JPS6211400B2 - - Google Patents

Info

Publication number
JPS6211400B2
JPS6211400B2 JP9046578A JP9046578A JPS6211400B2 JP S6211400 B2 JPS6211400 B2 JP S6211400B2 JP 9046578 A JP9046578 A JP 9046578A JP 9046578 A JP9046578 A JP 9046578A JP S6211400 B2 JPS6211400 B2 JP S6211400B2
Authority
JP
Japan
Prior art keywords
optical
light
output
measurement system
converts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9046578A
Other languages
Japanese (ja)
Other versions
JPS5518902A (en
Inventor
Yasuo Minae
Minoru Maeda
Arata Kida
Mitsuo Tanaka
Seiichi Onoda
Yoshiharu Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9046578A priority Critical patent/JPS5518902A/en
Priority to FR7901903A priority patent/FR2417753A1/en
Priority to CA320,563A priority patent/CA1108430A/en
Priority to NL7901042A priority patent/NL7901042A/en
Priority to US06/012,026 priority patent/US4260883A/en
Priority to DE2905630A priority patent/DE2905630C2/en
Priority to GB7905399A priority patent/GB2016684B/en
Publication of JPS5518902A publication Critical patent/JPS5518902A/en
Publication of JPS6211400B2 publication Critical patent/JPS6211400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To precisely measure the fluctuations of an article with the use of a simple construction by alternately emitting lights having different frequencies with the same frequency in response to the optical signals from a light source thereby to complementarily operate an optical differential device. CONSTITUTION:The intensities of the output lights from optical emitters 33 and 34 are denoted at P1 and P2; the switching frequency of an alternate drive circuit at fn; the distribution coefficients of the optical fibers 4 and 6 of an optical branch 36 at b1 : b2; the transmission efficiencies of the optical fibers 4 and 6 for transmission and reception at a1 and a2; the optical transmissivities of filters 11 and 12 at T1 and T2; the sensitivities of optical receivers 41 and 42 at s1 and s2; and the output currents at Is and Im. Then, the output voltage e1 of a logarithmic amplifier 43 is expressed by e1 = Glog (b1 a1 a2 S1 T1 / b2 S2), e = Glog (b1a1S1T2/b2S2) for the signals having wavelengthes lambda1 and lambda2 from the relationship of log Is/Im. As a result, if that output is synchronously detected by a frequency fn, the difference signal between the output signals e1 and e2 is extracted to generate the output signal of E0 = AGlog T1/T2.

Description

【発明の詳細な説明】 本発明は光学測システム、特に、被計測物の物
理的変動を伝送光量の変動に変換し、その光量の
変動を被計測体から離れた位置、個所で測定する
光学計測システムに係るものである。光フアイバ
などの光伝送路あるいは半導体レーザ、LEDな
どの光学素子の開発の進展に伴ない、その応用の
一つとして光学的遠隔計測システムならびに装置
が従来の電気的遠隔測定システムならび装置に代
るものとして種々提案されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical measurement system, and more particularly, to an optical measurement system that converts physical fluctuations of an object to be measured into fluctuations in the amount of transmitted light, and measures the fluctuations in the amount of light at a position and location distant from the object to be measured. This relates to the measurement system. With the progress in the development of optical transmission lines such as optical fibers and optical elements such as semiconductor lasers and LEDs, optical telemetry systems and devices are replacing conventional electrical telemetry systems and devices as one of their applications. Various methods have been proposed.

しかし、従来発表されている光学テレーメタリ
ングシステムでは、光源、受光器あるいは光伝送
路等の光学素子装置の変動(オフセツト等)の影
響を除くため、被計測体の影響を受けない基準光
を作るため、計測部近傍に光分離回路、いわゆる
バイパスを設けたり、伝送光信号の中に光を伝送
しない期間を周期的に設け、受信信号処理時に上
記光を伝送しない期間の信号を検出し、これを利
用して、伝送路、あるいは光素子の変動を検出し
て、不要変動を補償するなどの方法が取られてい
る。このため、光路を分離するための変調器、あ
るいは特殊の信号を作るための光学回路を必要と
する。又長い光伝送路を用いる場合、伝送路の特
性変動が問題となるが、これら光伝送システム全
体のオフセツトを完全に補償できないという問題
がある。
However, in conventional optical telemetering systems, in order to eliminate the effects of fluctuations (offset, etc.) in optical elements such as the light source, receiver, or optical transmission line, a reference light that is not affected by the object to be measured is used. In order to do this, an optical separation circuit, a so-called bypass, is installed near the measurement unit, or a period in which no light is transmitted is periodically provided in the transmitted optical signal, and the signal during the period in which no light is transmitted is detected during reception signal processing. Utilizing this, methods have been taken to detect fluctuations in the transmission path or optical elements and compensate for unnecessary fluctuations. Therefore, a modulator to separate the optical paths or an optical circuit to create a special signal is required. Furthermore, when a long optical transmission line is used, variations in the characteristics of the transmission line become a problem, and there is a problem in that the offset of the entire optical transmission system cannot be completely compensated for.

したがつて本発明の目的は一般的には簡単な構
成でもつて、被測定体の変動を正確に計測できる
光学計測システムを実現することである。
Therefore, an object of the present invention is to realize an optical measurement system that can accurately measure fluctuations in an object to be measured with a generally simple configuration.

本発明の他の目的は計測部に光のバイパス回路
を設けることなく、光計測システムのオフセツト
すなわち外乱によるドリフトを完全に除去する光
学計測システムを実現することである。
Another object of the present invention is to realize an optical measurement system that completely eliminates the offset of the optical measurement system, that is, the drift caused by disturbance, without providing an optical bypass circuit in the measurement section.

本発明は上記目的を達成するため、光学計測シ
ステムを下述の如く構成したことを特徴とする。
In order to achieve the above object, the present invention is characterized in that an optical measurement system is configured as described below.

