JPS6211345B2 - - Google Patents

Info

Publication number
JPS6211345B2
JPS6211345B2 JP53103036A JP10303678A JPS6211345B2 JP S6211345 B2 JPS6211345 B2 JP S6211345B2 JP 53103036 A JP53103036 A JP 53103036A JP 10303678 A JP10303678 A JP 10303678A JP S6211345 B2 JPS6211345 B2 JP S6211345B2
Authority
JP
Japan
Prior art keywords
voltage
output
current
charger
surface potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53103036A
Other languages
Japanese (ja)
Other versions
JPS5529856A (en
Inventor
Koji Suzuki
Yoshikazu Yokomizo
Yoshitaka Kawamo
Shinkichi Takahashi
Hiroaki Tsucha
Shinichi Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10303678A priority Critical patent/JPS5529856A/en
Priority to GB7929344A priority patent/GB2039101B/en
Priority to DE19792934337 priority patent/DE2934337A1/en
Publication of JPS5529856A publication Critical patent/JPS5529856A/en
Priority to GB08228797A priority patent/GB2108719B/en
Publication of JPS6211345B2 publication Critical patent/JPS6211345B2/ja
Priority to US07/675,053 priority patent/US5164771A/en
Granted legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は画像形成装置に係わり、更に詳細には
帯電用コロナ放電装置の出力を変化せしめ記録体
上の表面電位を制御する画像形成装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image forming apparatus, and more particularly to an image forming apparatus that controls the surface potential on a recording medium by changing the output of a charging corona discharge device.

従来、画像形成装置の記録体上の表面電位を一
定制御する方法はいくつか提案されてきた。例え
ば表面電位を検出する検出手段の検出出力により
コロナ放電装置に印加される印加電圧を制御する
方法があるが一時的な温度湿度変化域はコロナ放
電装置の電源電圧の変動によりコロナ電流が変化
して表面電位が変化することに対してその補正が
できなかつた。
Conventionally, several methods have been proposed for constant control of the surface potential on a recording medium of an image forming apparatus. For example, there is a method of controlling the applied voltage applied to the corona discharge device by the detection output of a detection means that detects the surface potential, but in a region where the temperature and humidity change temporarily, the corona current changes due to fluctuations in the power supply voltage of the corona discharge device. Therefore, it was not possible to compensate for changes in surface potential.

又、定電流回路を使用してコロナ電流値を一定
に保つ方法もあるが、感光体の劣化やその他特性
の経時的変化によりコロナ電流値が一定であつて
も同じ電位を感光体に生じさせることはできず表
面電位を適正値に維持することはできなかつた。
There is also a method of keeping the corona current value constant using a constant current circuit, but due to deterioration of the photoreceptor or other changes in its characteristics over time, the same potential is generated on the photoreceptor even if the corona current value is constant. Therefore, it was not possible to maintain the surface potential at an appropriate value.

本発明は上述の如き欠点を除いた画像形成装置
を提供することを目的としており、更に詳細には
雰囲気の変動、感光体の劣化、コロナ放電電極の
汚れ等にかかわらず感光体の表面電位を安定に保
つた画像形成装置の提供にある。
It is an object of the present invention to provide an image forming apparatus that eliminates the above-mentioned drawbacks, and more specifically, it is an object of the present invention to maintain the surface potential of the photoreceptor regardless of changes in the atmosphere, deterioration of the photoreceptor, dirt on the corona discharge electrode, etc. The purpose of the present invention is to provide an image forming apparatus that can be maintained stably.

即ち、本発明は感光体上に画像に応じた静電潜
像を形成し、現像した後、記録材に転写する画像
形成装置において、出力を可変できる帯電用コロ
ナ放電手段と、前記コロナ放電手段に電流供給す
る電源手段と、前回転中に前記感光体上の表面電
位を検出する検出手段と、前回転時の前記感光体
の表面電位を所定電位に制御するべく前記検出手
段の検出電位に応じて前記コロナ放電手段に供給
する電流を制御する電位制御手段、前記電位制御
の終了後、前記電位制御手段により設定された電
流を一定に維持するべく前記コロナ放電手段に供
給される電流を検出し、その検出出力に応じて前
記電源手段を制御する電流制御手段と、を有する
ことを特徴とする画像形成装置を提供するもので
ある。
That is, the present invention provides an image forming apparatus that forms an electrostatic latent image according to the image on a photoreceptor, develops it, and then transfers it to a recording material, including a charging corona discharge means whose output can be varied, and the corona discharge means. a detection means for detecting the surface potential on the photoreceptor during the pre-rotation; a potential control means for controlling the current supplied to the corona discharge means in accordance with the above, and after the end of the potential control, detecting the current supplied to the corona discharge means in order to keep the current set by the potential control means constant; and current control means for controlling the power supply means according to the detected output thereof.

本発明の一実施例を以下図面を参照して詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明を適用し得る複写装置の断面図
である。
FIG. 1 is a sectional view of a copying apparatus to which the present invention can be applied.

ドラム11の表面は、CdS光導電体を用いた三
層構成の感光体より成り、軸12上に回動可能に
軸支され、コピー命令により矢印13の方向に回
転を開始する。
The surface of the drum 11 is made of a three-layer photoreceptor using a CdS photoconductor, is rotatably supported on a shaft 12, and starts rotating in the direction of an arrow 13 in response to a copy command.

