat. It can dry the body without causing it to explode. Therefore,
The point at which this free water disappears may be defined as the point at which the drying ends.
両電極間の抵抗値は両電極間に所定の電圧を印加し、両
電極間の電圧値或いは電流値を測定することにより検出
できる。The resistance value between both electrodes can be detected by applying a predetermined voltage between both electrodes and measuring the voltage value or current value between both electrodes.
加熱乾燥中の爆裂を防止するためには、不定形耐火物施
工体の温度を自由水の飽和水蒸気圧が不定形耐火物施工
体の引っ張り強度を越えない程度の温度に制御する必要
がある。このような温度制御は、従来と同様に、熱電対
により温度を検出し、その検出結果に基づいてバーナ等
の加熱手段の出力が制御される。好ましくは、不定形耐
火物施工体の加熱乾燥工程に要する時間を一層短縮する
ために、上述のようにして検出された自由水の量に対応
して、爆裂が生じない範囲、すなわち、飽和蒸気圧が不
定形耐火物施工体の引っ張り強度を越えないような範囲
で加熱温度をできるだけ高くするように制御される。In order to prevent explosions during heating and drying, it is necessary to control the temperature of the monolithic refractory construction to such a level that the saturated vapor pressure of free water does not exceed the tensile strength of the monolithic refractory construction. In such temperature control, the temperature is detected by a thermocouple, and the output of a heating means such as a burner is controlled based on the detection result, as in the past. Preferably, in order to further shorten the time required for the heating drying process of the monolithic refractory construction body, it is preferable that the amount of free water detected as described above be adjusted to a range where no explosion occurs, that is, saturated steam. The heating temperature is controlled to be as high as possible within a range where the pressure does not exceed the tensile strength of the monolithic refractory construction body.
また、本発明に係る不定形耐火物施工体用乾燥度測定素
子は、上記不定形耐火物施工体用乾燥度測定方法を実施
するために、不定形耐火物施工体に埋設される耐熱性パ
ッケージと、これの一端から所定の間隔を置いて不定形
耐火物施工体内に突入するように突出させた一対の電極
と、耐熱性パッケージ内で上記電極に個別的に結合され
、耐熱パッケージの他端から耐熱パッケージ外に導出さ
れる一対の耐熱導線を設けたことを特徴とする。Moreover, the dryness measuring element for a monolithic refractory construction body according to the present invention is a heat-resistant package embedded in a monolithic refractory construction body in order to carry out the dryness measurement method for a monolithic refractory construction body. a pair of electrodes protruding from one end thereof at a predetermined distance so as to protrude into the monolithic refractory construction body; and a pair of electrodes individually coupled to the electrodes within the heat-resistant package; It is characterized by providing a pair of heat-resistant conducting wires led out from the heat-resistant package.
上記耐熱性パッケージは、耐熱性、好ましくは300℃
以上の耐熱性を有する電気的絶縁物で形成される。上記
耐熱性パッケージは、高温下における不定形耐火物施工
体への悪影響を防止するために、不定形耐火物施工体が
中性の材料で形成されている場合にはアルミナ質の材料
で形成され、不定形耐火物施工体が塩基性の材料で形成
される場合はマグネシア質の材料で形成される。The above heat resistant package is heat resistant, preferably 300°C.
It is made of an electrical insulator having a heat resistance higher than the above. The above heat-resistant package is made of alumina material when the monolithic refractory construction body is made of a neutral material in order to prevent adverse effects on the monolithic refractory construction body under high temperatures. When the monolithic refractory construction body is made of a basic material, it is made of a magnesia material.
上記電極には、通常、銅線が使用される。しかし、不定
形耐火物施工体のバインダに腐食性の強いものを用いる
場合には、炭素棒、ステンレススチール棒等の耐食性の
高い電気良導体が使用される。Copper wires are usually used for the electrodes. However, when using a highly corrosive binder for the monolithic refractory construction body, a highly corrosion-resistant electrical conductor such as a carbon rod or a stainless steel rod is used.
