JPS6211604B2 - - Google Patents

Info

Publication number
JPS6211604B2
JPS6211604B2 JP53035440A JP3544078A JPS6211604B2 JP S6211604 B2 JPS6211604 B2 JP S6211604B2 JP 53035440 A JP53035440 A JP 53035440A JP 3544078 A JP3544078 A JP 3544078A JP S6211604 B2 JPS6211604 B2 JP S6211604B2
Authority
JP
Japan
Prior art keywords
layer
filter
dense
coarse
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53035440A
Other languages
Japanese (ja)
Other versions
JPS54128871A (en
Inventor
Katsutoshi Ando
Isao Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3544078A priority Critical patent/JPS54128871A/en
Publication of JPS54128871A publication Critical patent/JPS54128871A/en
Publication of JPS6211604B2 publication Critical patent/JPS6211604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は不織布フイルターに関する。さらに詳
しくは、清浄効率、ダストホルデイング性に優れ
た高性能フイルターに関するものである。 従来、紙、不織布、織物などがフイルター材料
として用いられていたが、高速流速下では紙はダ
ストホルデイング性が悪いため目詰りし易く、不
織布は清浄効率が悪く、織物は清浄効率、ダスト
ホルデイング性のいずれもが悪いという欠点があ
つた。 本発明はこれらの欠点を解消した高性能を有す
る不織布フイルターに関するものである。 即ち、本発明は5d以上の太繊度からなる連続
フイラメントがニードルパンチにより三次元的に
絡合した気孔容積75〜98%の粗の層と、5d未満
の細繊度からなる連続フイラメントが二次元的に
配列した気孔容積65〜80%で、かつ鱗片状である
密の層との少なくとも2層からなり、かつ前記鱗
片状の層のフイラメントは部分的に融着している
ことを特徴とする不織布フイルターに関するもの
である。 第1図は本発明の不織布フイルターである。第
1図によつて本発明を説明すると、1は連続フイ
ラメントが二次元的に配列した鱗片状の密の層、
2は連続フイラメントが三次元的に絡合した粗の
層、3は接着層である。 本発明でいう連続フイラメントとは、後述する
第3図の如く紡糸した繊維をエジエクターで連続
的に延伸、開繊した連続状繊維であつて、一定長
にカツトされた短繊維とは異なるものである。 また鱗片状とは、不織シート中の構成繊維の配
列が厚み方向になく、平面方向にのみランダムな
配列をした構成を有する繊維集団からなる鱗様の
積層単位をいう。 本発明でいう二次元的配列とは、連続フイラメ
ントが一つの積層単位である鱗片状の平面方向に
のみ二次元的なランダムな配列をし、厚み方向へ
のフイラメント配列がないものをいう。 また、三次元的絡合とは、連続フイラメントが
ニードルパンチによりシートの平面方向とシート
の厚み方向へランダムな配列を有し、連続フイラ
メントは相互に交絡を有するものをいう。 本発明の不織布フイルターを第1図のXYZ面で
切断すると第2図のごとくである。 1の層は連続フイラメント4が二次元的に配列
した鱗片が角度α(<XYZ)を持つて積層した構
造を有する。 このような構造配列は繊維の充填密度を高め、
かつ気孔を細かくし、そしてその気孔は鱗片の積
層面方向に長くまた多く拡がつている。そのため
角度αについては90度、すなわちシート平面と完
全に平行であるよりも多少角度のついていること
が好ましく、フイルター性能の点からは通常90度
より大きく、110度以下の範囲が特に好ましい。 このように本発明は密の層1が鱗片状を有する
ため高速流速下で粗の層2を通過した微小なダス
トも直接吹き抜けることはなく、粗の層1の繊維
に衝突して捕集されるかもしくは細長く伸びた気
孔によつて捕集される。 2の層は第1,2図に示したごとく、連続フイ
ラメント5が三次元的に絡合したバルキーで気孔
容積の大きな粗の構造からなる。 この粗の層2は、流入するダストをさえぎり、
捕集し、そのダストホルデイング性を高める。 その気孔容積は目的に応じて異なるので一概に
規定しがたいが通常75〜98%が適する。 ここで気孔容積とはJIS―L1079で定義された
材料中の気孔の容積率である。 接着層3はできるだけ圧力損失を少なくする方
法で接着するのが好ましく、構成繊維と接着性の
良い低融点樹脂パウダー、低融点繊維、低融点穴
あきフイルム、ゴム系接着剤、樹脂などで熱接着
または化学接着することができる。特に間欠接着
方法は、接着面積を少なくして、流体の圧力損失
を少なくできるため適した方法である。また繊維
の絡みによる機械的接着でも可能である。 密の層1の製造は第3図に示すごとくフイラメ
ントを移動するコンベア上に噴射し、吸引するこ
とによつて得られる。 即ち、紡糸口金6よりフイラメント7を紡糸
し、エジエクター8で延伸し、開繊してコンベア
ー9上に噴射し、同時に吸引ボツクス10で吸引
しながら鱗片状のウエブ11を堆積する。鱗片の
積層角度αは噴射した繊維のコンベアー9での拡
がりの程度、繊維の噴射量、噴射速度、コンベア
ー速度などによつて適宜調整できる。 次に鱗片状ウエブの層を密にするため、また鱗
片間の接着を行なうため熱接着または化学接着を
行なう。 熱接着の場合は、低融点繊維を用いるか、また
は繊維の自己接着によつて密で圧力損失の少ない
層が得られる。 化学接着の場合は、加圧後、接着剤によつて含
浸、スプレー、コーテイングなどを行なう。 熱接着の場合、凹凸のある熱エンボスロールで
繊維間の融着を行なえば、凹凸のある密の層が得
られる。この密の層1と粗の層2とを接着すれば
第4図に示すように凹凸によつて流体の通過面積
が増加するため圧力損失のより少ないフイルター
が得られる。また密の層1は気孔の少ないフイル
ターが得られる。また密の層1は気孔サイズを小
さくする上から構成繊維の繊度は5d未満の細繊
度が好ましく、また気孔容積は粗の層2より小さ
く、かつ65〜80%が好ましい。 また、通常粗の層2は連続フイラメントウエブ
