JPS62115025A - Glycidyl methacrylate homopolymer - Google Patents

Glycidyl methacrylate homopolymer

Info

Publication number
JPS62115025A
JPS62115025A JP25444585A JP25444585A JPS62115025A JP S62115025 A JPS62115025 A JP S62115025A JP 25444585 A JP25444585 A JP 25444585A JP 25444585 A JP25444585 A JP 25444585A JP S62115025 A JPS62115025 A JP S62115025A
Authority
JP
Japan
Prior art keywords
glycidyl methacrylate
homopolymer
polymer
polymerization
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25444585A
Other languages
Japanese (ja)
Inventor
Yasumi Shimizu
保美 清水
Tetsuya Nakada
中田 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP25444585A priority Critical patent/JPS62115025A/en
Publication of JPS62115025A publication Critical patent/JPS62115025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-polymerization degree glycidyl methacrylate useful as a functional polymeric material, obtained by polymerizing glycidyl methacrylate by bonding through its epoxy groups. CONSTITUTION:A high-polymerization degree glycidyl methacrylate homopolymer whose main chain is substantially represented by the structure of the formula and which has a reduced viscosity as measured in a 0.1% benzene solution at 40 deg.C>=0.1. This homopolymer can be obtained by ring-opening polymerization of glycidyl methacrylate by using a thermal condensation product of an organotin compound with an alkyl orthophosphate or polyphosphate alkyl ester.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はグリシジルメタクリレートのエポキシ基を介し
ての重合によって製造される、機能性高分子材料として
有用な新規高重合体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a novel polymer useful as a functional polymer material produced by polymerization of glycidyl methacrylate via an epoxy group.

(従来技術) グリシジルメタクリレートのエポキシ基を開環重合させ
てjqられるグリシジルメタクリレートポリマーは、化
学的に高活性なメタクリロイル基を側鎖に有し、反応性
もしくは機能性高分子物質として期待されるものである
が、従来このホモポリマーで、しかも高重合体のものは
知られていない。
(Prior art) Glycidyl methacrylate polymer, which is produced by ring-opening polymerization of the epoxy groups of glycidyl methacrylate, has a chemically highly active methacryloyl group in its side chain and is expected to be a reactive or functional polymer material. However, this homopolymer, moreover, a high polymer, has not been known so far.

米国特許第3.158.591号明細書及び米国特許第
3、285.870号明細書にはアルキルアルミニウム
ーアセチルアセトン−水系の触媒を用いた高重合度のグ
リシジルメタクリレート−エビクロロヒドリンコポリマ
ーの製造法が開示されているが、得られたコポリマー中
のグリシジルメタクリレートの組成比は極めて低いもの
であった。また同系の触媒を用い、高重合度のグリシジ
ルエステル−プロピレンオキシドコポリマーの製造法も
開示されている(Ind、Eng、Chem、Prod
、Res、Develop、 3.195(1964)
 )が、グリシジルメタクリレートに関する記載はなく
、またコポリマーの組成もプロピレンオキシドを主体と
するものであった。
U.S. Pat. No. 3,158,591 and U.S. Pat. No. 3,285,870 disclose the preparation of highly polymerized glycidyl methacrylate-shrimp chlorohydrin copolymers using alkylaluminium-acetylacetone-water catalysts. Although a method has been disclosed, the composition ratio of glycidyl methacrylate in the obtained copolymer was extremely low. A method for producing a glycidyl ester-propylene oxide copolymer with a high degree of polymerization using a similar catalyst has also been disclosed (Ind, Eng, Chem, Prod.
, Res. Develop, 3.195 (1964)
), but there was no mention of glycidyl methacrylate, and the composition of the copolymer was mainly propylene oxide.

アルキルアルミニウムー水系触媒は、米国特許第3.2
80.045@明細書にも記載されているようにエステ
ル基に対する触媒の反応性のためにグリシジルエステル
、特にその単独系での開環重合触媒としては適当ではな
い。
Alkylaluminum-water based catalysts are disclosed in U.S. Patent No. 3.2.
80.045@ As described in the specification, glycidyl esters are not suitable as ring-opening polymerization catalysts, especially when used alone, due to the reactivity of the catalyst toward ester groups.