両電極に印加する電圧は1〜9Vが好ましい。The voltage applied to both electrodes is preferably 1 to 9V.
1■以下では接触抵抗による電圧降下の影響を受けやす
く、9v以上では導線が短絡した場合に発熱が多くなり
、発火するおそれが生じる。1〜9■であれば電源とし
て乾電池等の携帯に適した電源を使用できる。If it is less than 1V, it will be susceptible to voltage drop due to contact resistance, and if it is more than 9V, it will generate more heat if the conductor is short-circuited, and there is a risk of fire. If it is 1 to 9■, a portable power source such as a dry cell battery can be used as the power source.
上記導線は耐熱性に優れた銅線等が使用されるが、特に
不定形耐火物施工体のバインダに腐食性の強いものが使
用されている場合には、ステンレススチール等の耐食性
および耐熱性が優れた電気良導体からなる導線が使用さ
れる。Copper wire, etc., which has excellent heat resistance, is used for the above-mentioned conductor wires, but especially when a highly corrosive binder is used in the monolithic refractory construction, the corrosion and heat resistance of stainless steel, etc. is used. Conductive wires made of excellent electrical conductors are used.
加熱乾燥中の爆裂を防止するためには、不定形耐火物施
工体の温度を自由水の飽和水蒸気圧が不定形耐火物施工
体の引っ張り強度を越えない程度の温度に制御する必要
がある。この不定形耐火物施工体の温度制御のために、
従来と同様に熱電対が使用されるが、不定形耐火物施工
体の状態をできるだけ正確に把握するために熱電対を上
記電極の近傍に埋設することが好ましい。また、電極お
よび熱電対の埋設の手間を節約することも有利である。In order to prevent explosions during heating and drying, it is necessary to control the temperature of the monolithic refractory construction to such a level that the saturated vapor pressure of free water does not exceed the tensile strength of the monolithic refractory construction. In order to control the temperature of this monolithic refractory construction,
A thermocouple is used as in the past, but it is preferable to bury the thermocouple near the electrode in order to ascertain the condition of the monolithic refractory construction body as accurately as possible. It is also advantageous to save effort in embedding electrodes and thermocouples.
そこで、不定形耐火物施工体の状態把握の正確さを高め
、電極および熱電対の埋設の作業性を高めるために、不
定形耐火物施工体用乾燥度測定素子の上記耐熱性パンケ
ージの周面に熱雷対を装着する溝が形成され、熱電対を
この溝に填め込んで固定した状態で不定形耐火物施工体
に上記乾燥度測定素子と熱電対とを同時に埋設できるよ
うにすることが有利である。Therefore, in order to improve the accuracy of grasping the condition of the monolithic refractory construction body and improve the workability of embedding electrodes and thermocouples, we have developed A groove for installing a thermocouple is formed in the groove, and the dryness measuring element and the thermocouple can be simultaneously buried in the monolithic refractory construction body with the thermocouple inserted and fixed in this groove. It's advantageous.
熱電対にはこれまでの経験上、ステンレスシース型クロ
メル−アルメル熱電対(K熱電対)を使用するのが好ま
しい。Based on past experience, it is preferable to use a stainless steel sheathed chromel-alumel thermocouple (K thermocouple) as the thermocouple.
以下、本発明の一実施例を高炉傾注樋の乾燥度測定に適
用した場合を例にとって説明する。EMBODIMENT OF THE INVENTION Hereinafter, the case where one Example of this invention is applied to the dryness measurement of a blast furnace tilting gutter is demonstrated.
まず、適当に選択された数(この場合は4個)の不定形
耐火物施工体用乾燥度測定素子1とこれよりも多数(こ
の場合は8個)の熱電対2が用意される。熱電対2は外
径3.2fiのステンレスシース型クロメル−アルメル
熱電対が使用される。First, an appropriately selected number (four in this case) of dryness measuring elements 1 for a monolithic refractory construction body and a larger number (eight in this case) of thermocouples 2 are prepared. As the thermocouple 2, a stainless steel sheath type chromel-alumel thermocouple with an outer diameter of 3.2 fi is used.