をニードルパンチング機によつてパンチし、三次
元的に絡合して得られる。 この場合、使用繊維は密の層1に比べて太繊
度、剛性のある繊維、クリンプのある繊維を用い
ることがより好ましい。 粗の層2の繊度は5d以上の太繊度を用いる。
粗の層2に用いる剛性のある繊維としては、ポリ
エステル、ポリオレフインなどの繊維が適する。 三次元的絡合構造は、使用時の折り、曲げの成
型加工を行なつても性能は安定している。 また三次元的絡合構造をより安定化するためゴ
ム系接着剤などで圧力損失を大きくしない程度で
接着しても本発明を阻げるものではない。 またさらにフイルター性能を向上するため、例
えば第5図に示すような多層構造が適する。 即ち、2aは粗の層、2bはもつと粗の層、1
は鱗片状の密の層、3a,3bは接着層である。
粗の層が厚いためダストホルデイング性が高く、
また粗の層内で粗密構造があるためダストのさえ
ぎりの効果が大きく、1の密の層との複合効果で
一段と高い清浄効果が得られる。 使用繊維は、天然繊維、合成有機重合体繊維、
いずれでも用いることができる。 特に合成有機重合体フイラメントからなるフイ
ルターは、融着点または接着点が少なくても形態
の安定した密の層1を作り、またバルキーな粗の
層2も作り易いという特徴がある。 なお本発明フイルターは、公知のゴム状物質や
樹脂を含浸させて使用してもよい。 上記の通り本発明フイルターは、高速流体下で
ダストホルデイング性が高く、かつ清浄効率の高
い優れたフイルターである。このため自動車用フ
イルター、掃除機用フイルター、空調用フイルタ
ー、オイルフイルター、工業用フイルターなど広
範囲に使用できる。 実施例 1 1の層として第3図に示す方法で製造した繊度
1d、目付150g/m2、ポリエチレンテレフタレー
トフイラメントからなるウエブを凹凸のある熱エ
ンボスロールで加圧熱接着し、凹凸のある鱗片状
の二次元的な配列をしたシートを用いた。 2の層として繊度15d、目付100g/m2、ポリエ
チレンテレフタレートフイラメントのウエブをニ
ードルパンチング機によつて針密度120本/cm2
処理した三次元的絡合シートを用いた。 両シートの接着は低融点繊維からなる薄いシー
トを両シートの間にはさんで、熱エンボスロール
で間欠接着した。 上記構成による本発明フイルターは、1の層の
厚み0.46mm、気孔容積76%、2の層の厚み1.49
mm、気孔容積95.2%であつた。 フイルターの性能は、JIS B―9908の測定方法
に準じての条件で行なつた結果、清浄効率99.9
%、ダストホルデイング性182g/m2という優れた
結果を得た。 比較実施例 1 1の層として繊度3d、目付150g/m2のポリエ
チレンテレフタレートからなる鱗片状シートを、
2の層として繊度10d、目付150g/m2のポリエチ
レンテレフタレートからなるニードルパンチした
シートを用い、両シートをポリエチレン粉末を用
いて加圧熱接着した。 このようにして得たフイルターは、1の層の厚
み0.25mm、気孔容積62%、2の層の厚み0.36、気
孔容積70%であつた。 フイルター性能を実施例1と同条件で測定した
ところ、実施例1と比較して清浄効率99.6%、ダ
ストホルデイング性65g/m2という優れた結果で
あつた。 比較実施例 2〜6 各層の気孔容積を種々変化させたときのフイル
ター性能を実施例1と同条件で測定した結果を第
1表に示した。
The present invention relates to a nonwoven filter. More specifically, the present invention relates to a high-performance filter with excellent cleaning efficiency and dust-holding properties. Conventionally, paper, non-woven fabrics, woven fabrics, etc. have been used as filter materials, but paper has poor dust-holding properties at high flow rates and is easily clogged, non-woven fabrics have poor cleaning efficiency, and woven fabrics have poor cleaning efficiency and dust-holding properties. The drawback was that both of its performance were poor. The present invention relates to a high-performance nonwoven filter that eliminates these drawbacks. That is, the present invention consists of a coarse layer with a pore volume of 75 to 98%, in which continuous filaments with a fineness of 5d or more are intertwined three-dimensionally by needle punching, and a continuous filament with a fineness of less than 5d is two-dimensionally entangled. A nonwoven fabric comprising at least two layers, a dense scale-like layer and a dense scale-like layer having 65 to 80% pore volume arranged in the same manner, and wherein the filaments of the scale-like layer are partially fused. It is related to filters. FIG. 1 shows a nonwoven fabric filter of the present invention. To explain the present invention with reference to FIG. 1, 1 is a dense scale-like layer in which continuous filaments are two-dimensionally arranged;