光源を含む送信部と、上記送信部と遠れた位置
にある計測部と上記計測部から送られた光信号を
電気信号に変えて信号処理する信号処理部と上記
各部を結合する光伝送路とからなる光学計測シス
テムにおいて、送信部から計測部に送信される光
信号を、波長が異なつた光、パルス状の2種の光
信号を重ねた規則的な光信号とし、計測部は光学
的差動装置で構成し、信号処理部を上記光学的差
動装置から送られて来た光信号から、上記波長の
異なる成分の比の関数として被計測体の変動を検
出するように構成したことを特徴とするものであ
る。
A transmitting section including a light source, a measuring section located far from the transmitting section, a signal processing section that converts the optical signal sent from the measuring section into an electrical signal and processes the signal, and an optical transmission line that connects each of the above sections. In an optical measurement system consisting of A differential device is configured, and the signal processing section is configured to detect fluctuations in the object to be measured as a function of the ratio of the components having different wavelengths from the optical signal sent from the optical differential device. It is characterized by:

上記規則的な光信号とは詳しくは下述するが、
波長の異なる光成分が一定の周期で発生すること
を意味する。又光学的差動装置とは、上記異なる
波長の光に対して、互に反対の光量の増減を生じ
る装置である。この増減の割合は相補的変動が一
般的であるが、本発明システムの適用によつては
必ずしも相補的である必要はない。
The above-mentioned regular optical signal will be described in detail below, but
This means that light components with different wavelengths are generated at regular intervals. Further, an optical differential device is a device that increases and decreases the amount of light in opposite directions with respect to the above-mentioned different wavelengths of light. Although the rates of increase and decrease are generally complementary, they do not necessarily need to be complementary depending on the application of the system of the present invention.

本発明による光学計測システムによれば、光学
差動装置の出力光信号は時系列的に波長の異なる
信号が規則的に被計測体の影響を受けて増減する
ため、これらの情報のみから基準光(参照光)を
用いることなく正確に被計測体の物理的変化を検
出できる。又光源の波形に特殊な時系列パターン
周期を与えることによつて種々の信号処理を行な
えるように構成することができる。
According to the optical measurement system according to the present invention, since the output optical signal of the optical differential device has different wavelengths in time series and increases and decreases regularly under the influence of the object to be measured, the reference light can be determined from only this information. Physical changes in the object to be measured can be accurately detected without using (reference light). Further, by giving a special time-series pattern period to the waveform of the light source, it is possible to perform various signal processing.

本発明の上述又は他の目的、特徴は、更に以下
の図面と関連する詳細な説明によつて一層明らか
となるものと思う。
The above and other objects and features of the present invention will become more apparent from the detailed description in conjunction with the following drawings.

第1図は本発明による光学測定装置の一実施例
の構成を示すブロツク図である。同図において、
1は送信部、2は受信信号処理部、3は被測定体
の変位によつて、伝送光量を変化させる計測部、
4および5はそれぞれ、送信部と計測部ならび計
測部と信号処理部とを結合する光フアイバであ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of an optical measuring device according to the present invention. In the same figure,
1 is a transmitting section, 2 is a received signal processing section, 3 is a measuring section that changes the amount of transmitted light according to the displacement of the object to be measured,
4 and 5 are optical fibers that connect the transmitting section and the measuring section, and the measuring section and the signal processing section, respectively.

送信部は第1及び第2の発光体33および34
(それぞれの波長をλ,λ、出力レベルを
P1,P2とする)、上記発光体からの光出力を交互
に開閉(その周波数をoとする)する交番駆動
回路32、上記2つの発光体の光力光を同一の光
路に加える合波部35、および合波部35の出力
光の一部を送信用光フアイバ4に他の一部を信号
処理部2に結合する光分岐部36(その分配率を
b1対b2とする)とからなる。
The transmitter includes first and second light emitters 33 and 34
(The respective wavelengths are λ 1 and λ 2 , and the output level is
P 1 and P 2 ), an alternating drive circuit 32 that alternately opens and closes the optical output from the light emitters (the frequency is o ), and an alternating drive circuit 32 that adds the optical power of the two light emitters to the same optical path. A part of the output light from the wave unit 35 and the multiplexer 35 is coupled to the transmission optical fiber 4, and the other part is coupled to the signal processing unit 2 (the distribution ratio is
b 1 to b 2 ).

計測部3は光フアイバ4によつて伝送された光
を平行光に変換するレンズ13と、少なくとも波
長λの光を透過し波長λを阻止するフイルタ
11(透過率をT1(t)とする)と波長λ
透過し、波長λを阻止するフイルタ12(透過
率をT2(t)とする)を組合せ上記平行光に直
交する方向に移動可能な変位板と、上記変位板に
よつて光量を可変された平行光を集束し、光フア
イバ5に結合するレンズ14、上記変位板支持部
15、圧力Pr1およびPr2をダイアフラグ21お
よび22のそれぞれに加える導圧孔23および2
4、上記ダイアフラグ21および23の変動を上
記変位板に加える連結棒18および19、および
光フアイバ保持部16および17とからなる。支
持部15は板バネで構成され、連結棒18,19
により変位板が変位するとき、変位板11,12
は板バネ15によつて平行四辺形を保持したまま
変位するから光軸に対して角度振れが生じない。
The measurement unit 3 includes a lens 13 that converts the light transmitted by the optical fiber 4 into parallel light, and a filter 11 that transmits at least the light of wavelength λ 1 and blocks the wavelength λ 2 (transmittance is T 1 (t)). ) and a filter 12 (transmittance is T 2 (t)) that transmits the wavelength λ 2 and blocks the wavelength λ 1 , and a displacement plate movable in a direction perpendicular to the parallel light; A lens 14 that focuses parallel light whose intensity is varied by a plate and couples it to the optical fiber 5, the displacement plate support 15, and pressure guiding holes that apply pressures P r1 and P r2 to each of the diaphragms 21 and 22. 23 and 2
4. It consists of connecting rods 18 and 19 that apply the fluctuations of the diafrags 21 and 23 to the displacement plate, and optical fiber holding parts 16 and 17. The support part 15 is composed of a leaf spring, and the connecting rods 18, 19
When the displacement plate is displaced by
is displaced by the plate spring 15 while holding the parallelogram, so no angular deflection occurs with respect to the optical axis.