上記乾燥度測定素子1は第2図ないし第4図に示すよう
に、アルミナ質またはマグネシア質の耐熱性パッケージ
3とこれの一端側に所定の間隔をおいて突出する一対の
銅製の電極4と、上記耐熱性パッケージ3の内部で上記
電極4に個別的に接続され、互いに絶縁する状態に1本
により合わされて上記耐熱性パンケージ3の他端から導
出される一対の銅製の導線5からなる。As shown in FIGS. 2 to 4, the dryness measuring element 1 includes a heat-resistant package 3 made of alumina or magnesia and a pair of copper electrodes 4 protruding from one end of the package at a predetermined distance. , consisting of a pair of copper conductive wires 5 individually connected to the electrodes 4 inside the heat-resistant package 3, twisted together so as to be insulated from each other, and led out from the other end of the heat-resistant pan cage 3.
上記耐熱性パッケージ3の周面には、その一端から他端
への全長にわたり、一本の熱電対2を填め込む溝6が形
成され、この溝6に一本の熱電対2が填め込まれ、固定
手段7によって固定される。A groove 6 into which one thermocouple 2 is inserted is formed on the circumferential surface of the heat-resistant package 3 over the entire length from one end to the other end, and one thermocouple 2 is inserted into this groove 6. , is fixed by fixing means 7.
不定形耐火物施工体が硬化した後はこれらは不定形耐火
物施工体によって固定されるので、冷間施工の場合では
、固定手段7としてビニールテープが使用されるが、熱
間施工の場合には針金等のある程度の耐熱性を有するも
のが固定手段7として使用される。After the monolithic refractory construction body has hardened, they are fixed by the monolithic refractory construction body, so in the case of cold construction, vinyl tape is used as the fixing means 7, but in the case of hot construction. A material having a certain degree of heat resistance, such as wire, is used as the fixing means 7.
第1図に示すように高炉傾注樋8は鉄枠9と、これの内
面に沿って形成された永久張り10と、更にその内側に
張り付けられた内張りとしての不定形耐火物施工体1)
とからなる。この不定形耐火物施工体1)は新しく開発
した材料を加水混練した後、流し込み、振動施工等の方
法によって施工され、高強度、かつ、高密度に形成され
る。As shown in Fig. 1, the blast furnace tilting gutter 8 consists of an iron frame 9, a permanent lining 10 formed along the inner surface of the iron frame 9, and a monolithic refractory construction body 1) as a lining attached to the inside of the iron frame 9.
It consists of. This monolithic refractory construction body 1) is constructed with high strength and high density by kneading the newly developed material with water and then using methods such as pouring and vibration construction.
上記不定形耐火物施工体1)の施工に際し、最も水分が
抜は難い永久張り10と不定形耐火物施工体1)との境
界に上記の如くに一体化された乾燥度測定素子1および
熱電対2を埋設するとともに、不定形耐火物施工体1)
の表面に残りの熱電対2を埋設する。When constructing the monolithic refractory construction body 1), a dryness measuring element 1 and a thermoelectric sensor are integrated as described above at the boundary between the permanent tension 10 from which moisture is most difficult to remove and the monolithic refractory construction body 1). In addition to burying Pair 2, monolithic refractory construction body 1)
Embed the remaining thermocouple 2 on the surface of.
上記乾燥度測定素子1の各導線5は電気抵抗式水分計1
2に接続され、各熱電対2は温度記録計13に接続され
る。又、不定形耐火物施工体1)の表面に埋設された熱
電対2と上記乾燥度測定素子1の各導線5は更に図示し
ない燃焼制御装置に接続される。上記水分計12は更に
電圧(または電流)記録計14に接続される。Each conductor 5 of the dryness measuring element 1 is connected to an electrical resistance moisture meter 1.