2 is a coarse layer in which continuous filaments are three-dimensionally entangled, and 3 is an adhesive layer. The continuous filament referred to in the present invention is a continuous fiber obtained by continuously drawing and opening a spun fiber using an ejector as shown in FIG. be. Furthermore, the term "scaly" refers to a scale-like laminated unit consisting of a fiber group in which the constituent fibers in the nonwoven sheet are not arranged in the thickness direction, but are arranged randomly only in the plane direction. The two-dimensional arrangement in the present invention refers to a structure in which the continuous filaments are arranged in a two-dimensional random manner only in the planar direction of a scale, which is one laminated unit, and there is no filament arrangement in the thickness direction. Furthermore, three-dimensional entanglement refers to continuous filaments having a random arrangement in the plane direction of the sheet and the thickness direction of the sheet by needle punching, and the continuous filaments having mutual entanglement. When the nonwoven fabric filter of the present invention is cut along the XYZ plane of FIG. 1, it is as shown in FIG. 2. Layer 1 has a structure in which scales in which continuous filaments 4 are two-dimensionally arranged are stacked at an angle α (<XYZ). This structural arrangement increases the packing density of the fibers,
Moreover, the pores are fine, and the pores are long and widen in the direction of the laminated surface of the scales. Therefore, the angle α is preferably 90 degrees, that is, slightly angled rather than completely parallel to the sheet plane, and from the viewpoint of filter performance, it is usually greater than 90 degrees and particularly preferably in the range of 110 degrees or less. In this way, in the present invention, since the dense layer 1 has a scaly shape, the minute dust that passes through the coarse layer 2 under high flow velocity does not directly blow through, but collides with the fibers of the coarse layer 1 and is collected. or collected by elongated stomata. As shown in FIGS. 1 and 2, layer 2 has a bulky, rough structure with a large pore volume in which continuous filaments 5 are three-dimensionally entangled. This coarse layer 2 blocks the inflowing dust,
Collects dust and improves its dust holding properties. Since the pore volume varies depending on the purpose, it is difficult to define it unconditionally, but 75 to 98% is usually suitable. Here, the pore volume is the volume ratio of pores in a material as defined by JIS-L1079. The adhesive layer 3 is preferably bonded using a method that reduces pressure loss as much as possible, such as thermal bonding using a low melting point resin powder, low melting point fiber, low melting point perforated film, rubber adhesive, resin, etc. that has good adhesion to the constituent fibers. Or it can be chemically glued. In particular, the intermittent bonding method is suitable because it can reduce the bonding area and reduce fluid