受信信号処理部2は、上記送信部1の分岐部3
6から分岐された光の一部を光フアイバ6を介し
て送り、送られた光を電気信号IRに変換する第
1の受光器42、計測部から復路フアイバ5を介
して送られた光を電気信号ISに変換する第2の
受光器41、上記第1および第2の受光器41お
よび42の出力からlogI/Iなる信号を得る対数
増 幅器43、その出力から計測部変位板の移動量
(xとする)に対応する出力Eoを得る同期検波器
44からなる。
The received signal processing unit 2 is a branching unit 3 of the transmitting unit 1.
A first light receiver 42 sends a part of the light branched from the optical fiber 6 through the optical fiber 6 and converts the sent light into an electrical signal I R , and the light sent from the measurement section through the return fiber 5. a second photoreceiver 41 that converts the signal Is into an electric signal Is ; a logarithmic amplifier 43 that obtains a signal logIs / Ir from the outputs of the first and second photoreceivers 41 and 42; It consists of a synchronous detector 44 that obtains an output Eo corresponding to the amount of movement (assumed to be x).

以下波形図を用いて本実施例の動作を説明す
る。
The operation of this embodiment will be explained below using waveform diagrams.

第2図は上記実施例の各部における波形を示
す。
FIG. 2 shows waveforms at various parts of the above embodiment.

発光体33および34の出力光の強さをそれぞ
れP1およびP2とし交番駆動回路の切換周波数を
oとすれば合波部の出力はa図のようになる。こ
こで、P1およびP2の大きさは必ずしも同一でなく
て良い。周波数oは被計測体の変動周波数の2
倍以上あれば十分であり通常数Hzから数十MHzの
範囲に設定できる。光分岐36の光フアイバ4お
よび6の分配率をb1:b2(b1+b2=1)送信用お
よび復路用光フアイバ4および5の伝送効率をそ
れぞれαおよびα、フイルタ11および12
の光透過率をT1およびT2、受光器41および4
2の受光感度をS1およびS2とすると受光器41の
出力電流ISは波長λおよびλの光信号に対
しそれぞれIS1=P1b1αα2S1T1およびIS2
P2b1αα2S1T1となり、受光器42の出力電流
nはそれぞれIn1=P1b2S2およびIn2=P2b2S2
となる(bおよびc図)。実際上では出力P(a
図)に対し出力電流In(b図)は波形は若干変
形しまた、若干の時間ずれが生じるが、本実施例
の動作においては直接関係がないのでこれらを無
視して説明する。
Let the intensities of the output lights of the light emitters 33 and 34 be P 1 and P 2 , respectively, and the switching frequency of the alternating drive circuit.
If o , the output of the multiplexing section will be as shown in figure a. Here, the sizes of P 1 and P 2 do not necessarily have to be the same. Frequency o is 2 of the fluctuation frequency of the measured object
It is sufficient if it is twice or more, and it can usually be set in the range of several Hz to several tens of MHz. The distribution ratio of the optical fibers 4 and 6 of the optical branch 36 is b 1 :b 2 (b 1 + b 2 = 1), the transmission efficiency of the transmission and return optical fibers 4 and 5 is α 1 and α 2 , the filter 11 and 12
T 1 and T 2 , the light transmittance of the receivers 41 and 4
2, the output current I S of the photo receiver 41 is I S1 = P 1 b 1 α 1 α 2 S 1 T 1 and I S2 =
P 2 b 1 α 1 α 2 S 1 T 1 , and the output current I n of the photoreceiver 42 is I n1 =P 1 b 2 S 2 and I n2 =P 2 b 2 S 2 respectively.
(Figures b and c). In reality, the output P(a
The waveform of the output current I n (FIG. b) is slightly deformed and there is a slight time lag as compared to FIG.

したがつて、対数増幅器の出力電圧elはlogI/I
の関係より、波長λおよびλの信号に対し、
それぞれ el1=Glogbαα/b および el2=Glogbαα/b となる。ここでGは増幅器43の増幅率である。
このような動作をする増幅器は一般によく知られ
ている(例えばBurr―Brown社製BB―4217KG)
のでその詳細は省略する。
Therefore, the output voltage e l of the logarithmic amplifier is logI S /I
From the relationship of n , for signals with wavelengths λ 1 and λ 2 ,
e l1 = Glogb 1 α 1 α 2 S 1 T 1 /b 2 S 2 and e l2 = Glogb 1 α 1 α 2 S 1 T 2 /b 2 S 2 , respectively. Here, G is the amplification factor of the amplifier 43.
Amplifiers that operate in this manner are generally well known (e.g. Burr-Brown BB-4217KG).
Therefore, the details will be omitted.

この対数増幅器43の出力elを交番駆動周波
oで同期検波を行なえば、出力信号el1とel2
の差信号を抽出することができ、その出力Eoは Eo=AGlogbαα/b ―AGlogbαα/b=AGlogT
/T となる。ここでAは同期検波器の変換係数であ
る。上式から明らかな如く、本発明の光学測定装
置によれば、出力Eoの中には光源光合波部、光
分岐、光伝送フアイバ、受光器の特性変動を全く
受けないことが分る。
If the output e l of this logarithmic amplifier 43 is subjected to synchronous detection at the alternating drive frequency o , the output signals e l1 and e l2
The difference signal Eo can be extracted, and its output Eo is Eo=AGlogb 1 α 1 α 2 S 1 T 1 /b 2 S 2 -AGlogb 1 α 1 α 2 S 1 T 2 /b 2 S 2 = AGlogT
1 / T2 . Here, A is the conversion coefficient of the synchronous detector. As is clear from the above equation, according to the optical measuring device of the present invention, the output Eo is not affected by any characteristic fluctuations of the light source light multiplexer, the optical branch, the optical transmission fiber, and the optical receiver.