2, and each thermocouple 2 is connected to a temperature recorder 13. Further, the thermocouple 2 embedded in the surface of the monolithic refractory construction body 1) and each conducting wire 5 of the dryness measuring element 1 are further connected to a combustion control device (not shown). The moisture meter 12 is further connected to a voltage (or current) recorder 14.
不定形耐火物施工体1)は施工後、所定の養生期間にわ
たって放置され、硬化時に発生する水分を蒸散させる。After construction, the monolithic refractory construction body 1) is left for a predetermined curing period to evaporate moisture generated during hardening.
この養生が終了すると、型枠を取り外し、内側から図示
しないバーナで加熱しながら乾燥させる。When this curing is completed, the formwork is removed and dried while being heated from the inside with a burner (not shown).
この加熱乾燥は不定形耐火物施工体1)内の自山水を蒸
発させるために行われ、その自由水の量の検出が上記乾
燥度測定素子1の両電極4間に所定の電圧を印加し、両
電極4間の電圧(両電極4間で不定形耐火物施工体1)
を抵抗として生しる電圧降下量)を検出することにより
行われる。This heating drying is performed to evaporate free water within the monolithic refractory construction body 1), and the amount of free water is detected by applying a predetermined voltage between both electrodes 4 of the dryness measuring element 1. , voltage between both electrodes 4 (unshaped refractory construction body 1 between both electrodes 4)
This is done by detecting the amount of voltage drop caused by the resistance.
上記バーナの出力は、不定形耐火物施工体1)の温度が
このようにして検出された自由水の飽和蒸気圧が不定形
耐火物施工体1)の引っ張り強度を越えないような温度
以下になるように制御される。この制御のために、不定
形耐火物施工体1)の温度情報がその表面に埋設された
熱電対2から燃焼制御装置にフィードバックされ、また
、含有水分量情報が燃焼制御装置にフィードバックされ
る。このような加熱乾燥工程においては、含有水分量の
減少に対応して不定形耐火物施工体1)の引っ張り強度
が増大し、許容される飽和水蒸気圧を高く設定しなおす
ことができ、例えば第5図に示す如くに乾燥が進行する
に連れて段階的に不定形耐火物施工体1)の温度が高め
られる乾燥スケジュールを実行することができる。The output of the above burner is such that the temperature of the monolithic refractory construction body 1) is below the temperature at which the saturated vapor pressure of the free water detected in this way does not exceed the tensile strength of the monolithic refractory construction body 1). controlled so that For this control, temperature information of the monolithic refractory construction body 1) is fed back to the combustion control device from a thermocouple 2 embedded in its surface, and content information is fed back to the combustion control device. In such a heating drying process, the tensile strength of the monolithic refractory construction body 1) increases in response to a decrease in the water content, and the allowable saturated water vapor pressure can be reset to a higher value. As shown in FIG. 5, a drying schedule can be implemented in which the temperature of the monolithic refractory construction body 1) is increased in stages as the drying progresses.
ここでは、加熱乾燥開始後43時間程度まで不定形耐火
物施工体1)の温度を約150°Cに維持し、続いて約
7時間で不定形耐火物施工体1)の温度を約250℃に
高め、加熱乾燥開始後91時間程度まで不定形耐火物施
工体1)の温度を約250℃に維持する。この間、加熱
乾燥の開始後43ないし50時間の間で含有水分が増加
するような測定結果が得られているが、これは不定形耐
火物施工体1)の温度を高めることにより含有水分の蒸
発が活発になり、電極4間の抵抗値がその蒸気によって
減少するために見掛は上含有水分が増加するような測定
結果が得られたものと考察される。また、加熱乾燥開始
後約70時間ないし75時間で含有水分が0.1%以下
になることが観察されている。Here, the temperature of the monolithic refractory construction body 1) was maintained at approximately 150°C for about 43 hours after the start of heating drying, and then the temperature of the monolithic refractory construction body 1) was increased to approximately 250°C for approximately 7 hours. The temperature of the monolithic refractory construction body 1) is maintained at about 250° C. for about 91 hours after the start of heating and drying. During this period, measurement results have been obtained in which the water content increases between 43 and 50 hours after the start of heating drying, but this is due to the evaporation of the water content by increasing the temperature of the monolithic refractory construction body 1). It is considered that this is because the resistance value between the electrodes 4 decreases due to the steam, and thus the measurement results in which the water content appears to increase are obtained. Further, it has been observed that the water content becomes 0.1% or less approximately 70 to 75 hours after the start of heat drying.