pressure loss. It is also possible to use mechanical adhesion by entangling fibers. The dense layer 1 is produced by jetting the filament onto a moving conveyor and suctioning it as shown in FIG. That is, a filament 7 is spun from a spinneret 6, drawn by an ejector 8, opened and jetted onto a conveyor 9, and at the same time, a scaly web 11 is deposited while being sucked by a suction box 10. The stacking angle α of the scales can be adjusted as appropriate by the degree of spreading of the injected fibers on the conveyor 9, the amount of fibers to be injected, the speed of the injection, the speed of the conveyor, and the like. Next, thermal bonding or chemical bonding is performed to make the scale-like web layer dense and to bond the scales together. In the case of thermal bonding, a dense layer with low pressure loss can be obtained by using low-melting fibers or by self-bonding of the fibers. In the case of chemical adhesion, after applying pressure, impregnation, spraying, coating, etc. are performed with adhesive. In the case of thermal bonding, if the fibers are fused together using a heat embossing roll with unevenness, a dense layer with unevenness can be obtained. If the dense layer 1 and the coarse layer 2 are bonded together, as shown in FIG. 4, the area through which the fluid passes increases due to the unevenness, so that a filter with less pressure loss can be obtained. In addition, the dense layer 1 provides a filter with fewer pores. Further, in order to reduce the pore size of the dense layer 1, the fineness of the constituent fibers is preferably less than 5 d, and the pore volume is preferably smaller than that of the coarse layer 2, and is preferably 65 to 80%. Further, the usually coarse layer 2 is obtained by punching a continuous filament web using a needle punching machine and intertwining the web in three dimensions. In this case, it is more preferable to use fibers that are thicker, more rigid, or have crimps than those used in the dense layer 1. The fineness of the coarse layer 2 is 5d or more.
As the rigid fiber used for the coarse layer 2, fibers such as polyester and polyolefin are suitable. The three-dimensional entangled structure maintains stable performance even when folded and bent during use. Further, in order to further stabilize the three-dimensional entangled structure, the present invention may be achieved by adhering with a rubber adhesive or the like to an extent that does not increase pressure loss. Furthermore, in order to further improve the filter performance, a multilayer structure as shown in FIG. 5, for example, is suitable. That is, 2a is a coarse layer, 2b is a coarse layer, 1
3 is a dense scale-like layer, and 3a and 3b are adhesive layers.
The dust-holding property is high due to the thick layer of roughness.
Furthermore, since there is a coarse and dense structure within the coarse layer, the effect of blocking dust is large, and the combined effect with the dense layer of 1 provides an even higher cleaning effect. The fibers used are natural fibers, synthetic organic polymer fibers,
