JPS62115817A - Manufacture of laminated capacitor element - Google Patents

Manufacture of laminated capacitor element

Info

Publication number
JPS62115817A
JPS62115817A JP60256956A JP25695685A JPS62115817A JP S62115817 A JPS62115817 A JP S62115817A JP 60256956 A JP60256956 A JP 60256956A JP 25695685 A JP25695685 A JP 25695685A JP S62115817 A JPS62115817 A JP S62115817A
Authority
JP
Japan
Prior art keywords
capacitor element
firing
dielectric
copper
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60256956A
Other languages
Japanese (ja)
Other versions
JPH0646619B2 (en
Inventor
横谷 洋一郎
純一 加藤
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60256956A priority Critical patent/JPH0646619B2/en
Publication of JPS62115817A publication Critical patent/JPS62115817A/en
Publication of JPH0646619B2 publication Critical patent/JPH0646619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は積層コンデンサ素子の製造方法に関し特に、鉛
を含有する複合ペロブスカイト型固溶体を主成分とした
セラミックを誘電体として用い、内部電極に銅もしくは
銅を主成分とする合金を用いた積層コンデンサ素子の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a multilayer capacitor element, in particular a ceramic mainly composed of a composite perovskite solid solution containing lead is used as a dielectric material, and copper or copper is used as the internal electrode. The present invention relates to a method for manufacturing a multilayer capacitor element using an alloy containing as a main component.

従来の技術 近年セラミックコンデンサは素子の小型化、大容量化へ
の要求から積層型セラミックコンデンサが急速に普及し
つつある。積層型セラミックコンデンサは内部電極とセ
ラミックを一体焼成する工程によって通常製造される。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors have been rapidly becoming popular due to the demand for smaller ceramic capacitor elements and larger capacitance. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics.

従来より高誘電率系のセラミックコンデンサ材料にはチ
タン酸バリウム系の材料が用いられてきたが、焼成温度
が1300℃程度と高いため、内部電極材料としてはP
t、Pdなどの高価な金属を用いる必要があった。
Barium titanate-based materials have traditionally been used as high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1,300°C, P is used as the internal electrode material.
It was necessary to use expensive metals such as tungsten and Pd.

これに対し低酸素分圧雰囲気中で焼成できるチタン酸バ
リウム系材料を用いNiなどの卑金属材料を内部電極と
して使用した積層コンデンサ素子が提案されており、そ
の製造条件についてはジャパニーズ、ジャーナル、オブ
、アプライド、フィシクス、サブリメント、2O−4(
1981) P147〜150などに報告されている。
In response, a multilayer capacitor element has been proposed that uses a barium titanate-based material that can be fired in a low oxygen partial pressure atmosphere and uses a base metal material such as Ni as the internal electrode.The manufacturing conditions are described in Japanese, Journal, of Applied, Physics, Subliment, 2O-4 (
1981) as reported in P147-150.

いっぽう低酸素分圧雰囲気で焼成でき高い抵抗率を有す
る鉛複合ペロブスカイト系の材料を発明者らはすでに提
案している。
On the other hand, the inventors have already proposed a lead composite perovskite material that can be fired in a low oxygen partial pressure atmosphere and has high resistivity.

発明が解決しようとする問題点 銅および鋼を主成分とする合金を内部電極として用い、
鉛を含有する複合ペロブスカイト型固溶体を主成分とし
たセラミックを誘電体として用いた積層コンデンサ素子
はその製造工程中、素子の焼成工程において銅電極が酸
化して素子の容量が低下したり、酸化した鋼成分が誘電
体セラミックと反応し素子の絶縁抵抗値が低下するなど
の問題点や、誘電体セラミックが還元され素子の絶縁抵
抗値が低下したり誘電損失が増大するなどの問題点があ
った。本発明は銅電極の酸化と誘電体の還元を防ぐ積層
コンデンサ素子の製造方法を提供するものである。
Problems to be Solved by the Invention Using an alloy mainly composed of copper and steel as the internal electrode,
During the manufacturing process of multilayer capacitor elements using ceramics mainly composed of a composite perovskite solid solution containing lead as a dielectric, the copper electrodes are oxidized during the firing process of the element, resulting in a decrease in the capacitance of the element or oxidation. There were problems such as the steel components reacting with the dielectric ceramic, reducing the insulation resistance of the element, and the dielectric ceramic being reduced, reducing the insulation resistance of the element and increasing dielectric loss. . The present invention provides a method for manufacturing a multilayer capacitor element that prevents oxidation of copper electrodes and reduction of dielectric material.