第3図は本発明の計測部に使用される二波長差
動型の変位―光変換器、すなわち波長の異なる光
をそれぞれ一方が増加すれば、他の光は減少する
相補的変動をさせる手段の要部構成を示すもので
ある。合成部36、伝送用光フアイバを経た光P1
は光フアイバの出射光をレンズ13を用いて平行
光ビームに変換し、光学フイルタ11および12
を組合せた変位板により光の透過光量を変調し、
レンズ14で集光し、復路用光フアイバ5に入射
させ、受光器41により、変位板の変位量xに比
例した出力Eoを得る。なお、第1図と同一符号
を付す部分は実質的に第1図のものと同一機能を
有する部分である。
FIG. 3 shows a two-wavelength differential displacement-light converter used in the measurement section of the present invention, that is, a means for making complementary fluctuations in which lights of different wavelengths are increased and the other light is decreased. This shows the main part configuration of. Combining unit 36, light P 1 that has passed through the transmission optical fiber
converts the light emitted from the optical fiber into a parallel light beam using the lens 13, and then passes the light through the optical filters 11 and 12.
The amount of transmitted light is modulated by a displacement plate that combines
The light is focused by the lens 14 and made incident on the return optical fiber 5, and the light receiver 41 obtains an output Eo proportional to the displacement amount x of the displacement plate. Note that parts given the same reference numerals as in FIG. 1 are parts having substantially the same functions as those in FIG. 1.

各波長λおよびλに対する上記フイルタの
透過率をそれぞれT1およびT2とすると位相検波
器の出力Eoは Eo=AlogT/T であり、更に詳しく述べるとT1,T2はそれぞれ T1=r11+r21/2+r11−r21/π 〔sin-1(x/r)+x/rcos{sin-1(x/r)
}〕 T2=r22+r12/2−r22−r12/π 〔sin-1(x/r)+x/rcos{sin-1(x/r)
}〕 で表わされる。
Let T 1 and T 2 be the transmittance of the filter for each wavelength λ 1 and λ 2 , respectively, then the output Eo of the phase detector is Eo = AlogT 1 /T 2 , and more specifically, T 1 and T 2 are respectively T 1 = r 11 + r 21 /2 + r 11 - r 21 /π [sin -1 (x/r) + x/rcos {sin -1 (x/r)
}] T 2 = r 22 + r 12 /2-r 22 -r 12 /π [sin -1 (x/r) + x/rcos {sin -1 (x/r)
}].

ここで、r11,r21はそれぞれ波長λの光に対
するフイルタ11および12の透過率、r12,r22
はそれぞれ波長λに対するフイルタ11および
12の透過率、rは平行ビームの半径、xは中心
軸からの変位である。フイルタ11が波長λ
光のみ、フイルタ12が波長λの光のみを透過
する場合すなわちr11=r22=1,r21=r12=0のと
き、 Eo=A{8/π(x/r)+4/3π(32/π
1)(x/r)} となる。ここでビーム半径rは光フアイバ内の光
伝送の状態が変化することにより変わる場合があ
るが、この場合には、たとえばレンズ13とフイ
ルタ11および12で構成されている変位板の間
にピンホール板13′を挿入し変位板にあたる光
ビームの径を一定に保つのが望ましい。
Here, r 11 and r 21 are the transmittances of filters 11 and 12 for light with wavelength λ 1 , respectively, and r 12 and r 22
are the transmittances of filters 11 and 12 for wavelength λ 2 , respectively, r is the radius of the parallel beam, and x is the displacement from the central axis. When the filter 11 transmits only the light with wavelength λ 1 and the filter 12 transmits only the light with wavelength λ 2 , that is, when r 11 = r 22 = 1, r 21 = r 12 = 0, Eo = A {8/π( x/r)+4/3π(32/ π2−
1) (x/r) 2 }. Here, the beam radius r may change depending on the state of light transmission within the optical fiber. It is preferable to insert a radial radiator ′ in order to keep the diameter of the light beam hitting the displacement plate constant.

第4図は変位xを光ビームの半径rで規格化し
た規格変位量(x/r)と出力Eoとの関係を示すもの で、同図において、Aはr11=r22=1,r21=r12
0の場合、Bはr11=r22=0.9, r21=r12=0.1の場合、Cはr11=r22=0.1,r21
0,r12=0.2の場合である。
Figure 4 shows the relationship between the standard displacement amount (x/r), which is the displacement x normalized by the radius r of the light beam, and the output Eo. In the figure, A is r 11 = r 22 = 1, r 21 = r 12 =
0, B is r 11 = r 22 = 0.9, r 21 = r 12 = 0.1, C is r 11 = r 22 = 0.1, r 21 =
0, r 12 =0.2.

上図より規格変位量|x/r|<0.3の範囲では殆ん ど直線となる。 From the above figure, the standard displacement amount |x/r|<0.3 has almost no It becomes a straight line.

又変位xが0のときはT1,T2は等しくなり
AlogT/T=Eo=0となり、零点の検出が容易にで きる。
Also, when the displacement x is 0, T 1 and T 2 are equal.
AlogT 1 /T 2 =Eo=0, and the zero point can be easily detected.

したがつて、本発明による光学測定システムで
は対数増幅器を使用しているにも係らず、変位x
と出力Eoが直線的に変化するので信号処理回路
に逆対数変換器等を使用しなくて良いという利点
がある。
Therefore, even though the optical measurement system according to the invention uses a logarithmic amplifier, the displacement x
Since the output Eo changes linearly, there is no need to use an anti-logarithmic converter in the signal processing circuit.