ここでは、新しく開発した材料で、高強度、がっ、高密
度に形成された不定形耐火物施工体1)の加熱乾燥につ
いて実施されたのであるが、その加熱乾燥における乾燥
スケジュールが未知であったにもかかわらず、予め求め
ておいた不定形耐火物施工体1)の引っ張り強度を参考
にして、上記乾燥度測定素子1を介して得られる含有水
量情報に基づいて加熱乾燥を進行させながらその乾燥ス
ケジュールを設定することができたうえ、爆裂を発生さ
せることなく、乾燥の終了時点、すなわち、含有水分が
1%以下になり、爆裂発生のおそれが無くなる時点を検
出することができた。Here, we conducted heat drying of a monolithic refractory construction body 1) made of a newly developed material with high strength, toughness, and high density, but the drying schedule for the heat drying was unknown. However, with reference to the predetermined tensile strength of the monolithic refractory construction body 1), heating and drying was carried out based on the water content information obtained through the dryness measuring element 1. In addition to being able to set the drying schedule, we were also able to detect the end point of drying without causing explosions, that is, the point in time when the moisture content was 1% or less and there was no risk of explosions occurring.
以上説明したように、本発明によれば、不定形耐火物施
工体に埋設された電極間の抵抗値を測定し、該不定形耐
火物施工体内の自由水が無くなったことを検出すること
によって該不定形耐火物施工体の乾燥終了点を検出でき
る。従って、従来大事をとって非常に長く設定されてい
た加熱乾燥時間を実際の加熱乾燥終了点近くまで短縮し
て、実際に乾燥が終了してから行われる言わば無駄な加
熱乾燥を省略でき、工程時間を短縮できるとともに加熱
に費やされる燃料等のエネルギを大幅に節約できる。As explained above, according to the present invention, by measuring the resistance value between the electrodes buried in the monolithic refractory construction body and detecting that free water in the monolithic refractory construction body has disappeared, The drying end point of the monolithic refractory construction body can be detected. Therefore, it is possible to shorten the heating drying time, which was previously set to be extremely long, to close to the actual heating drying end point, and to omit the so-called wasteful heating drying that is performed after the actual drying has finished. Not only can the time be shortened, but also the energy such as fuel used for heating can be significantly saved.
又、測定された含有水量に対応して、不定形耐火物施工
体の材料の引っ張り強度に対して許容される含有水の飽
和圧力に対する温度を求めることができ、加熱乾燥時に
爆裂を生しるおそれがない温度が未知である新しい素材
を使用する場合や新しい形状に形成する場合でも、不定
形耐火物施工体の材料の引っ張り強度さえ分かっておれ
ば、爆裂を起こすことがない安全な温度を含有水量の計
測結果に基づいて求め、その温度以下で加熱乾燥を進め
ることができる。In addition, corresponding to the measured amount of water content, it is possible to determine the temperature for the saturation pressure of water content that is permissible for the tensile strength of the material of the monolithic refractory construction body, and determines the temperature that will cause explosion during heating and drying. Even when using a new material whose safe temperature is unknown or forming it into a new shape, as long as you know the tensile strength of the material for the monolithic refractory construction, you can find a safe temperature that will not cause an explosion. It is determined based on the measurement results of the water content, and heating and drying can be performed at a temperature below that temperature.