またフッ化ホウ素エーテラート触媒によるグリシジルメ
タクリレートの開環重合に関する報告がなされている(
大津ら、高分子化学 21.703(1964)、大津
ら、 Makromol、Chem、  71.150
(1964) )が、ポリマーの分子量に関連したデー
タの記載はない。
There has also been a report on the ring-opening polymerization of glycidyl methacrylate using a boron fluoride etherate catalyst (
Otsu et al., Polymer Chemistry 21.703 (1964), Otsu et al., Makromol, Chem, 71.150
(1964)), but there is no description of data related to the molecular weight of the polymer.

一般にエポキシドの開環重合反応による高重合体の製造
には、アルキルアルミニウムーアセチルアセトン−水系
、アルキル亜鉛−水系、塩化鉄−プロピレンオキシド系
あるいは有機錫−リン酸エステル縮合物系などのような
配位重合型の触媒のみが有効であると考えられており、
フッ化ホウ素エーテラートの如くルイス酸によるカチオ
ン重合では十分な高重合体は得られない。更に前記大津
らの報告によれば、得られたポリマーは極めて吸湿性が
高く、グリシジルメタクリレート単位当り1分子の水が
付加したポリマーとして同定されてあり、この点ても本
発明ホモポリマーと異なっている。
Generally, in the production of high polymers by ring-opening polymerization reaction of epoxides, coordination methods such as alkylaluminum-acetylacetone-water system, alkylzinc-water system, iron chloride-propylene oxide system, or organotin-phosphate ester condensate system are used. Only polymerization-type catalysts are thought to be effective;
Cationic polymerization using a Lewis acid, such as boron fluoride etherate, does not yield a sufficient polymer. Furthermore, according to the report by Otsu et al., the obtained polymer has extremely high hygroscopicity and has been identified as a polymer with one molecule of water added per glycidyl methacrylate unit, which is also different from the homopolymer of the present invention. There is.

本出願人の出願に係る米国特許第3.773.694号
明細書には、有機錫−リン酸エステル縮合物触媒により
グリシジルエステルの開環重合が可能であるという一般
的な記載がなされているが、グリシジルエステルとして
グリシジルメタクリレートの一般的記載があるのみで重
合反応の詳細およびこれによって得られる高重合体の開
示はなされていない。
U.S. Patent No. 3,773,694 filed by the present applicant generally states that ring-opening polymerization of glycidyl esters is possible using an organotin-phosphate ester condensate catalyst. However, there is only a general description of glycidyl methacrylate as a glycidyl ester, but the details of the polymerization reaction and the high polymer obtained thereby are not disclosed.

その他、グリシジルメタクリレートポリマーに関する報
文や特許公報等が数多く提供されているが、それらはい
ずれもビニル基を介しての重合体であり本発明の如くエ
ポキシ基を介しての重合反応による高重合度のポリエー
テルホモポリマーについては全く開示されていない。
In addition, many reports and patent publications regarding glycidyl methacrylate polymers have been provided, but all of them are polymers using vinyl groups, and as in the present invention, the degree of polymerization is high due to polymerization reaction via epoxy groups. There is no disclosure of polyether homopolymers.

(発明の目的) 本発明は機能性高分子材料として有用な、グリシジルメ
タクリレートのエポキシ基を介しての重合反応による高
重合度ホモポリマーを提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a highly polymerized homopolymer produced by a polymerization reaction of glycidyl methacrylate via an epoxy group, which is useful as a functional polymer material.

(発明の構成) 本発明は、40’Cにおいて9.1%のベンゼン溶液で
測定した還元粘度が0.1以上であり、主鎖構成が実質
的に次式(1) で表わされる高重合度のグリシジルメタクリレートホモ
ポリマーでおる。
(Structure of the Invention) The present invention is directed to a highly polymerized polymer having a reduced viscosity of 0.1 or more as measured in a 9.1% benzene solution at 40'C and a main chain structure substantially represented by the following formula (1). It is coated with glycidyl methacrylate homopolymer.