送信部1の光合波や光分岐などの光部品、光フ
アイバ4および5の特性が光の波長の差によつて
無視できない影響を与える場合には、光源から出
射された光が受光器41へ伝送される間には伝達
率は波長によつて異つて来る。この場合、2波長
λ,λの光の伝達率の比をkとすると(1)式は Eo=A{8/π(x/r)+〓(〓−1)(x/r)
}+ Alogk (2) となり、この場合、出力の零点と変位の零点が一
致しない場合があり、又上記零点を中心とする直
線変化範囲も狭くなることがある。
If the characteristics of the optical parts such as optical multiplexing and optical branching of the transmitting section 1 and the optical fibers 4 and 5 have a non-negligible effect due to the difference in wavelength of light, the light emitted from the light source will not reach the optical receiver 41. During transmission, the transmission rate varies depending on the wavelength. In this case, if the ratio of the transmittance of light of two wavelengths λ 1 and λ 2 is k, then equation (1) is Eo=A{8/π(x/r)+〓(〓-1)(x/r)
3 }+Alogk (2) In this case, the zero point of the output and the zero point of the displacement may not match, and the range of linear variation centered on the zero point may also become narrow.

しかしこの場合はレンズ13および14の色収
差による焦点位置のずれを利用して補正すること
ができる。第3図において、光フアイバ4から出
射した光のうち波長λの光は実線8で示すよう
に10において焦点を結ぶ、一方波長λの光は
破線9で示すように30において焦点を結ぶ。し
たがつて、前記伝達比kが1のときは光フアイバ
の入射端を10と30の中間20の位置におけば
よく、伝達比kが1とならないとき、例えば実線
8で示す波長λの光の伝達率が高い場合には、
光フアイバ5の入射端を左側に移動し、その逆の
場合は右側に移動することによつて系全体の伝達
比を1にすることができ零点の補正ならび、零点
からの直線範囲を拡大することができる。
However, in this case, it is possible to correct the deviation by utilizing the focal position shift due to the chromatic aberration of the lenses 13 and 14. In FIG. 3, out of the light emitted from the optical fiber 4, the light with wavelength λ 1 is focused at 10 as shown by solid line 8, while the light with wavelength λ 2 is focused at 30 as shown by broken line 9. . Therefore, when the transmission ratio k is 1, it is sufficient to place the input end of the optical fiber at a position of 20 between 10 and 30. When the transmission ratio k is not 1, for example, the input end of the optical fiber may be placed at a position of 20 between 10 and 30 . If the light transmission rate is high,
By moving the input end of the optical fiber 5 to the left, or vice versa, to the right, the transmission ratio of the entire system can be made 1, correcting the zero point and expanding the linear range from the zero point. be able to.

第5図は本発明による光学システムの他の実施
例の構成を示すもので、特に背景光の影響や受光
器の暗電流の影響を除くようにしたものである。
第1図の実施例の構成において、受光器41に暗
電流ΔIsがあると受光器41の出力は波長λ
よびλの光信号に対してそれぞれ IS1=P1b1αα2S1T1+ΔIs, IS2=P2b1αα2S1T2+ΔIsとなり、従つて対
数増幅器43の出力は el1=Glogbαα/b+ΔIs
/P および el2=Glogbαα/b+ΔIs
/P となつて、特に信号電流が小さいとき変位xが零
のときでも出力老Eoが零とならない場合が生ず
る。これらの問題を除くため、本実施例では、交
番駆動回路32と発光体33および34との間に
一種の変調回路、すなわち交番駆動回路の開閉周
波数oよりもはるかに高い周波数cで発光体3
3および34の発光を断続する回路37を設け、
受信信号処理部2の受光器41ならびに42と対
数増幅器とのそれぞれの間に、中心周波数c
帯域中2oの狭帯域増幅器45および46、な
らび検波器47および48をそれぞれ縦続接続し
たものである。他の第1図の符号と同一符号を付
す部分は同一の機能を有するものである。
FIG. 5 shows the configuration of another embodiment of the optical system according to the present invention, which is particularly designed to eliminate the effects of background light and dark current of the light receiver.
In the configuration of the embodiment shown in FIG. 1, if there is a dark current ΔIs in the photoreceiver 41, the output of the photoreceiver 41 will be I S1 =P 1 b 1 α 1 α 2 for optical signals of wavelengths λ 1 and λ 2 , respectively. S 1 T 1 + ΔIs, I S2 = P 2 b 1 α 1 α 2 S 1 T 2 + ΔIs, so the output of the logarithmic amplifier 43 is e l1 = Glogb 1 α 1 α 2 S 1 T 1 /b 2 S 2 +ΔIs
/P 1 b 2 S 2 and e l2 = Glogb 1 α 1 α 2 S 1 T 2 /b 2 S 2 +ΔIs
/P 2 b 2 S 2 , so that even when the displacement x is zero, there may be a case where the output voltage Eo does not become zero, especially when the signal current is small. In order to eliminate these problems, in this embodiment, a kind of modulation circuit is provided between the alternating drive circuit 32 and the light emitters 33 and 34 , that is, the light emitter
A circuit 37 for intermittent light emission of 3 and 34 is provided,
A center frequency c ,
Narrow band amplifiers 45 and 46 of 2 o in the band and detectors 47 and 48 are connected in cascade, respectively. Components having the same reference numerals as those in FIG. 1 have the same functions.

したがつて、検波器47および48の出力電流
は発光体33が発光したときは次式で表わされ
る。
Therefore, the output currents of the detectors 47 and 48 are expressed by the following equation when the light emitter 33 emits light.

R1=P1b1S1G1S1′ IS1=P1b2αα2S2T1G2S2′ 発光体34が発光したときは IR2=P2b1S1G1S1′ IS2=P2b2αα2S2T2G2S2′ ここで、G1およびG2はそれぞれ狭帯域増幅器
46および45の利得、S1′およびS2′はそれぞれ
検波器48および47の検波感度である。
I R1 = P 1 b 1 S 1 G 1 S 1 ′ I S1 = P 1 b 2 α 1 α 2 S 2 T 1 G 2 S 2 ′ When the light emitter 34 emits light, I R2 = P 2 b 1 S 1 G 1 S 1 ′ I S2 = P 2 b 2 α 1 α 2 S 2 T 2 G 2 S 2 ′ where G 1 and G 2 are the gains of narrowband amplifiers 46 and 45, respectively, S 1 ′ and S 2 ' are the detection sensitivities of the detectors 48 and 47, respectively.