Either can be used. In particular, filters made of synthetic organic polymer filaments are characterized in that even if there are few fusion points or adhesion points, a dense layer 1 with a stable shape can be formed, and a bulky coarse layer 2 can also be easily formed. Note that the filter of the present invention may be used by impregnating it with a known rubbery substance or resin. As mentioned above, the filter of the present invention is an excellent filter that has high dust holding properties under high-speed fluid and high cleaning efficiency. Therefore, it can be used in a wide range of applications such as automobile filters, vacuum cleaner filters, air conditioning filters, oil filters, and industrial filters. Example 1 Fineness manufactured by the method shown in Figure 3 as layer 1
A web made of polyethylene terephthalate filament having a fabric weight of 150 g/m 2 and having a fabric weight of 150 g/m 2 was bonded under pressure using a heat embossing roll with unevenness to form a sheet with a two-dimensional arrangement of uneven scales. As the second layer, a three-dimensional entangled sheet was used, which was made by processing a polyethylene terephthalate filament web with a fineness of 15 d and a basis weight of 100 g/m 2 using a needle punching machine at a needle density of 120 needles/cm 2 . The two sheets were bonded together by intermittent bonding using a hot embossing roll with a thin sheet made of low melting point fiber sandwiched between the two sheets. In the filter of the present invention having the above configuration, the thickness of the first layer is 0.46 mm, the pore volume is 76%, and the thickness of the second layer is 1.49 mm.
mm, and the pore volume was 95.2%. The performance of the filter was measured under conditions according to the measurement method of JIS B-9908, and the cleaning efficiency was 99.9.
% and dust holding property of 182 g/m 2 . Comparative Example 1 A scale-like sheet made of polyethylene terephthalate with a fineness of 3d and a basis weight of 150 g/m 2 was used as the first layer.
A needle-punched sheet made of polyethylene terephthalate with a fineness of 10 d and a basis weight of 150 g/m 2 was used as the second layer, and both sheets were bonded together under pressure and heat using polyethylene powder. In the filter thus obtained, the first layer had a thickness of 0.25 mm and the pore volume was 62%, and the second layer had a thickness of 0.36 and a pore volume of 70%. When the filter performance was measured under the same conditions as in Example 1, the results were excellent compared to Example 1 with a cleaning efficiency of 99.6% and dust holding property of 65 g/m 2 . Comparative Examples 2 to 6 Table 1 shows the results of measuring the filter performance under the same conditions as in Example 1 when the pore volume of each layer was varied.