問題点を解決するための手段 Pb(Mg1,3Nb2t3)03を主成分とし、Ca
、Sr、Baからなる群から選ばれた少なくとも一種の
成分の酸化物を含む組成のセラミックを誘電体として用
い、銅もしくは銅を主成分とする合金を内部TL極とし
て、素子の焼成温度をT℃、焼成時の雰囲気酸素分圧を
Po2気圧としたとき800 ≦T≦1100.−2.
33+(2TV300)≦−loginPo2≦26−
(T/100)なる範囲で焼成を行う。
Means for solving problems Pb(Mg1,3Nb2t3)03 is the main component, Ca
, Sr, and Ba, and a ceramic having a composition containing an oxide of at least one component selected from the group consisting of , Sr, and Ba is used as the dielectric, and copper or an alloy containing copper as the main component is used as the internal TL pole, and the firing temperature of the element is set to T. ℃, when the atmospheric oxygen partial pressure during firing is Po2 atm, 800≦T≦1100. -2.
33+(2TV300)≦-loginPo2≦26-
(T/100).

作用 本発明の製造方法によれば、銅電極が酸化して素子の容
量が低下したり、酸化した鋼成分が誘電体セラミックと
反応し素子の絶縁抵抗値が低下するなどの問題点や、誘
電体セラミックが還元され素子の絶縁抵抗値が低下した
り誘電損失が増大するなどの問題点が発生せず、絶縁抵
抗が高(、素子の容量が低下しない積層コンデンサ素子
が得られる。
According to the manufacturing method of the present invention, there are problems such as the copper electrode being oxidized and the capacitance of the device being reduced, and the oxidized steel component reacting with the dielectric ceramic to reduce the insulation resistance value of the device. A multilayer capacitor element with high insulation resistance (and no reduction in element capacitance) can be obtained without causing problems such as a decrease in the insulation resistance value of the element or an increase in dielectric loss due to the reduction of the body ceramic.

実施例 誘電体として次に示す組成式で表される材料を用いた。Example A material represented by the following compositional formula was used as the dielectric.

A : (Pb +、oo Ca 0.025)(Mg
xz+ Nb2.s )0.T。
A: (Pb +, oo Ca 0.025) (Mg
xz+ Nb2. s)0. T.

Tio2s (Nitz2W 1/2 )Q、0503
.025B : (Pb 0.9[I Sr 0.07
)(Mg1zs Nb2z3 )o、as’[’ io
、+s 03.03 C二 (Pb  l−00Ba  O−05)0−05
)(Nb2z3  )0−40Ti0.30  (Zl
ll/2  Wl/2  )0.30 03.05誘電
体粉末は通常のセラミック製造方法に従い製造した。仮
焼条件は800℃、2時間とした。
Tio2s (Nitz2W 1/2) Q, 0503
.. 025B: (Pb 0.9 [I Sr 0.07
)(Mg1zs Nb2z3)o,as'['io
, +s 03.03 C2 (Pb l-00Ba O-05) 0-05
) (Nb2z3 )0-40Ti0.30 (Zl
ll/2 Wl/2 ) 0.30 03.05 The dielectric powder was manufactured according to a conventional ceramic manufacturing method. The calcination conditions were 800°C for 2 hours.

粉砕した仮焼粉末はアクリル樹脂、溶剤と混合しドクタ
ーブレードを用い厚さ42μmにシート化した。シート
上に金属銅粉末とアクリル樹脂溶剤を混合した電極ペー
ストを印刷し電極が交互に引き出されるように積層し切
断した。積層体は磁器ボート内に粗粒ジルコニアを敷き
その上に載せ。
The pulverized calcined powder was mixed with an acrylic resin and a solvent and formed into a sheet with a thickness of 42 μm using a doctor blade. An electrode paste made of a mixture of metallic copper powder and acrylic resin solvent was printed on a sheet, laminated so that the electrodes were drawn out alternately, and then cut. The laminate is placed on top of coarse-grained zirconia laid inside a porcelain boat.

1%02−N2ガスを流し350℃でバインダーをバー
ンアウトした。
The binder was burnt out at 350° C. by flowing 1% 02-N2 gas.