したがつて、対数増幅器43を経た同期検波器
44の出力Eoは前述第1図について説明したと
同様の動作により次式で表わされる。
Therefore, the output Eo of the synchronous detector 44 which has passed through the logarithmic amplifier 43 is expressed by the following equation using the same operation as explained with reference to FIG.

Eo=AGlogT/T ここで、AおよびGは同期検波器44ならび対
数増幅器43の利得である。本実施例によれば受
光器41および42の背景光電流や暗電流の影響
を除去でき、しかもそのために使用する狭帯域増
幅器や検波器の特性のばらつきが出力に影響しな
い光学測定システムを実現できる。
Eo=AGlogT 1 /T 2 where A and G are the gains of the synchronous detector 44 and the logarithmic amplifier 43. According to this embodiment, it is possible to eliminate the influence of the background photocurrent and dark current of the photodetectors 41 and 42, and furthermore, it is possible to realize an optical measurement system in which variations in the characteristics of the narrowband amplifiers and detectors used for this purpose do not affect the output. .

以上の実施例においては、光源からの光信号は
波長の異なる光が同一周期で交互に発生し、かつ
光学差動装置の動作が、完全に相補的、すなわち
一方の増加量と他方の減衰量が等しい場合につい
て説明したが、本発明は上記実施例に限定される
ものではない。
In the above embodiment, the optical signal from the light source is such that lights of different wavelengths are generated alternately in the same period, and the operations of the optical differential device are completely complementary, that is, the amount of increase in one and the amount of attenuation in the other are Although the case where the values are equal has been described, the present invention is not limited to the above embodiment.

第6図、第7図および第8図は、他の実施例に
おける光信号の波形を示す図である。いずれも、
a,bはそれぞれ波長λおよびλの信号、c
はその合成された伝送信号、点線は光学差動手段
によつて変動した状態(λのほうが増加した場
合)を示す。なお、cの振幅は拡大して示してい
る。第6図の場合は2つの波長のaおよびbのく
り返し周期が等しく、デユーテイサイクル50%で
かつ、互に位相がθずれている場合を示す。した
がつて合成された信号は周期Tの間にλ+λ
の成分のt1期間、λのt2期間、λ,λのな
いt3期間、およびλのt4期間からなる。
FIG. 6, FIG. 7, and FIG. 8 are diagrams showing waveforms of optical signals in other embodiments. both,
a, b are signals with wavelengths λ 1 and λ 2 , respectively, and c
is the combined transmission signal, and the dotted line shows the state changed by the optical differential means (when λ 1 increases). Note that the amplitude of c is shown enlarged. In the case of FIG. 6, the repetition period of two wavelengths a and b is equal, the duty cycle is 50%, and the phases are shifted from each other by θ. Therefore, the combined signal is λ 12 during period T
It consists of a t 1 period of components of , a t 2 period of λ 1 , a t 3 period without λ 1 , λ 2 , and a t 4 period of λ 2 .

第7図はλ,λの信号の周期は等しくTで
λおよびλのデユーテイサイクルはそれぞれ
50%および15%である。
Figure 7 shows that the periods of the signals λ 1 and λ 2 are equal to T, and the duty cycles of λ 1 and λ 2 are respectively
50% and 15%.

第8図はλの信号の一定期間T0毎同期信号
を入れ、λ,λの周期は等しくTで、デユー
テイサイクルは25%である。
In FIG. 8, a synchronization signal is inserted every fixed period T 0 of the λ 1 signal, the periods of λ 1 and λ 2 are equal to T, and the duty cycle is 25%.

これらの信号の光学差動装置の出力を所定の周
期でサンプリングすれば、λ,λ,λ+λ
,λおよびλのない時点の信号を分離で
き、λ,λの処理に関しては前記実施例の場
合と同様に行ない、λ+λの信号は全光電力
のモニタとして使用し、λおよびλが共に存
在しない所の信号は受光器、暗電流、あるいは増
幅器の0ドリフト補償信号として利用することに
よつて更に有効な信号処理回路を構成できる。上
記例の他に更に光信号を符号化したものなども使
用できる。
If the output of the optical differential device of these signals is sampled at a predetermined period, λ 1 , λ 2 , λ 1
2 , λ 1 and λ 2 can be separated, processing of λ 1 and λ 2 is performed in the same way as in the previous embodiment, and the signal of λ 1 + λ 2 is used as a monitor of the total optical power. , λ 1 and λ 2 do not exist, a more effective signal processing circuit can be constructed by using the signal as a zero-drift compensation signal for a photoreceiver, dark current, or amplifier. In addition to the above examples, encoded optical signals can also be used.

要するに本発明の光源信号は二つの波長の異な
るパルス状の信号が合成された場合、λ,λ
のみの光信号が伝送されている状態が規則的に配
列されたものであればよい。
In short, when the light source signal of the present invention is composed of two pulsed signals with different wavelengths, λ 1 and λ 2
It is sufficient that the states in which only the optical signals are transmitted are regularly arranged.

又、上記実施例において、光学差動装置は主と
して、透過形フイルタを使用する場合について述
べたが、波長の異なるλ,λに関して反射係
数の異なる反射板を組合せた光学差動装置でも実
現されることは前述の説明から明らかである。
In addition, in the above embodiments, the case where the optical differential device mainly uses a transmission filter is described, but it can also be realized by an optical differential device that combines reflection plates with different reflection coefficients for λ 1 and λ 2 of different wavelengths. It is clear from the above description that this is the case.

第9図a,b,cはいずれも反射形による光学
差動装置で構成する場合の要部構成を示す図であ
る。同図において、4および5はそれぞれ送信用
および受信用光フアイバ、49は円筒状レンズ
で、屈折率が分布して、フアイバ4からの光を集
束して、端面Aから一定の広がりを持つ平行光と
して出力し、端面Aからの入力を集束し、受信用
フアイバに導入するためのレンズである。50は
波長にによつて反射率の異なる反射板である。上
記図において、反射板50からの反射光はレンズ
の光軸に対し、軸対称の平行光となつてレンズ4
9に入射し、フアイバ5とレンズ49の結合点に
焦点を持つ。したがつて、2本のフアイバ4およ
び5の相対位置はレンズ49の光軸に対して軸対
称で、その間隔はレンズ49の面Aと反射板6の
反射面の距離によつて決る。特にbはレンズ49
の面を光軸に対し斜めの面とし、A面での端面反
射光をフアイバ5の端面以外の部分に集束させる
もので、cのものは反射板6の反射面を光軸に対
し斜めの面とすることにより、反射面からの信号
光を、光軸に対し、フアイバ4と軸対称の位置以
外の部分に集束させるものである。
FIGS. 9a, 9b, and 9c are diagrams each showing the main part configuration when the optical differential device is of a reflective type. In the figure, 4 and 5 are optical fibers for transmitting and receiving, respectively, and 49 is a cylindrical lens, which has a distributed refractive index and focuses the light from the fiber 4 into a parallel beam with a certain spread from the end surface A. This lens outputs light, focuses the input from end face A, and introduces it into the receiving fiber. Reference numeral 50 denotes a reflector whose reflectance varies depending on the wavelength. In the above figure, the reflected light from the reflection plate 50 becomes parallel light that is axially symmetrical with respect to the optical axis of the lens, and is reflected by the lens 4.
9 and has a focal point at the junction of the fiber 5 and the lens 49. Therefore, the relative positions of the two fibers 4 and 5 are axially symmetrical with respect to the optical axis of the lens 49, and the distance between them is determined by the distance between the surface A of the lens 49 and the reflective surface of the reflector plate 6. Especially b is lens 49
The surface of c is a surface diagonal to the optical axis, and the end face reflected light on the A surface is focused on a part other than the end surface of the fiber 5. In the case of c, the reflective surface of the reflector 6 is diagonal to the optical axis. By making it a surface, the signal light from the reflecting surface is focused on a portion other than the position axially symmetrical to the fiber 4 with respect to the optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第5図は本発明による光学測定シス
テムの一実施例の構成を示す図、第2図は第1図
に示す実施例の動作説明のための波形図、第3図
は本発明の実施に使用される光学差動型変位―光
変換器の一実施の要部構成図、第4図は第1図の
示す実施例における被測定体の変位と出力の関係
を示す図、第6,7および8図は他の光信号波形
図、第9図は反射形光学差動装置の要部構成図で
ある。 1……送信部、2……信号処理回路、3……計
測部、4,5,6……光フアイバ、11,12…
…フイルタ、13,14……レンズ、15……フ
イルタ支持体、16,17……光フアイバ保持
部、18,19……連結棒、21,22……ダイ
アフラグ、23,24……圧力孔、32……交番
駆動回路、33,34……半導体レーザ、35…
…合波部、36……分岐、37……変調器、4
1,42……受光器、43……対数増幅器、44
……同期検波器、45,46……狭帯域増幅器、
47,48……検波器。
1 and 5 are diagrams showing the configuration of an embodiment of the optical measurement system according to the present invention, FIG. 2 is a waveform diagram for explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a diagram showing the configuration of an embodiment of the optical measurement system according to the present invention. FIG. 4 is a diagram illustrating the relationship between the displacement of the object to be measured and the output in the embodiment shown in FIG. 6, 7 and 8 are other optical signal waveform diagrams, and FIG. 9 is a diagram showing the main part configuration of the reflective optical differential device. 1... Transmission section, 2... Signal processing circuit, 3... Measurement section, 4, 5, 6... Optical fiber, 11, 12...
... Filter, 13, 14 ... Lens, 15 ... Filter support, 16, 17 ... Optical fiber holding part, 18, 19 ... Connecting rod, 21, 22 ... Diaphragm, 23, 24 ... Pressure hole , 32... alternating drive circuit, 33, 34... semiconductor laser, 35...
...Multiplexer, 36... Branch, 37... Modulator, 4
1, 42... Light receiver, 43... Logarithmic amplifier, 44
... Synchronous detector, 45, 46 ... Narrowband amplifier,
47, 48...detector.

Claims (1)

【特許請求の範囲】 1 周期的に波長の異なる第1および第2のパル
ス状の光を発生する手段と、被測定体の物理的変
動を変位に変え、その変位によつて上記波長の異
なる光の伝送量を差動的に変動させる光学差動装
置と、上記光学差動装置の出力を電気信号に変換
する受光器と、上記受光器の出力電気信号から上
記被測定体の物理的変動を検出する信号処理回
路、および上記光を発生する手段と光学差動装置
ならび上記受光器と光学差動装置を結合する光学
伝送路と有して構成されたことを特徴とする光学
測定システム。 2 特許請求の範囲第1項記載の光学測定システ
ムにおいて、 波長の異なる光を規則的に発生する手段を発光
波長の異なる2つの発光体と、上記発光体を規則
的に交互に切換える交番駆動回路と上記2つの半
導体レーザの出力を合波する合波部とで構成し、
上記信号処理部を上記合波部の出力光の1部を電
気信号に変換する第1の受光器と上記光学手段か
らの光を電気信号に変換する第2の受光器と上記
第1および第2の比の対数を増幅する対数増巾器
と上記対数増幅器の出力を同期検波する同期検波
器とを有して構成した光学測定システム。 3 特許請求の範囲第2項記載の光学測定システ
ムにおいて、上記発光体の光を上記駆動周波数よ
り高い周波数で変調する手段を付加し、上記第1
および第2の受光器の出力部のそれぞれに帯域増
幅器および検波器を縦続接続した光学測定システ
ム。 4 特許請求の範囲第1項記載の光学測定システ
ムにおいて、光学手段を二波長差動型の変位―光
変換器で構成した光学測定システム。 5 特許請求の範囲第4項記載の光学測定システ
ムにおいて、変位―光変換器が、光フアイバーか
らの出射光を平行光に変換する第1の光学レンズ
と上記平行光を光フアイバの入射端部に集束する
第2の光学レンズと、上記2つのレンズの間に直
角に配置され透過波長領域の異なる2つのフイル
タをその境界が上記レンズの光軸を中心に可動す
る変位板とから構成された光学測定システム。 6 特許請求の範囲第5項記載の光学測定システ
ムにおいて、上記光フアイバの入射端部を上記光
学レンズの軸方向に移動可能とした光学測定シス
テム。
[Claims] 1. Means for periodically generating first and second pulsed lights having different wavelengths, and converting physical fluctuations of the object to be measured into displacements, an optical differential device that differentially varies the amount of light transmitted; a light receiver that converts the output of the optical differential device into an electrical signal; and a physical change in the object to be measured based on the electrical signal output from the light receiver. What is claimed is: 1. An optical measurement system comprising: a signal processing circuit for detecting the light, an optical differential device with the light generating means, and an optical transmission path connecting the light receiver and the optical differential device. 2. The optical measurement system according to claim 1, wherein the means for regularly generating light of different wavelengths includes two light emitters having different emission wavelengths, and an alternating drive circuit that regularly and alternately switches the light emitters. and a combining section that combines the outputs of the two semiconductor lasers,
The signal processing section includes a first light receiver that converts a part of the output light of the multiplexing section into an electrical signal, a second light receiver that converts the light from the optical means into an electrical signal, and the first and An optical measurement system comprising a logarithmic amplifier that amplifies the logarithm of a ratio of 2 and a synchronous detector that synchronously detects the output of the logarithmic amplifier. 3. The optical measurement system according to claim 2, further comprising means for modulating the light of the light emitter at a frequency higher than the driving frequency,
and an optical measurement system in which a bandpass amplifier and a wave detector are connected in cascade to each of the output parts of the second optical receiver. 4. The optical measurement system according to claim 1, wherein the optical means is a two-wavelength differential displacement-light converter. 5. In the optical measurement system according to claim 4, the displacement-light converter includes a first optical lens that converts the light emitted from the optical fiber into parallel light, and a first optical lens that converts the light emitted from the optical fiber into parallel light; a second optical lens that focuses the light on the optical axis; and a displacement plate that is arranged at right angles between the two lenses and has two filters with different transmission wavelength ranges, the boundary of which is movable around the optical axis of the lens. Optical measurement system. 6. The optical measurement system according to claim 5, wherein the input end of the optical fiber is movable in the axial direction of the optical lens.
JP9046578A 1978-02-15 1978-07-26 Optical measuring device Granted JPS5518902A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9046578A JPS5518902A (en) 1978-07-26 1978-07-26 Optical measuring device
FR7901903A FR2417753A1 (en) 1978-02-15 1979-01-25 REMOTE OPTICAL MEASUREMENT AND CONTROL SYSTEM OF AN OBJECT UNDERGOING A PHYSICAL TRANSFORMATION
CA320,563A CA1108430A (en) 1978-02-15 1979-01-31 Optical measurement system
NL7901042A NL7901042A (en) 1978-02-15 1979-02-09 OPTICAL MEASUREMENT SYSTEM.
US06/012,026 US4260883A (en) 1978-02-15 1979-02-14 Optical measurement system
DE2905630A DE2905630C2 (en) 1978-02-15 1979-02-14 Optical measuring device
GB7905399A GB2016684B (en) 1978-02-15 1979-02-15 Optical measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9046578A JPS5518902A (en) 1978-07-26 1978-07-26 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS5518902A JPS5518902A (en) 1980-02-09
JPS6211400B2 true JPS6211400B2 (en) 1987-03-12

Family

ID=13999345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9046578A Granted JPS5518902A (en) 1978-02-15 1978-07-26 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS5518902A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147120U (en) * 1983-03-24 1984-10-01 株式会社東芝 Paper sheet detection device
DE60125018T2 (en) * 2000-02-11 2007-06-28 Rosemount Inc., Eden Prairie OPTICAL PRINTER

Also Published As

Publication number Publication date
JPS5518902A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
US4260883A (en) Optical measurement system
US4533247A (en) Optical transmission system
US4356396A (en) Fiber optical measuring device with compensating properties
US4313344A (en) Fiber optical temperature measurement devices
US4596925A (en) Fiber optic displacement sensor with built-in reference
US6088144A (en) Detection of frequency-modulated tones in electromagnetic signals
US6396574B1 (en) Apparatus for measuring the wavelength, optical power and optical signal-to-noise ratio of each optical signal in wavelength-division multiplexing optical communication
US6329648B1 (en) Phase locked loop fiber optic sensor system
US20020131104A1 (en) Optical channel monitor with continuous gas cell calibration
TW200422668A (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
JPS6211400B2 (en)
US4607162A (en) Sensing apparatus for measuring a physical quantity
US20180294614A1 (en) Optical power monitoring using dual modulation
KR100317140B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio in wavelength division multiplexing optical telecommunications
JPH0249115A (en) Displacement measuring instrument and pressure measuring instrument utilizing such instrument
JPS5924397B2 (en) light wave distance meter
CN117029995A (en) High sensitivity vibration sensing system and method employing broadband light sources
CN117191094A (en) Multi-parameter monitoring system and method for cascading optical fiber sensor
SU1442839A1 (en) Two-channel photometer
SU1362228A1 (en) Fibre-optic transducer
KR20240017284A (en) Balanced Photo Detector Implemented with fiber??optic interferometer and Distributed Acoustic Sensor System Using the same
SU1277733A1 (en) Fibe-optics measuring device
JPH0293798A (en) Method and device for measuring physical quantity by optical sensor
JPH04116416A (en) Optical-intensity modulation sensor
JPS6252808B2 (en)