本発明のホモポリマーは、グリシジルメタクリレートを
(A)有機錫化合物と(B)正燐酸あるいはポリ燐酸の
アルキルエステルとの熱縮合生成物を触媒として開環重
合することにより製造される。この触媒の(A>、(B
)各成分の詳細については前記米国特許第3.773.
694号明細書に記載されている。触媒は、(A>成分
と(B)成分を通常含まれる錫原子と燐原子との比で1
:10〜10:1の範囲になるように調節し、約100
〜300’Cで(△)成分と(B)成分あるいは(A>
成分と(B)成分を形成し得る成分化合物の組合せとを
混合加熱することによって生成される。溶媒は必要があ
れば使用してもよい。この触媒生成反応では、成分の種
類に従って種々の比較的簡単な物質が縮合反応で生成脱
離する。得られた縮合物は縮合度の種々の段階で目的と
する活性を示す。最適の縮合度は、(A>成分と(B)
成分の種類と比率によって異なるが、それらは実験的に
定めることができる。縮合物は、一般的に初期において
ヘキサン、ベンゼンなどの溶媒に可溶であるが、縮合反
応の進行によって不溶化する。
The homopolymer of the present invention is produced by ring-opening polymerization of glycidyl methacrylate using a thermal condensation product of (A) an organotin compound and (B) an alkyl ester of orthophosphoric acid or polyphosphoric acid as a catalyst. This catalyst (A>, (B
) For details of each component, see the aforementioned U.S. Pat. No. 3,773.
It is described in the specification of No. 694. The catalyst contains (A>component and (B) component) in a ratio of tin atoms to phosphorus atoms which are usually included.
: Adjust to be in the range of 10 to 10:1, about 100
At ~300'C, (△) component and (B) component or (A>
It is produced by mixing and heating the component and a combination of component compounds capable of forming component (B). A solvent may be used if necessary. In this catalyst production reaction, various relatively simple substances are produced and eliminated by condensation reactions depending on the types of components. The resulting condensate exhibits the desired activity at various stages of the degree of condensation. The optimal degree of condensation is (A>component and (B)
Depending on the type and proportion of ingredients, they can be determined experimentally. The condensate is generally soluble in a solvent such as hexane or benzene in the initial stage, but becomes insolubilized as the condensation reaction progresses.

上記可溶性又は不溶性の縮合物を触媒として用いること
によりグリシジルメタクリレートの高重合反応を行うこ
とができる。重合反応は溶媒の存在下又は非存在下にお
いて、通常10〜80℃の温度範囲で上記触媒物質とグ
リシジルメタクリレートを接触させることにより行うこ
とができる。溶媒としてはヘキサン、ヘプタン、シクロ
ヘキサン。
By using the above soluble or insoluble condensate as a catalyst, a high polymerization reaction of glycidyl methacrylate can be carried out. The polymerization reaction can be carried out by bringing the above-mentioned catalyst substance into contact with glycidyl methacrylate at a temperature usually in the range of 10 to 80°C in the presence or absence of a solvent. Solvents include hexane, heptane, and cyclohexane.

ベンゼン、トルエンなどの炭化水素類、クロロホルム、
塩化メチレンなどのハロゲン化炭化水素類、ジエチルエ
ーテル、テトラヒドロフランなどのエーテル類等が挙げ
られる。
Hydrocarbons such as benzene and toluene, chloroform,
Examples include halogenated hydrocarbons such as methylene chloride, ethers such as diethyl ether, and tetrahydrofuran.

触媒の使用量は七ツマ−100gに対して0.01〜i
、ogの範囲が適当である。重合反応系中の水分は可能
な限り低くすることが望ましい。また反応は、通常撹拌
又は振盪などの条件下で行われる。
The amount of catalyst used is 0.01 to 1 per 100g of nanatsuma.
, og is appropriate. It is desirable to keep the water content in the polymerization reaction system as low as possible. Further, the reaction is usually carried out under conditions such as stirring or shaking.