第2図に焼成時の積層体を入れるマグネシア磁器容器の
断面を、第3図に焼成炉炉心管の断面示す。マグネシア
磁器容器21内には上述の仮焼粉22を体積の1/3程
度敷きつめた上に200メツシユZrO2扮23を杓1
 mm敷き、そのうえにバーンアウトした積層体25を
置いた。マグネシア磁器の蓋24をし、管状電気炉の炉
心管内26に挿入し、炉心管内をロータリーポンプで脱
気したのちN2−82混合ガスで置換し、所定の酸素分
圧になるようN2とN2ガスの混合比を調節しながら混
合ガスを流し、所定温度まで400℃/に1rで昇温し
2時間保持後400’C/hrで降温した。
FIG. 2 shows a cross section of a magnesia porcelain container into which a laminate is placed during firing, and FIG. 3 shows a cross section of a firing furnace core tube. In the magnesia porcelain container 21, the above-mentioned calcined powder 22 was spread about 1/3 of the volume, and 200 mesh ZrO2 powder 23 was placed in a ladle.
mm, and the burnout laminate 25 was placed thereon. Cover the magnesia porcelain lid 24, insert it into the core tube 26 of the tubular electric furnace, deaerate the inside of the core tube with a rotary pump, replace it with N2-82 mixed gas, and add N2 and N2 gas to a predetermined oxygen partial pressure. A mixed gas was flowed while adjusting the mixing ratio of , and the temperature was raised to a predetermined temperature at a rate of 400°C/hr for 1 hour, held for 2 hours, and then lowered at a rate of 400'C/hr.

炉心管内のPo2は挿入した安定化ジルコニア酸素セン
サー27の大気側と炉内部側に構成した白金電極から引
き出した電極間の電圧E (V)より次式より求めた。
Po2 in the reactor core tube was determined from the following equation based on the voltage E (V) between the electrodes drawn from the platinum electrodes configured on the atmospheric side of the inserted stabilized zirconia oxygen sensor 27 and on the inner side of the reactor.

Po 2 =0.2・exp(4F E / RT )
ここでFはファラデ一定数96489クーロン、Rはガ
ス定数8.3144J/deg−mol、 Tは絶対温
度である。
Po 2 =0.2・exp(4FE/RT)
Here, F is the Faraday constant of 96489 coulombs, R is the gas constant of 8.3144 J/deg-mol, and T is the absolute temperature.

焼成した積層コンデンサ素子は、外部電極として銅電極
(無機バインダー入り)を印刷法により形成し前述の焼
成方法と同様の方法で700℃Po2=1xlO−6で
焼き付けた。
In the fired multilayer capacitor element, copper electrodes (containing an inorganic binder) were formed as external electrodes by a printing method, and baked at 700°C Po2 = 1xlO-6 in the same manner as the above-mentioned baking method.

積層コンデンサ素子の外形は?、Ox5.Ox1.Om
mで有効電極面積は一層当たり18mm2(5,Ox3
.6nvn)、電極層の厚みは2.0μm、誘電体層は
一層当たり30μmで有効層は30層、上下に無効層を
一層ずつ設けた。
What is the external shape of a multilayer capacitor element? , Ox5. Ox1. Om
m, the effective electrode area is 18 mm2 (5,Ox3
.. 6nvn), the thickness of the electrode layer was 2.0 μm, the dielectric layer was 30 μm per layer, there were 30 effective layers, and one ineffective layer on the top and bottom.

積層コンデンサ素子は、容量、janδを1kllz、
IV/mmの電界下で測定した。また抵抗率は1 k 
V / mn+の電圧を印加後1分値から求めた。
The multilayer capacitor element has a capacitance, janδ, of 1kllz,
Measurements were made under an electric field of IV/mm. Also, the resistivity is 1k
The voltage of V/mn+ was determined from the value 1 minute after application.

表1に、用いた誘電体の組成、電極組成、焼成時の酸素
分圧、焼成温度、誘電率、tanδ、抵抗率、を示した
Table 1 shows the composition of the dielectric used, the electrode composition, the oxygen partial pressure during firing, the firing temperature, the dielectric constant, tan δ, and resistivity.

第1図は縦軸に酸素分圧、横軸に焼成温度をとったもの
で斜線の範囲が発明の転回である。
FIG. 1 shows the oxygen partial pressure on the vertical axis and the firing temperature on the horizontal axis, and the shaded area is the inversion of the invention.