更に、爆裂を起こすことがない安全な温度を含有水量の
計測結果に基づいて求められるので、不定形耐火物施工
体の加熱温度を従来大事をとって低く設定されていた温
度よりも求められた温度以下の範囲で高く設定すること
ができ、高く設定された温度に不定形耐火物施工体を加
熱することにより加熱乾燥工程を一層短縮することがで
きる。Furthermore, since a safe temperature that will not cause an explosion can be determined based on the measurement results of the amount of water contained, the heating temperature of the monolithic refractory construction body has been determined to be lower than the conventionally set temperature. The temperature can be set high within the range below the temperature, and by heating the monolithic refractory construction body to the high temperature, the heating and drying process can be further shortened.
第1図は本発明に係る不定形耐火物施工体の乾燥終了検
出方法の実施要領を概略的に例示する説明図、第2図は
本発明に係る不定形耐火物施工体用乾燥終了検出素子の
正面図、第3図はその平面図、第4図はその側面図、第
5図は第1図に示された本発明に係る不定形耐火物施工
体の乾燥終了検出方法の実施例における乾燥スケジュー
ルと、含有水量、不定形耐火物施工体の表面および永久
張りとの境界における温度の経時変化を示す特性線図で
ある。
1は乾燥度測定素子、2は熱電対、3は耐熱性パッケー
ジ、4は電極、5は導線、1)は不定形耐火物施工体。
第 、1 図
第2図
手続主甫正書(方式)
昭和61年6月17日
特許庁長官 宇 賀 道 部 殿
2、発明の名称
3、補正をする者
事件との関係 出願人
住 所 赤穂市中広字東沖1576番地の2名称 川
崎炉材株式会社
昭和61年2月51)(同25「1発送)6、補正の対
象
図 面
7、補正の内容
別紙の通りFIG. 1 is an explanatory diagram schematically illustrating the method for detecting the end of drying of a monolithic refractory construction body according to the present invention, and FIG. 2 is a drying completion detection element for a monolithic refractory construction body according to the present invention. 3 is a plan view thereof, FIG. 4 is a side view thereof, and FIG. 5 is an embodiment of the drying end detection method for a monolithic refractory construction body according to the present invention shown in FIG. FIG. 2 is a characteristic line diagram showing the drying schedule, the water content, and the temperature change over time at the boundary between the surface of the monolithic refractory construction body and the permanent tension. 1 is a dryness measuring element, 2 is a thermocouple, 3 is a heat-resistant package, 4 is an electrode, 5 is a conductor, and 1) is a monolithic refractory construction body. Figure 1 Figure 2 Procedural master's letter (method) June 17, 1985 Michibu Uga, Commissioner of the Patent Office 2. Title of the invention 3. Relationship with the person making the amendment Applicant's address Ako 2 Name of 1576 Higashioki, Ichichuhiro Aza Kawasaki Rozai Co., Ltd. February 51, 1986) (Sent 25, 1985) 6, Drawing subject to amendment 7, contents of amendment as attached.
Claims (3)
耐火物施工体の内部に埋設し、両電極間の抵抗値を測定
し、該不定形耐火物施工体内の自由水が無くなったこと
を検出することによって該不定形耐火物施工体の乾燥終
了点を検出することを特徴とする、不定形耐火物施工体
の乾燥終了検出方法。(1) During construction, a pair of electrodes was buried inside the monolithic refractory construction with a predetermined interval, and the resistance value between both electrodes was measured to determine that free water inside the monolithic refractory construction was eliminated. A method for detecting completion of drying of a monolithic refractory construction body, characterized in that the drying end point of the monolithic refractory construction body is detected by detecting this.
ジと、これの一端から所定の間隔を置いて不定形耐火物
施工体内に突入するように突出させた一対の電極と、耐
熱性パッケージ内で上記電極に個別的に結合され、耐熱
パッケージの他端から耐熱パッケージ外に導出される一
対の耐熱導線を設けたことを特徴とする、不定形耐火物
施工体用乾燥度測定素子。(2) A heat-resistant package buried in the monolithic refractory construction body, a pair of electrodes protruding from one end of the package so as to penetrate into the monolithic refractory construction body at a predetermined distance, and the heat-resistant package A dryness measuring element for a monolithic refractory construction body, characterized in that a pair of heat-resistant conductive wires are individually coupled to the electrodes within the heat-resistant package and led out of the heat-resistant package from the other end of the heat-resistant package.