(発明の効果) 本発明のホモポリマーは、反応性高分子中間体や光又は
熱硬化性の材料あるいは塗膜材料等の高分子材料として
有用である。
(Effects of the Invention) The homopolymer of the present invention is useful as a polymer material such as a reactive polymer intermediate, a photo- or thermosetting material, or a coating material.

(実施例) 実施例1 トリブチル錫クロライド16.2(]、  トリブチル
ホスフェート26.6!11を温度計及び蒸溜塔を付し
たフラスコ内に入れ、撹拌しながら250°Cで20分
間加熱後、冷却して固体状の重合用触媒を得た。
(Example) Example 1 Tributyltin chloride 16.2 (] and tributyl phosphate 26.6!11 were placed in a flask equipped with a thermometer and a distillation tower, heated at 250°C for 20 minutes with stirring, and then cooled. A solid polymerization catalyst was obtained.

内容量50dのガラス製アンプル内を窒素ガスで置換1
麦、上記触媒68mgとモレキュラシーブ4Aで乾燥し
たグリシジルメタクリレート30m1を入れアンプルを
溶封した。40℃で4日間反応させた債アンブルを開封
し、jqられた固形物をメタノールでよく洗浄した後減
圧下40°Cで乾燥し27.8CIのポリマーを1qだ
(収率88.8%)。
Replace the inside of the glass ampoule with an internal capacity of 50 d with nitrogen gas 1
Wheat, 68 mg of the above catalyst, and 30 ml of glycidyl methacrylate dried with molecular sieve 4A were added and an ampoule was melt-sealed. The bond amble reacted at 40°C for 4 days was opened, the jqed solid was thoroughly washed with methanol, and then dried at 40°C under reduced pressure to obtain 1q of 27.8 CI polymer (yield: 88.8%). .

得られたポリマーについて以下の結果を得た。The following results were obtained for the resulting polymer.

還元粘度(0,1%ベンゼン溶液、40’C)  0.
4ガラス転移温度          −23℃二重結
合金・有率(臭素価より計算)105%元素分析値 炭
素:  58.61%、水素:6.59%((C710
1003>nとしての 理論値 炭素:59.13%、水素ニア、10%〕また
得られたポリマーの赤外線吸収スペクトルを第1図に示
した。
Reduced viscosity (0.1% benzene solution, 40'C) 0.
4 Glass transition temperature -23℃ Double bond gold fraction (calculated from bromine number) 105% Elemental analysis value Carbon: 58.61%, Hydrogen: 6.59% ((C710
Theoretical value as 1003>n Carbon: 59.13%, hydrogen nia: 10%] The infrared absorption spectrum of the obtained polymer is shown in FIG.

実施例2 トリブチル錫クロライド16.2(]の代りにジブチル
錫オキシド12.5(]を用いた以外は同様にして固体
状の重合触媒を得た。
Example 2 A solid polymerization catalyst was obtained in the same manner except that dibutyltin oxide 12.5 ( ) was used instead of tributyltin chloride 16.2 ( ).

上記触媒102mgを用い、50’Cで24時間反応さ
せた以外は実施例1と同様にして24.5CIのポリマ
ーを得た(収率78.3%)。得られたポリマーの還元
粘度(0,1%ベンゼン溶液、40℃)は0.60であ
つた。
A polymer of 24.5 CI was obtained in the same manner as in Example 1 except that 102 mg of the above catalyst was used and the reaction was carried out at 50'C for 24 hours (yield 78.3%). The reduced viscosity (0.1% benzene solution, 40°C) of the obtained polymer was 0.60.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1によって得られたクリシジルメタクリ
レートホモポリマーの赤外線吸収スペクトルである。
FIG. 1 is an infrared absorption spectrum of the chrycidyl methacrylate homopolymer obtained in Example 1.