本発明において使用される条件は、下記の理由により限
定される。まず焼成時の酸素分圧の上限については、表
1および第1図の試料番号11.1.6にあるように、
おのおの焼成温度と焼成雰囲気酸素分圧が830℃で1
 ×10−3気圧、9600Cで1 = 10−3気圧
、1030℃で1 ×10−4気圧では素子の抵抗値が
1×10・9Ω以下となり、試料番号12.2.7にあ
るように、おのおの860℃で1×10−4気圧、98
0℃で1 ×10−6気圧、1030℃で1・10−6
気圧では素子の抵抗値がI×10◆9Ω以上となること
から、第1図でこれらの2つの群の間を通る一1ogP
o2−2.33+(2T/300)が境界となった。下
限については試料番号15.5.10にあるようにおの
おの900℃で1×l Q−18気圧、1050℃でI
 X 10−17気圧、1100℃で1・l Q−16
気圧、では素子の抵抗値がやはり1 ×10−9Ω以下
となり、試料番号14.4.9にあるように、900°
Cでl x l Q−18気圧、1050℃でl < 
l Q−Is気圧、1080°CでI X 10−14
気圧では素子の抵抗値が1×10・9Ω以上となること
から、第1図でこれらの2つの群の間を通る一1ogP
o2−26−(T/100)が境界となった。
The conditions used in the present invention are limited for the following reasons. First, regarding the upper limit of oxygen partial pressure during firing, as shown in Table 1 and sample number 11.1.6 in Figure 1,
Each firing temperature and firing atmosphere oxygen partial pressure is 1 at 830℃.
At ×10−3 atm, 1 = 10−3 atm at 9600C, and 1×10−4 atm at 1030°C, the resistance value of the element becomes 1×10·9Ω or less, as shown in sample number 12.2.7. 1 x 10-4 atm at 860℃, 98
1 x 10-6 atm at 0℃, 1.10-6 at 1030℃
At atmospheric pressure, the resistance value of the element is I×10◆9Ω or more, so in Figure 1, the resistance value of -1ogP passing between these two groups is
The boundary was o2-2.33+(2T/300). Regarding the lower limit, as shown in sample number 15.5.10, 1 x l at 900℃, I at 1050℃
X 1.l at 10-17 atm and 1100°C Q-16
At atmospheric pressure, the resistance value of the element is still less than 1 × 10-9Ω, and as shown in sample number 14.4.9, at 900°
l x l at C - Q-18 atm, l < at 1050°C
l Q-Is atm, I x 10-14 at 1080°C
At atmospheric pressure, the resistance value of the element is 1×10・9Ω or more, so in Figure 1, the resistance value of -1ogP passing between these two groups is
o2-26-(T/100) became the boundary.

また焼成温度が1100℃以上では試料番号16にある
ように焼成中に銅が溶融し層状に電極が形成されず島状
に偏在するため容量が低下し、800℃以下では試料番
号17にあるように誘電体がチ密化せずやはり容量が低
下するので発明の範囲外とした。
Furthermore, if the firing temperature is above 1100°C, as shown in sample number 16, the copper melts during firing and the electrodes are not formed in a layered manner but are unevenly distributed in islands, resulting in a decrease in capacity, and below 800°C, as shown in sample number 17. However, since the dielectric material does not become denser and the capacitance decreases, it is excluded from the scope of the invention.

発明の効果 本発明の範囲の積層コンデンサ素子の製造法によると、
高い誘電率を有するPb(Mg+z+ Nb2z3)0
3を主成分とする材料を誘電体として用い、銅および銅
を主成分とする電極材料をもちいた、小型大容量低コス
トでかつ高信頼性の積層コンデンサ素子が得られる。
Effects of the Invention According to the method for manufacturing a multilayer capacitor element within the scope of the present invention,
Pb(Mg+z+Nb2z3)0 with high dielectric constant
A multilayer capacitor element having a small size, large capacity, low cost, and high reliability can be obtained by using a material containing 3 as a main component as a dielectric and using copper and an electrode material containing copper as a main component.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る積層コンデンザ素子の製造法にお
ける焼成温度と焼成時の酸素分圧雰囲気の範囲を示すグ
ラフ、第2図は焼成時のマグネシア容器の断面図、第3
図は焼成炉炉心管断面図である。 21.マグネシア磁器容器、22:仮焼粉、23、粗粒
ジルコニア、24:マグネシア容器蓋、25:積層体試
料、26:炉心管、27:安定化ジルコニア酸素センサ
ー。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 慟頗渡 (’C)
FIG. 1 is a graph showing the range of firing temperature and oxygen partial pressure atmosphere during firing in the manufacturing method of a multilayer capacitor element according to the present invention, FIG. 2 is a cross-sectional view of the magnesia container during firing, and FIG.
The figure is a cross-sectional view of the firing furnace core tube. 21. Magnesia porcelain container, 22: Calcined powder, 23: Coarse grain zirconia, 24: Magnesia container lid, 25: Laminate sample, 26: Furnace tube, 27: Stabilized zirconia oxygen sensor. Name of agent: Patent attorney Toshio Nakao and one other person (Figure 1) ('C)