【表】【table】

【表】 第1表から明らかなごとく、比較実施例3、4
及び6は清浄効率、ダストホルデイング性とも著
しく劣るものであり、又比較実施例2は清浄効率
の点では一応満足できるが、ダストホルデイング
性が悪く、一方比較実施例5はダストホルデイン
グ性については満足できるレベルにあるが、清浄
効率が極めて悪く、いずれも実用できないもので
あつた。 実施例2〜4及び比較例7〜9 本実験は本発明の不織布フイルター(実施例2
〜4)に比べて粗の層と密の層がそれぞれ3次元
的に絡合した構造を有する実開昭51−26569号に
よる不織布フイルター(比較例7、8及び9)が
過精度(清浄効率並びにフイルター通過最大粒
子径評価等)において著しく劣ることを立証する
ものである。実施例2及び3は実施例1の製法に
準じ、又実施例4は1の層と2bの層との接合を
熱接着で行なつた以外は、実施例1の製法に準じ
て作つた。更に各フイルターともポリエチレンテ
レフタレートフイラメントを使用した。 各フイルター構成及び評価結果を表1に示す。 尚、表1において過精度とは次の方法で測定
したものである。 過精度評価方法: 先に示す評価装置で、ガラスビーズを上部よ
り2g投入し、過風速20m/min条件で各フ
イルター試料について捕集テストを実施した。
通過したガラスビーズはアブソリユートフイル
ターで完全に捕集される。
[Table] As is clear from Table 1, Comparative Examples 3 and 4
Comparative Example 2 is satisfactory in terms of cleaning efficiency, but has poor dust holding property, while Comparative Example 5 has poor dust holding property. Although the cleaning efficiency was at a satisfactory level, the cleaning efficiency was extremely poor and none of them could be put to practical use. Examples 2 to 4 and Comparative Examples 7 to 9 This experiment was conducted using the nonwoven fabric filter of the present invention (Example 2
- 4), the nonwoven fabric filters (Comparative Examples 7, 8, and 9) according to Utility Model Application Publication No. 51-26569, which have a structure in which coarse layers and dense layers are intertwined three-dimensionally, have excessive precision (cleaning efficiency). This proves that it is significantly inferior in terms of evaluation of the maximum particle size passing through a filter, etc.). Examples 2 and 3 were manufactured according to the manufacturing method of Example 1, and Example 4 was manufactured according to the manufacturing method of Example 1, except that the layer 1 and the layer 2b were bonded by thermal bonding. Furthermore, each filter used a polyethylene terephthalate filament. Table 1 shows each filter configuration and evaluation results. In addition, in Table 1, overaccuracy is measured by the following method. Overaccuracy evaluation method: Using the evaluation apparatus shown above, 2g of glass beads were introduced from the top, and a collection test was conducted on each filter sample under the condition of an overflow speed of 20 m/min.
The glass beads that have passed through are completely collected by an absolute filter.

【表】 ーズ重量 ガラスビーズ重量
〓100
また、フイルター通過最大粒子径は、試料を通
過してアブソリユートフイルターに捕集されたガ
ラスビーズのうち、径の大きいもの上位5個の平
均値である。 初期圧力の損失、最終圧力損失は、各試料のガ
ラスビーズ投入前後の圧力損失を示す。 なお、ガラスビーズはMin5μ、Max120μ、体
積平均粒子径62μ、数平均粒子径39μのものを使
用した。
[Table] Glass bead weight Glass bead weight
〓100
Furthermore, the maximum particle diameter passing through the filter is the average value of the top five particles with the largest diameter among the glass beads that passed through the sample and were collected by the absolute filter. Initial pressure loss and final pressure loss indicate the pressure loss before and after glass beads were added to each sample. The glass beads used had a Min of 5μ, a Max of 120μ, a volume average particle diameter of 62μ, and a number average particle diameter of 39μ.

【表】 表1に示すガラスビーズを用いた過性能テス
ト結果から明らかなごとく、実開昭51−26569号
によるもの(比較例7〜9で粗の層、密の層とも
3次元構造のもの)は、本発明によるもの(実施
例2〜4で粗の層は3次元構造、密の層は2次元
構造で鱗片状のもの)に比べて清浄効率およびフ
イルター通過最大粒子径評価において著しく劣
る。 この理由は比較例7〜9の場合、密層が3次元
構造であるため、ダストの通過を容易にするピン
ホールが多く存在するものと考えられる。特にニ
ードルパンチングによつて3次元化された構造の
シートは、パンチング針による繊維集束を生じて
ピンホールを多数シート内に有するため、ガラス
ビーズの粒径の大きなものも通過してしまうこと
になる。これは評価項目、フイルター通過最大粒
子径で測定できる。 また、このような構造であれば当然、供給ガラ
スビーズの清浄効率も低下する。 これに対して、本発明は、粗の層が3次元構造
で太繊度を用いているため、まずガラスビーズを
この層で殆ど捕集できる。また粗の層であるた
め、ガラスビーズの堆積が生じても圧力損失の上
昇は最小にできる。次いで、粗の層で捕集できな
かつた比較的粒径の小さいガラスビーズは、密の
層の2次元構造で捕集される。この2次元構造は
繊維が2次元的、かつ鱗片状に配列され、ピンホ
ールもなく、また繊維集束もないので、微小な均
一な空隙を持ち、これによつて微小ガラスビーズ
まで捕集することができる。
[Table] As is clear from the overperformance test results using glass beads shown in Table 1, the product according to Utility Model Application No. 51-26569 (in Comparative Examples 7 to 9, both the coarse layer and the dense layer had a three-dimensional structure) ) are significantly inferior to those according to the present invention (in Examples 2 to 4, the coarse layer has a three-dimensional structure and the dense layer has a two-dimensional structure and scale-like structure) in terms of cleaning efficiency and evaluation of the maximum particle size passing through the filter. . The reason for this is thought to be that in Comparative Examples 7 to 9, the dense layer has a three-dimensional structure, so there are many pinholes that facilitate the passage of dust. In particular, sheets with a three-dimensional structure created by needle punching have many pinholes in the sheet due to fiber convergence caused by the punching needles, so even large glass beads can pass through. . This can be measured using the evaluation item, the maximum particle diameter that passes through the filter. Moreover, such a structure naturally reduces the cleaning efficiency of the supplied glass beads. On the other hand, in the present invention, since the coarse layer has a three-dimensional structure and has a large fineness, most of the glass beads can be collected in this layer. Furthermore, since the layer is rough, the increase in pressure loss can be minimized even if glass beads are deposited. Next, glass beads having a relatively small particle size that could not be collected in the coarse layer are collected in the two-dimensional structure of the dense layer. This two-dimensional structure has fibers arranged two-dimensionally and in the form of scales, and there are no pinholes or fiber bundles, so it has small uniform voids that can collect even the smallest glass beads. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明フイルターである。第3図
は本発明フイルターにおける2次元的配列した1
の層の製造工程を示す略図である。第4,5図は
本発明フイルターの実施態様を示す図面である。 1:二次元的配列した鱗片状の密の層、2,2
a,2b:三次元的絡合の粗の層、3,3a,3
b:接着層、4,5:連続フイラメント、6:紡
糸口金、7:フイラメント、8:エジエクター、
9:コンベア、10:吸引ボツクス、11:鱗片
状ウエブ。
Figures 1 and 2 show the filter of the present invention. Figure 3 shows a two-dimensional arrangement of filters in the filter of the present invention.
3 is a schematic diagram showing the manufacturing process of the layer of FIG. 4 and 5 are drawings showing embodiments of the filter of the present invention. 1: Two-dimensionally arranged scale-like dense layer, 2,2
a, 2b: Rough layer of three-dimensional entanglement, 3, 3a, 3
b: adhesive layer, 4, 5: continuous filament, 6: spinneret, 7: filament, 8: ejector,
9: conveyor, 10: suction box, 11: scaly web.

Claims (1)

【特許請求の範囲】[Claims] 1 5d以上の太繊度からなる連続フイラメント
がニードルパンチにより三次元的に絡合した気孔
容積75〜98%の粗の層と、5d未満の細繊度から
なる連続フイラメントが二次元的に配列した気孔
容積65〜80%で、かつ鱗片状である密の層との少
なくとも2層からなり、かつ前記鱗片状の層のフ
イラメントは部分的に融着していることを特徴と
する不織布フイルター。
1 A coarse layer with a pore volume of 75 to 98%, in which continuous filaments with a fineness of 5d or more are entangled three-dimensionally by needle punching, and pores in which continuous filaments with a fineness of less than 5d are arranged two-dimensionally. 1. A nonwoven fabric filter having a volume of 65 to 80% and comprising at least two layers, a dense layer having a scale shape, and wherein the filaments of the scale layer are partially fused.
JP3544078A 1978-03-29 1978-03-29 Unwoven cloth filter Granted JPS54128871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3544078A JPS54128871A (en) 1978-03-29 1978-03-29 Unwoven cloth filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3544078A JPS54128871A (en) 1978-03-29 1978-03-29 Unwoven cloth filter