Claims (1)

【特許請求の範囲】 40℃において0.1%のベンゼン溶液で測定した還元
粘度が0.1以上であり、主鎖構造が実質的に下記(
I )式で表わされる高重合度のグリシジルメタクリレー
トホモポリマー。 ▲数式、化学式、表等があります▼( I )
[Claims] The reduced viscosity measured in a 0.1% benzene solution at 40°C is 0.1 or more, and the main chain structure is substantially as follows (
I) A glycidyl methacrylate homopolymer with a high degree of polymerization represented by the formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I)
JP25444585A 1985-11-13 1985-11-13 Glycidyl methacrylate homopolymer Pending JPS62115025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25444585A JPS62115025A (en) 1985-11-13 1985-11-13 Glycidyl methacrylate homopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25444585A JPS62115025A (en) 1985-11-13 1985-11-13 Glycidyl methacrylate homopolymer

Publications (1)

Publication Number Publication Date
JPS62115025A true JPS62115025A (en) 1987-05-26

Family

ID=17265102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25444585A Pending JPS62115025A (en) 1985-11-13 1985-11-13 Glycidyl methacrylate homopolymer

Country Status (1)

Country Link
JP (1) JPS62115025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132895A (en) * 2008-10-31 2010-06-17 Sanyo Chem Ind Ltd Active energy line curing resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860788A (en) * 1971-12-02 1973-08-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860788A (en) * 1971-12-02 1973-08-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132895A (en) * 2008-10-31 2010-06-17 Sanyo Chem Ind Ltd Active energy line curing resin composition

Similar Documents

Publication Publication Date Title
Truett et al. Polynorbornene by Coördination Polymerization1
Vandenberg Polymerization of glycidol and its derivatives: A new rearrangement polymerization
Chen et al. Synthesis and photopolymerization of norbornyl epoxidized linseed oil
Natta et al. Crystalline polymers of phenyl‐and n‐butylisocyanates
D'alelio et al. Polymeric Schiff bases. I. The synthesis and evaluation of polymeric Schiff bases prepared by Schiff base exchange reactions
Uryu et al. Selective ring-opening polymerization of 1, 4-anhydro-α-D-ribopyranose derivatives and synthesis of stereoregular (1→ 4)-β-D-ribopyranan
USRE33367E (en) Polyether polymer or copolymer, monomer therefor, and process for production thereof
JPS584053B2 (en) HMF6 trialkyloxonium epihalohydrin
JPS62115025A (en) Glycidyl methacrylate homopolymer
JPS62169823A (en) Polyether copolymer having epoxy group in side chain and its production
Oguni et al. Structure Analysis of Poly (propylene-α-d oxide) by High-Resolution Nuclear Magnetic Resonance Spectroscopy
Yoshida et al. Selective ring-opening polymerization of di-Ot-butyldimethylsilylated and di-Op-bromobenzylated 1, 4-anhydro-α-l-arabinopyranoses and structural analysis of free arabinans
Canadell et al. Microwave‐assisted synthesis of a novel phosphorus‐containing spiroorthoester, characterization and cationic polymerization
JP3269233B2 (en) Glycidyl tosylate polymer and its production
US3755283A (en) Novel polymers and method of preparing same
US3268500A (en) Process for preparing trans-1, 4-polydiolefins
Okada et al. Polymerization of bicyclic acetals, 4. Cationic polymerization of 1, 3, 3‐trimethyl‐2, 7‐dioxabicyclo [2.2. 1] heptane
Wesslén et al. Anionic polymerization of vinyl chloride
Liu et al. The use of tetraalkylphosphonium–tetrafluoroborate–tetrafluoroboric acid in the curing of a liquid crystalline epoxy resin
JPH04209627A (en) Polyether polymer having oligooxyethylene side chain
SU612487A1 (en) Process for producing polyethylene
US4906705A (en) Method of lithiating a tertiary chloro alkyl compound and the product provided by said method
CN108948336B (en) Preparation method of carbon-carbon double bond-containing polyester
JP2003510374A (en) Copolymerization of formaldehyde and cyclic ethers by using an initiator based on tetraphenylborate
JPH04164923A (en) Polyphosphosilazane, its production, and phosphorated ceramic