施工体に埋設され、不定形耐火物施工体の温度を検出す
る熱電対を填め込む溝を有している特許請求の範囲第2
項に記載された不定形耐火物施工体用乾燥度測定素子。(3) The heat-resistant package has a groove on its circumferential surface that is embedded in the monolithic refractory construction body and into which a thermocouple for detecting the temperature of the monolithic refractory construction body is inserted.
Dryness measuring element for monolithic refractory construction bodies described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25745485A JPS62116247A (en) | 1985-11-15 | 1985-11-15 | Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25745485A JPS62116247A (en) | 1985-11-15 | 1985-11-15 | Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62116247A true JPS62116247A (en) | 1987-05-27 |
Family
ID=17306561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25745485A Pending JPS62116247A (en) | 1985-11-15 | 1985-11-15 | Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62116247A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002149A (en) * | 2002-03-29 | 2004-01-08 | Nippon Steel Corp | Method of drying monolithic refractory |
JP2020134137A (en) * | 2019-02-12 | 2020-08-31 | 黒崎播磨株式会社 | Moisture sensor and sensor for vapor pressure measurement device |
-
1985
- 1985-11-15 JP JP25745485A patent/JPS62116247A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002149A (en) * | 2002-03-29 | 2004-01-08 | Nippon Steel Corp | Method of drying monolithic refractory |
JP4544824B2 (en) * | 2002-03-29 | 2010-09-15 | 新日本製鐵株式会社 | Drying method for irregular refractories |
JP2020134137A (en) * | 2019-02-12 | 2020-08-31 | 黒崎播磨株式会社 | Moisture sensor and sensor for vapor pressure measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1300760C (en) | Thermocouples | |
JPS62116247A (en) | Method for detecting drying finish of amorphous refractory working body and drying degree measuring element for said working body | |
JP2008267986A (en) | Temperature measuring device, fusing device, method of manufacturing fusing device, and fusing device monitoring system | |
JP5391457B2 (en) | Concrete stacking management method | |
JPS58110624A (en) | Permeable refractory element for introducing agitating fluid into molten metal bath | |
JP2744191B2 (en) | Test method for drying characteristics of castable refractories | |
JPS62235554A (en) | Measurement of moisture in castable refractory | |
JPS57139657A (en) | Temperature control method for oxygen sensor | |
JP7321638B2 (en) | Moisture sensor and sensor for vapor pressure measuring device | |
JPH11132862A (en) | Molten metal member | |
JPS59125003A (en) | Method for measuring erosion rate of refractories | |
RU2093800C1 (en) | Method of measurement of temperature of large metal articles | |
CN209675509U (en) | A kind of high temperature early warning wire clamp | |
JPH0533918Y2 (en) | ||
SU1089048A1 (en) | Method for controlling thermal conditions of graphitization process | |
RU2170960C1 (en) | Method for serviceability check of fuel-element simulator | |
Xie et al. | Experiment of Thermal Insulation Failure of Cable Bundles | |
SU796738A1 (en) | Method of determining high-temperature strength of coated metallic wire | |
SE450379B (en) | Drying and heating ceramic component | |
KR0156981B1 (en) | Quality management device of concrete structual material | |
JPH065372Y2 (en) | Anomaly detector for graphitization furnace | |
JPS6138470A (en) | Method for detecting abnormality of electric wire connection part and abnormality detector | |
SU724441A1 (en) | Method of operation and termination control of graphitizing process | |
SU1151878A1 (en) | Method of determination of obtained coke carbonization temperature | |
JPS6367505A (en) | Sensor for wear quantity of refractory body |