Publications (2)

Publication Number Publication Date
JPS54128871A JPS54128871A (en) 1979-10-05
JPS6211604B2 true JPS6211604B2 (en) 1987-03-13

Family

ID=12441895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3544078A Granted JPS54128871A (en) 1978-03-29 1978-03-29 Unwoven cloth filter

Country Status (1)

Country Link
JP (1) JPS54128871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128737U (en) * 1989-03-31 1990-10-24

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738917A (en) * 1980-08-22 1982-03-03 Dynic Corp Filter body for gas
JPS6034429U (en) * 1983-08-13 1985-03-09 中央建材工業株式会社 Buffer sheet for waterproof coating
JPS60171532U (en) * 1984-04-24 1985-11-13 日本無機株式会社 Air filter for removing salt particles
JPS60244316A (en) * 1984-05-21 1985-12-04 Kotsukou Seishi Kk Sheet like article for filter
JPS6167819U (en) * 1984-10-12 1986-05-09
JPH0746334Y2 (en) * 1989-06-01 1995-10-25 日本無機株式会社 Mist filter element
JP4446673B2 (en) * 2003-03-28 2010-04-07 日本バイリーン株式会社 Coarse dust filter
JP5784458B2 (en) * 2011-10-31 2015-09-24 日東電工株式会社 Air filter media
JP6053486B2 (en) * 2012-12-06 2016-12-27 株式会社ニフコ filter
WO2017056508A1 (en) * 2015-09-30 2017-04-06 日東電工株式会社 Air filter material, air filter pack, and air filter unit
JP6920042B2 (en) * 2016-09-30 2021-08-18 日東電工株式会社 Air filter filter media, air filter pack and air filter unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827629A (en) * 1971-08-13 1973-04-12

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953370U (en) * 1972-08-12 1974-05-11
JPS5444303Y2 (en) * 1974-08-19 1979-12-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827629A (en) * 1971-08-13 1973-04-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128737U (en) * 1989-03-31 1990-10-24

Also Published As

Publication number Publication date
JPS54128871A (en) 1979-10-05

Similar Documents

Publication Publication Date Title
KR100412255B1 (en) Process for manufacture of triboelectrically charged nonwovens
US5283106A (en) Nonwoven material of two or more layers, in particular with long-term filter properties and manufacture thereof
RU2328377C2 (en) Multilayer non-woven material
DK2026958T3 (en) FOR UNIT CREATED COMPOSITION MATERIALS WITH WAVING SIMILAR CROSS OF WORKING DIRECTION
US6867156B1 (en) Materials having z-direction fibers and folds and method for producing same
US4983193A (en) Filter and process for the production thereof
AU2002351352B2 (en) High loft low density nonwoven webs of crimped filaments and methods of making same
US5955174A (en) Composite of pleated and nonwoven webs
JP4657782B2 (en) A filter that combines high collection efficiency and low pressure loss
JP2981533B2 (en) Molded filter
US20030213109A1 (en) Controlled loft and density nonwoven webs and method for producing same
JPS6211604B2 (en)
EP0416068A1 (en) Laminated filters
CN101983097A (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
EP2144684A2 (en) Filtration media having a slit-film layer
US20010054777A1 (en) Materials having z-direction fibers and folds and method for producing same
JP4923353B2 (en) Electret filter medium and method for producing the same
US7153793B2 (en) Multilayer nonwovens incorporating differential cross-sections
JP3516979B2 (en) Filter media for air filter
US20160009093A1 (en) Splitable staple fiber non-woven usable in printer machine cleaning applications
US3193436A (en) Nonwoven fabric
JP2004105829A (en) Filter for cleaning air
JP4705401B2 (en) Nonwoven fabric for feather collection bags
US20230026576A1 (en) Filter media with irregular structure and/or reversibly stretchable layers
JP5586408B2 (en) Non-woven filter medium for filter, method for producing the same, and air filter