Claims (1)

【特許請求の範囲】 Pb(Mg_1_/_3Nb_2_/_3)O_3を主
成分とし、Ca、Br、Baからなる群の少なくとも一
つの成分の酸化物を含む組成からなるセラミックを誘電
体として用い、内部電極に銅もしくは銅を主成分とする
合金を用いて、素子の焼成温度をT℃、焼成時の雰囲気
酸素分圧をPo_2気圧としたとき 800≦T≦1100 −2.33+(2T/300)≦−log_mPo_2
≦26−(T/100)なる範囲の条件で焼成すること
を特徴とする積層コンデンサ素子の製造方法。
[Claims] A ceramic having a composition mainly composed of Pb(Mg_1_/_3Nb_2_/_3)O_3 and containing an oxide of at least one component of the group consisting of Ca, Br, and Ba is used as a dielectric, and the internal electrode When copper or an alloy containing copper as the main component is used, the firing temperature of the element is T°C, and the atmospheric oxygen partial pressure during firing is Po_2 atmospheres, 800≦T≦1100 −2.33+(2T/300)≦ -log_mPo_2
A method for manufacturing a multilayer capacitor element, characterized in that firing is performed under conditions in a range of ≦26-(T/100).
JP60256956A 1985-11-15 1985-11-15 Method for manufacturing multilayer capacitor element Expired - Fee Related JPH0646619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60256956A JPH0646619B2 (en) 1985-11-15 1985-11-15 Method for manufacturing multilayer capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60256956A JPH0646619B2 (en) 1985-11-15 1985-11-15 Method for manufacturing multilayer capacitor element

Publications (2)

Publication Number Publication Date
JPS62115817A true JPS62115817A (en) 1987-05-27
JPH0646619B2 JPH0646619B2 (en) 1994-06-15

Family

ID=17299700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60256956A Expired - Fee Related JPH0646619B2 (en) 1985-11-15 1985-11-15 Method for manufacturing multilayer capacitor element

Country Status (1)

Country Link
JP (1) JPH0646619B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902102A (en) * 1974-04-01 1975-08-26 Sprague Electric Co Ceramic capacitor with base metal electrodes
JPH0329019A (en) * 1989-06-27 1991-02-07 Fujitsu Ltd Virtual printer control system
JPH05262556A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Production of dielectric porcelain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902102A (en) * 1974-04-01 1975-08-26 Sprague Electric Co Ceramic capacitor with base metal electrodes
JPH0329019A (en) * 1989-06-27 1991-02-07 Fujitsu Ltd Virtual printer control system
JPH05262556A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Production of dielectric porcelain

Also Published As

Publication number Publication date
JPH0646619B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
KR100256199B1 (en) Monolithic ceramic capacitor
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3024537B2 (en) Multilayer ceramic capacitors
KR980009197A (en) Multilayer Ceramic Capacitors
CN114914085B (en) Dielectric composition, electronic component, and laminated electronic component
JP3039426B2 (en) Multilayer ceramic capacitors
KR900002520B1 (en) Condensor
JPH0528891B2 (en)
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JPS62115817A (en) Manufacture of laminated capacitor element
JP3287980B2 (en) Multilayer capacitors
JPS62128513A (en) Manufacture of laminated capacitor device
JP4682407B2 (en) Multilayer ceramic capacitor
JPH0515291B2 (en)
JPH0610931B2 (en) Non-reducing dielectric ceramic composition
JPS62123064A (en) Dielectric ceramic composition
JP2841338B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0646620B2 (en) Method for manufacturing multilayer capacitor element
CN116092828A (en) Dielectric composition and electronic component
JPH04331765A (en) Non-reducing dielectric ceramic composition
CN114853472A (en) Dielectric composition and electronic component
JPH1174144A (en) Laminated ceramic capacitor
JP3652164B2 (en) Dielectric porcelain plate, manufacturing method thereof, and electronic component
JPS63116308A (en) Dielectric magnetic composition
JPH11180767A (en) Dielectric ceramic material and layered ceramic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees