JPS62114754A - Apparatus for producing slab and ingot having fine crystal structure - Google Patents

Apparatus for producing slab and ingot having fine crystal structure

Info

Publication number
JPS62114754A
JPS62114754A JP25410385A JP25410385A JPS62114754A JP S62114754 A JPS62114754 A JP S62114754A JP 25410385 A JP25410385 A JP 25410385A JP 25410385 A JP25410385 A JP 25410385A JP S62114754 A JPS62114754 A JP S62114754A
Authority
JP
Japan
Prior art keywords
temp
temperature
mold
molten metal
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25410385A
Other languages
Japanese (ja)
Inventor
Hideaki Mizukami
秀昭 水上
Akira Yada
明 矢田
Akiya Ozeki
尾関 昭矢
Kentaro Mori
健太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25410385A priority Critical patent/JPS62114754A/en
Publication of JPS62114754A publication Critical patent/JPS62114754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a slab and ingot having fine crystal structure by detecting the molten metal surface temp. in a casting mold and controlling said temp. so as to be kept within the range between the liquidus line temp. and solidus line temp. of a material to be cast. CONSTITUTION:The opposed parts of electrodes 11 are melted by the heat of an arc 13 and drop in the form of liquid drops 14 when electric current is supplied to the electrodes 11. A sensor 15 detects the molten metal surface temp. in the casting mold 12 and after the detection signal thereof is calibrated by a signal processor 16, the output signal thereof is fed to a temp. control device 17. The temp. control device 17 increases the current to be supplied from a current supply device 18 to the electrodes 11 to increase the arc temp. between the electrodes 11 when the molten metal surface temp. in the casting mold 12 is lower than the solidus line. The melting speed of the liquid drops 14 is thereby increased and the molten metal surface temp. is increased. On the other hand, said device decreases the current value between the electrodes 11 when the molten metal surface temp. rises higher then the liquidus line. The melting speed of the liquid drops 14 is thereby decreased and the molten metal surface temp. is decreased. The molten metal surface temp. in the casting mold 12 is thereby maintained within the range between the solidus line temp. and liquidus line temp. of the material. The slab having the fine crystal grains is thus stably obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、滴下式鋳造技術により、微細な結晶組織を
有する鋳片・鋳塊を製造する製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a manufacturing apparatus for manufacturing slabs and ingots having a fine crystal structure by drop casting technology.

[従来の技術] 通常、金i製品の中間素材である鋳片又は鋳塊は溶融金
属を連続鋳造鋳型又は造塊用鋳型に注入して凝固させる
ことにより、製造されている。しかしながら、これらの
従来の技術においては、完全に溶けた金属を鋳型に鋳込
むので、製造される鋳片又は鋳塊はその凝固組織の結晶
粒径が比較的大きい。このため、機械的特性を確保する
ために、鋳片等に圧下を加える場合に、大圧下を加える
と鋳片等に割れが発生してしまう。
[Prior Art] Usually, slabs or ingots, which are intermediate materials for gold i-products, are manufactured by pouring molten metal into a continuous casting mold or an ingot mold and solidifying it. However, in these conventional techniques, completely molten metal is cast into a mold, so the produced slab or ingot has a relatively large crystal grain size in its solidified structure. For this reason, when applying a reduction to the slab etc. in order to ensure mechanical properties, if a large reduction is applied, cracks will occur in the slab etc.

従って、多数回に分けて圧下刃を印加する必要があるが
、これは長時間の処理を必要とし、また必要なエネルギ
ーも多くなり、処理コストが高い。
Therefore, it is necessary to apply the reduction blade in multiple times, but this requires a long processing time and also requires a large amount of energy, resulting in high processing costs.

このように凝固組織の結晶粒径が粗大化することによる
割れ敏感性は、特に、Ni基超超耐熱合金おいて著しく
、この種の合金を製造する場合に、その製造工程が極め
て複雑になる。
The sensitivity to cracking due to the coarsening of the crystal grain size of the solidified structure is particularly noticeable in Ni-based ultra-super heat-resistant alloys, and the manufacturing process becomes extremely complicated when manufacturing this type of alloy. .

このような一般的な鋳造技術における欠点を解消すへく
、近時、VADER(Vacuum  ArcDoub
le  E 1ectrode  Remelting
、真空アーク2電極溶解)法と称される滴下式鋳造技術
が提案されている(特開昭55−165271号)。こ
のVADER法においては、第4図に示すように、製造
せんとする鋳片と同一組成の金属からなる一対の電極1
間にアーク2を形成し、電極1の対向端部を溶融させる
。この溶融金属の液滴4は鋳型3内に落下し、鋳型3に
より冷却されて凝固し、鋳片5が製造される。
In order to eliminate the drawbacks of such general casting technology, VADER (Vacuum ArcDoubt) has recently been developed.
le E 1ectrode Remelting
A dropping casting technique called the vacuum arc two-electrode melting method has been proposed (Japanese Patent Application Laid-Open No. 165271/1983). In this VADER method, as shown in Fig. 4, a pair of electrodes 1 made of metal having the same composition as the slab to be manufactured
An arc 2 is formed between them, melting the opposite ends of the electrodes 1. The droplets 4 of the molten metal fall into the mold 3, are cooled and solidified by the mold 3, and a slab 5 is manufactured.

このVADER法では、溶融金属の液滴4は電極1から
鋳型3内に落下する過程で若干冷却され、半溶融状態に
なる。このため、鋳型3内の半’7fJ融金属6は固液
共存相が均一に存在する状態で凝固するので、鋳片5の
凝固組織の結晶粒径は小さい。
In this VADER method, the molten metal droplet 4 is slightly cooled while falling from the electrode 1 into the mold 3, and becomes a semi-molten state. Therefore, the half-7fJ molten metal 6 in the mold 3 solidifies in a state where the solid-liquid coexistence phase exists uniformly, so that the crystal grain size of the solidified structure of the slab 5 is small.

[発明が解決しようとする問題点1 しかしながら、従来の技術では液滴の鋳型内への供給速
度の不安定さに起因して種々の問題が発生する。すなわ
ち、液滴の供給速度が遅くなると鋳片内にミクロポロシ
ティが増加して健全な鋳片・鋳塊が得られない。一方、
液滴供給速度が速すぎると鋳片の結晶組織は結晶粒が粗
大化し、一般的な鋳造技術にお【プる欠点が出てくる。
[Problem to be Solved by the Invention 1] However, in the conventional technology, various problems occur due to the instability of the supply speed of droplets into the mold. That is, if the droplet supply rate is slow, microporosity increases in the slab, making it impossible to obtain a healthy slab or ingot. on the other hand,
If the droplet supply rate is too fast, the crystal grains of the slab will become coarse, which will cause drawbacks to common casting techniques.

この発明は、かかる事情に鑑みてなされたものであって
、鋳型内メニスカスの温度を検出し、この検出結果に基
いて湯面温度をR適な条件に制御することによりミクロ
ポロシティがない健全な内部品質を得ることができる微
細な結晶組織を有する鋳片・鋳塊の製造装置を提供する
ことを目的とする。
This invention was made in view of the above circumstances, and by detecting the temperature of the meniscus in the mold and controlling the surface temperature to an appropriate R condition based on this detection result, a healthy mold free of microporosity is created. It is an object of the present invention to provide an apparatus for manufacturing slabs and ingots having a fine crystal structure that can obtain internal quality.

[問題点を解決するための手段] この発明に係る微細な結晶組織を有する鋳片・鋳塊の製
造装置は、鋳型と、一対の電極と、電極間にアークを形
成して電極を溶融させその液滴を鋳型内に落下させるア
ーク形成手段と、鋳型内の湯面部度を測定する温度検出
手段と、温度検出手段の検出結果を基に湯面温度を鋳造
せんとする材料の液相I!湯温度TL)と固相線温度(
T8)との間の範囲内に入るように制御する制御手段と
、を有することを特徴とする。
[Means for Solving the Problems] The apparatus for manufacturing slabs and ingots having a fine crystal structure according to the present invention includes a mold, a pair of electrodes, and an arc formed between the electrodes to melt the electrodes. An arc forming means for dropping the droplets into the mold, a temperature detecting means for measuring the level of the molten metal in the mold, and a liquid phase I of the material to be cast based on the detection result of the temperature detecting means. ! hot water temperature TL) and solidus temperature (
T8).

[作用] この発明においては、鋳型内湯面温度が温度検出手段に
より検出され、制御手段により、湯面温度が鋳造せんと
する材料の液相線温度(Tし)と固相線温度(T8)と
の間の範囲に入るように制御される。第2図は、溶解条
件・凝固条件(鋳型寸法)を種々変更して鋳片を製造し
、その鋳片の内部品質及び凝固組織を調査した結果を示
すグラフ図である。横軸は鋳型内の湯面温度を、縦軸は
ミクロポロシティ指数及び結晶粒径指数を表わす。
[Function] In this invention, the temperature of the molten metal in the mold is detected by the temperature detection means, and the temperature of the molten metal is adjusted by the control means to the liquidus temperature (T) and the solidus temperature (T8) of the material to be cast. It is controlled to fall within the range between . FIG. 2 is a graph showing the results of investigating the internal quality and solidification structure of slabs produced by variously changing the melting conditions and solidification conditions (mold dimensions). The horizontal axis represents the temperature of the hot water inside the mold, and the vertical axis represents the microporosity index and grain size index.

この第2図から明らかなように、鋳型内の湯面温度が固
相線(T8)より低下するとミクロポロシティの増加が
みられ、逆に湯面部度が液相線(TL )より高くなる
と凝固組織の結晶粒が粗大化する。このことから、健全
な鋳片等を製造するためには、湯面温度を鋳造せんとす
る金属合金の固相線温度(T8)と液相11温度(Tt
、 )との間の最適温度範囲に制御すればよいことがわ
かる。
As is clear from Fig. 2, microporosity increases when the temperature of the hot water in the mold falls below the solidus line (T8), and conversely, when the hot water level rises above the liquidus line (TL), solidification occurs. The crystal grains of the structure become coarser. From this, in order to produce sound slabs, etc., it is necessary to change the surface temperature between the solidus temperature (T8) and the liquidus temperature (Tt) of the metal alloy to be cast.
It can be seen that the temperature should be controlled within the optimum temperature range between , ).

このため、この発明においては、湯面温度がこの最適温
度範囲になるようにill Illする。
For this reason, in the present invention, illumination is performed so that the hot water surface temperature falls within this optimum temperature range.

[実施例コ 以下、添付の図面を参照して、この発明の実施例につい
て具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明の実施例に係る微18な結晶組織を
有する鋳片・鋳塊の製造装置を示す模式図である。一対
の電極11が水平に対向して適長間隔をおいて設置され
ている。この電極11には電流供給装置18から電流が
供給され、電f!i11間にアーク13が形成されるよ
うになっている。電極11の下方には鋳型12が設置さ
れていて、アーク13により電極11の対向端部が溶融
すると、液滴14が鋳型12内に落下する。センサ15
は鋳型内のメニスカス(肩面)温度を検出する。センサ
15の検出信号は信号処理装M16に入力され、信号処
理装置16にてセンサ15の出力信号がメニスカス温度
に対応する信号に変換される。
FIG. 1 is a schematic diagram showing an apparatus for manufacturing slabs and ingots having a fine crystal structure according to an embodiment of the present invention. A pair of electrodes 11 are installed horizontally facing each other and spaced apart by an appropriate length. A current is supplied to this electrode 11 from a current supply device 18, and the electric current f! An arc 13 is formed between i11. A mold 12 is installed below the electrode 11 , and when the opposing ends of the electrode 11 are melted by an arc 13 , droplets 14 fall into the mold 12 . sensor 15
detects the meniscus (shoulder surface) temperature inside the mold. The detection signal of the sensor 15 is input to a signal processing device M16, and the signal processing device 16 converts the output signal of the sensor 15 into a signal corresponding to the meniscus temperature.

この信号処理装置16からの出力信号は、温度制御装置
17に入力され、温度制御装置17はメニスカス温度に
基いて電流供給装置18から各電極11へ供給される電
流を調整し、メニスカス温度を所定範囲内に制御する。
The output signal from the signal processing device 16 is input to the temperature control device 17, and the temperature control device 17 adjusts the current supplied from the current supply device 18 to each electrode 11 based on the meniscus temperature to maintain the meniscus temperature at a predetermined level. Control within range.

次に、このように構成された装置の動作について説明す
る。先ず、電流供給装置18により電極11に電流が供
給され、アーク13が形成される。
Next, the operation of the device configured in this way will be explained. First, a current is supplied to the electrode 11 by the current supply device 18, and an arc 13 is formed.

そうするとアーク13の熱により、電極11の対向端部
が溶融し、液滴14となって落下する。この液滴14は
落下途中において若干中冷却され、液相中に固相が混在
する半溶融状態となって鋳型12内に鋳込まれる。鋳型
12内の半溶融金属10は、固液共存相が均一に存在す
る状態で凝固するので、その結果、微細な結晶組織を有
する鋳片9が得られる。センサ15は鋳型12内の清面
温度を検出し、その検出信号は信号処理装置l!16に
より校正された後、その出力信号が温度制御l装置17
に送られる。温度υII!fl装置17は、鋳型12内
の湯面温度が固相線(TS )より低くなると、電流供
給装置18から電極11に供給される電流を増加させて
、電極11間のアーク温度を高め、液8114の溶融速
度を速くして肩面温度を上昇させる。一方、湯面温度が
上昇して液相線(TL >より^くなると、電流供給装
置18は電極11間の電流値を減少させ、液滴14の溶
融速度を遅くして′a面温度を降下させる。これにより
、鋳型12内の肩面温度が鋳造せんとする材料の固相線
温度(TS)と液相線温度(TL )との間の範囲内に
保持される。従って、この発明によれば、微細な結晶粒
を有する鋳片を安定して容易に製造することができる。
Then, the opposite end of the electrode 11 melts due to the heat of the arc 13, and drops as a droplet 14. The droplets 14 are slightly cooled while falling, and are cast into the mold 12 in a semi-molten state with a solid phase mixed in the liquid phase. The semi-molten metal 10 in the mold 12 solidifies in a state in which a solid-liquid coexisting phase exists uniformly, so that a slab 9 having a fine crystal structure is obtained. The sensor 15 detects the temperature of the surface inside the mold 12, and the detection signal is sent to the signal processing device l! After being calibrated by 16, its output signal is sent to temperature control device 17.
sent to. Temperature υII! The fl device 17 increases the current supplied from the current supply device 18 to the electrodes 11 to raise the arc temperature between the electrodes 11 when the surface temperature of the liquid in the mold 12 becomes lower than the solidus line (TS). The melting rate of 8114 is increased to increase the shoulder surface temperature. On the other hand, when the surface temperature of the hot water rises and becomes higher than the liquidus line (TL), the current supply device 18 reduces the current value between the electrodes 11, slows down the melting speed of the droplets 14, and lowers the 'a surface temperature. This maintains the shoulder surface temperature within the mold 12 within the range between the solidus temperature (TS) and liquidus temperature (TL) of the material to be cast. According to the method, slabs having fine crystal grains can be stably and easily produced.

次に、第3図に基いてこの発明の第2の実施例について
説明する。
Next, a second embodiment of the present invention will be described based on FIG.

この実施例においては、鋳型12の温度を調整すること
により肩面温度を制御する点が前記第1の実施例と異な
る。なお、第1図と同一物には同一符号を付して説明を
省略する。ヒータ20が鋳型12を取囲むように巻回さ
れ、適宜の支持手段により支持されている。このヒータ
20は、電源19に接続されており、この電源19がら
給電されたヒータ20が抵抗発熱して鋳型12を加熱す
るようになっている。
This embodiment differs from the first embodiment in that the shoulder surface temperature is controlled by adjusting the temperature of the mold 12. Components that are the same as those in FIG. 1 are designated by the same reference numerals, and their description will be omitted. A heater 20 is wound around the mold 12 and supported by appropriate support means. The heater 20 is connected to a power source 19, and the heater 20 supplied with power from the power source 19 generates resistance and heats the mold 12.

このように構成された装置においては、センサ15は鋳
型12内の半溶融金属10の肩面温度を検出し、その検
出信号は信号処理装置16を介して温度制御袋M17に
送られる。温度制御1iKl装置17は、鋳型12内の
湯面温度が固相線(TS )より低くなると、電源19
からヒータ20への通電電流を増加させて、鋳型12を
加熱し、肩面温度を上昇させる。一方、肩面温度が上昇
して液相線(TL )より高くなると、電源19はヒー
タ20への′trX流を停止するか又は減少させ、鋳型
12の加熱を停止し又は弱めてン易面温度を降下させる
。これにより、鋳型12内の湯面温度が鋳造せんとする
材料の固相線温度(TS)と液相線温度(TL )との
間の範囲内に保持される。
In the device configured in this way, the sensor 15 detects the shoulder surface temperature of the semi-molten metal 10 within the mold 12, and the detection signal is sent to the temperature control bag M17 via the signal processing device 16. The temperature control 1iKl device 17 turns on the power supply 19 when the surface temperature of the hot water in the mold 12 becomes lower than the solidus line (TS).
The current applied to the heater 20 is increased to heat the mold 12 and raise the shoulder surface temperature. On the other hand, if the shoulder surface temperature rises above the liquidus (TL), the power supply 19 will stop or reduce the 'trX flow to the heater 20 and stop or reduce the heating of the mold 12 to make the surface easier. lower the temperature. As a result, the temperature of the molten metal in the mold 12 is maintained within the range between the solidus temperature (TS) and the liquidus temperature (TL) of the material to be cast.

なお、この鋳型に電気的に制御できる電子冷却手段を設
けてもよく、また、鋳型冷却水の流量を流j調整弁によ
り調整して鋳型を冷却する手段を設けてもよい。
Note that this mold may be provided with an electronic cooling means that can be electrically controlled, or a means for cooling the mold by adjusting the flow rate of mold cooling water with a flow j regulating valve may be provided.

また、鋳型内の半溶融金属の湯面を直接高周波誘導加熱
することにより、肩面温度を所定範囲に制御してもよい
Alternatively, the shoulder surface temperature may be controlled within a predetermined range by directly performing high-frequency induction heating on the surface of the semi-molten metal in the mold.

また、これら各種の部面温度制御手段を種々摺合わせて
併用することも可能である。
Further, it is also possible to use these various types of surface temperature control means in combination by sliding them in various ways.

さらに、上記実施例は、連続鋳造装置についてのもので
あるが、底付き鋳型を使用した造塊型の鋳造装置に適用
することも可能である。
Furthermore, although the above-mentioned embodiment relates to a continuous casting apparatus, it is also possible to apply the present invention to an ingot type casting apparatus using a mold with a bottom.

[発明の効果] この発明によれば、滴下式鋳造法においてミクロポロシ
ティが少なく、且つ凝固組織の結晶粒が微細な鋳片等を
安定して容易に製造することができる。
[Effects of the Invention] According to the present invention, it is possible to stably and easily produce slabs, etc., which have little microporosity and have fine crystal grains in the solidified structure, using a drop casting method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例に係る微細な結晶組織
を有する鋳片・鋳塊の製造装置を示tti式図、第2図
は鋳型内湯面温度とミクロポロシティ指数及び結晶粒径
指数との関係を示すグラフ図、第3図はこの発明の第2
の実施例に係る微細な結晶組織を有する鋳片・鋳塊の製
造装置を示す模式図、第4図は従来の滴下式鋳造技術の
基本構成を示す模式図である。 9・・・・・・鋳片、10・・・・・・半溶融金属、1
1・・・・・・電極、12・・・・・・鋳型、13・・
・・・・アーク、14・・・・・・液滴、15・・・・
・・センサ、16・・・・・・信号処理装置、17.2
1・・・・・・温度制m+装置、18・・・・・・電流
供給装置、1つ・・・・・・電源、20・・・・・・ヒ
ータ。 出願人代理人 弁理士 鈴江武彦 第1図 TS        TL −@型内/114面ノxq 第2図 第3riA 0′4 ↓ 第4図 1、事件の表示 特願昭60−254″+03@ 2、発明の名称 微細な結晶組織を有する鋳片・鋳塊の製造装置3、補正
をする者 事件との関係  特許出願人 (4,12)   日本鋼管株式会社 4、代理人 住所 東京都港区虎ノ門1丁目26番5号 第17aビ
ル6、補正の対象 中ビの発明の詳細な説明の欄  ?・7″“7、補正の
内容 (コ)明細書第10頁第3行目に、「電子」とあるのを
削除する。
Fig. 1 shows an apparatus for producing slabs and ingots having a fine crystal structure according to the first embodiment of the present invention, and Fig. 2 shows the mold surface temperature, microporosity index, and crystal grain size. A graph diagram showing the relationship with the index, Figure 3 is the second example of this invention.
FIG. 4 is a schematic diagram showing the basic configuration of the conventional drip casting technique. 9... Slab, 10... Semi-molten metal, 1
1... Electrode, 12... Mold, 13...
...Arc, 14...Droplet, 15...
...Sensor, 16...Signal processing device, 17.2
1...Temperature control m+ device, 18...Current supply device, 1...Power supply, 20...Heater. Applicant's representative Patent attorney Takehiko Suzue Figure 1 TS TL -@type/114th page xq Figure 2 Figure 3 riA 0'4 ↓ Figure 4 1, Indication of case Patent application 1986-254'' + 03 @ 2, Name of the invention: Apparatus for producing slabs and ingots with a fine crystal structure 3; Relationship with the amended case Patent applicant (4, 12) Nippon Kokan Co., Ltd. 4; Agent address: 1 Toranomon, Minato-ku, Tokyo No. 26-5 No. 17a Bill 6, Detailed explanation column of the invention subject to amendment (B) ?・7″“7, Contents of amendment (c) On page 10, line 3 of the specification, “electronic” Delete that.

Claims (4)

【特許請求の範囲】[Claims] (1)鋳型と、1対の電極と、電極間にアークを形成し
て電極を溶融させその液滴を鋳型内に落下させるアーク
形成手段と、鋳型内の湯面温度を測定する温度検出手段
と、温度検出手段の検出結果を基に湯面温度を鋳造せん
とする材料の液相線温度(T_L)と固相線温度(T_
S)との間の範囲内に入るように制御する制御手段と、
を有することを特徴とする微細な結晶組織を有する鋳片
・鋳塊の製造装置。
(1) A mold, a pair of electrodes, an arc forming means for forming an arc between the electrodes to melt the electrodes and causing the droplets to fall into the mold, and a temperature detection means for measuring the temperature of the molten metal surface in the mold. Based on the detection result of the temperature detection means, the liquidus temperature (T_L) and solidus temperature (T_L) of the material to be cast are determined based on the temperature of the molten metal.
A control means for controlling the temperature to fall within a range between S);
An apparatus for manufacturing slabs and ingots having a fine crystal structure.
(2)前記制御手段は、電極間に流れる電流を制御する
ことにより、鋳型内の湯面温度を制御することを特徴と
する特許請求の範囲第1項に記載の微細な結晶組織を有
する鋳片・鋳塊の製造装置。
(2) The control means controls the temperature of the molten metal in the mold by controlling the current flowing between the electrodes. Equipment for manufacturing pieces and ingots.
(3)前記制御手段は、鋳型の温度を調整することによ
り、鋳型内の湯面温度を制御することを特徴とする特許
請求の範囲第1項に記載の微細な結晶組織を有する鋳片
・鋳塊の製造装置。
(3) The control means controls the temperature of the hot water surface in the mold by adjusting the temperature of the mold. Ingot manufacturing equipment.
(4)前記制御手段は、鋳型内の溶融金属の湯面を高周
波誘導加熱することにより鋳型内の湯面温度を制御する
ことを特徴とする特許請求の範囲第1項に記載の微細な
結晶組織を有する鋳片・鋳塊の製造装置。
(4) The control means controls the temperature of the surface of the molten metal in the mold by performing high-frequency induction heating on the surface of the molten metal in the mold. Equipment for manufacturing slabs and ingots with texture.
JP25410385A 1985-11-13 1985-11-13 Apparatus for producing slab and ingot having fine crystal structure Pending JPS62114754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25410385A JPS62114754A (en) 1985-11-13 1985-11-13 Apparatus for producing slab and ingot having fine crystal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25410385A JPS62114754A (en) 1985-11-13 1985-11-13 Apparatus for producing slab and ingot having fine crystal structure

Publications (1)

Publication Number Publication Date
JPS62114754A true JPS62114754A (en) 1987-05-26

Family

ID=17260261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25410385A Pending JPS62114754A (en) 1985-11-13 1985-11-13 Apparatus for producing slab and ingot having fine crystal structure

Country Status (1)

Country Link
JP (1) JPS62114754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403594A1 (en) * 1988-10-13 1990-12-27 Axel Johnson Metals, Inc. Continuous casting of fine grain ingots
JP2011158114A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd Consumable electrode type vacuum arc melting method and device for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403594A1 (en) * 1988-10-13 1990-12-27 Axel Johnson Metals, Inc. Continuous casting of fine grain ingots
JPH03500510A (en) * 1988-10-13 1991-02-07 アクセル ジョンソン メタルズ インコーポレーテッド Continuous casting of fine particle ingots
JP2011158114A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd Consumable electrode type vacuum arc melting method and device for the same

Similar Documents

Publication Publication Date Title
US4838340A (en) Continuous casting of fine grain ingots
US3829538A (en) Control method and apparatus for the production of powder metal
US4645534A (en) Process for control of continuous casting conditions
US3650311A (en) Method for homogeneous refining and continuously casting metals and alloys
CA1202490A (en) Alloy remelting process
US4207454A (en) Method for electroslag welding of metals
US5416796A (en) Float melting apparatus and method employing axially movable crucibles
US3570713A (en) Pouring of melts
US3788383A (en) Apparatus for the continuous extraction of electroslag remelted metals
US20100024927A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
JPS62114754A (en) Apparatus for producing slab and ingot having fine crystal structure
US4577676A (en) Method and apparatus for casting ingot with refined grain structure
US4273180A (en) Process and apparatus for continuous casting of metal in electromagnetic field
JP7132717B2 (en) Method for producing ingot made of titanium alloy
JPS61235047A (en) Casting method for metal having fine crystal grain
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
JP4232878B2 (en) Method for controlling pouring device and control device therefor
JPS6333167A (en) Dropping type casting method
JPS61255757A (en) Dropping type casting method
JPS61245960A (en) Dripping type casting device
RU2080959C1 (en) Method of making bimetallic rolling rolls
JPH07229892A (en) Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy
JPH0688146A (en) Electron beam overflow dissolution device
JPH01306047A (en) Production of semi-molten metal
JPH01118343A (en) Method for controlling molten metal flow in strip casting