ドラム11が前回転を終了し定位置迄回転して
くると、原稿台ガラス14上に置かれた原稿は、
第1走査ミラー15と一体に構成された照明ラン
プ16で照射され、その反光は、第1走査ミラー
15及び第2走査ミラー17で走査される。第1
走査ミラー15と第2走査ミラー17は1:1/2
の速比で動くことによりレンズ18の前方の光路
長が常に一定に保たれたまま原稿の走査が行なわ
れる。
When the drum 11 completes its forward rotation and rotates to its normal position, the original placed on the original platen glass 14 is
The light is irradiated by an illumination lamp 16 that is integrated with the first scanning mirror 15, and the reflected light is scanned by the first scanning mirror 15 and the second scanning mirror 17. 1st
The ratio of the scanning mirror 15 and the second scanning mirror 17 is 1:1/2.
By moving at a speed ratio of , the document is scanned while the optical path length in front of the lens 18 is always kept constant.

上記の反射光像はレンズ18、第3ミラー19
を経た後、第4ミラー20、を経て露光部21
で、ドラム11上に結像する。
The above reflected light image shows the lens 18 and the third mirror 19.
After passing through the fourth mirror 20, the exposure section 21
Then, an image is formed on the drum 11.

ドラム11は、一次帯電器22により帯電(例
えば+)された後、前記露光部21で、照明ラン
プ16により照射された像をスリツト露光され
る。
After the drum 11 is charged (for example, +) by a primary charger 22, an image irradiated by an illumination lamp 16 is slit-exposed in the exposure section 21.

それと同時に、AC又は一次と逆極性(例えば
−)の除電を除電器23で行ない、その後更に全
面露光ランプ24による全面露光により、ドラム
11上に高コントラストの静電潜像を形成する。
感光ドラム11上の静電潜像は、次に現像器25
により、トナー像として可視化される。
At the same time, AC or primary charge removal with a polarity opposite to that of the primary charge (for example, -) is performed by a charge remover 23, and then a high-contrast electrostatic latent image is formed on the drum 11 by full-surface exposure using a full-face exposure lamp 24.
The electrostatic latent image on the photosensitive drum 11 is then transferred to a developing device 25.
It is visualized as a toner image.

カセツト26−1、もしくは26−2内の転写
紙27−1もしくは27−2は、給紙ローラ28
−1、もしくは28−2により機内に送られ、第
1レジスタローラ29−1もしくは29−2で概
略のタイミングをとり、第2レジスタローラ30
で正確なタイミングをとつて、感光ドラム11方
向に送出される。
The transfer paper 27-1 or 27-2 in the cassette 26-1 or 26-2 is transferred to the paper feed roller 28.
-1 or 28-2, the rough timing is taken by the first register roller 29-1 or 29-2, and the second register roller 30
The photosensitive drum 11 is sent out in the direction of the photosensitive drum 11 with accurate timing.

次いで、転写帯電器31とドラム11の間を転
写紙27が通る間に該転写紙上にドラム11上の
トナー像が転写される。
Next, while the transfer paper 27 passes between the transfer charger 31 and the drum 11, the toner image on the drum 11 is transferred onto the transfer paper.

転写終了後、転写紙は搬送ベルト32へガイド
され、更に定着ローラ対33−1,33−2へ導
かれ、加圧、加熱により定着され、その後トレー
34へ排出される。
After the transfer is completed, the transfer paper is guided to the conveyor belt 32 and further to a pair of fixing rollers 33-1, 33-2, where it is fixed by pressure and heat, and then discharged onto the tray 34.

又、転写後のドラム11は弾性ブレードで構成
されたクリーニング装置35で、その表面を清掃
し、次サイクルへ進む。
After the transfer, the surface of the drum 11 is cleaned by a cleaning device 35 composed of an elastic blade, and the process proceeds to the next cycle.

ここで表面電位を測定する表面電位計50は全
面露光ランプ24と現像器25の間のドラム11
の表面に近接して取付けられている。
Here, a surface electrometer 50 for measuring the surface potential is connected to the drum 11 between the entire surface exposure lamp 24 and the developing device 25.
mounted in close proximity to the surface of the

第2図はコロナ放電装置の制御ブロツク図であ
る。第2図において、50は感光ドラム11の表
面電位を検出する検出手段としての表面電位計、
53は電位測定回路、54はホールド信号HSが
出た時、前記電位測定回路の出力を保持するホー
ルド回路、55はホールド回路の出力に基いて帯
電器に流す適正電流値に対応する信号を出力する
演算回路、56は切換信号EXに応じて入力端子
を切換えるマルチプレクサ、57は1次帯電器高
圧電源回路、58は2次帯電器高圧電源回路であ
る。
FIG. 2 is a control block diagram of the corona discharge device. In FIG. 2, 50 is a surface electrometer as a detection means for detecting the surface potential of the photosensitive drum 11;
53 is a potential measurement circuit; 54 is a hold circuit that holds the output of the potential measurement circuit when the hold signal HS is output; 55 is a signal that outputs a signal corresponding to the appropriate current value to be passed through the charger based on the output of the hold circuit. 56 is a multiplexer that switches input terminals in accordance with the switching signal EX, 57 is a primary charger high-voltage power supply circuit, and 58 is a secondary charger high-voltage power supply circuit.

複写動作が開始する前のドラムの前回転中に初
期値セツト電圧が端子59を介して前記マルチプ
レクサに入力され、前記セツト電圧に応じたコロ
ナ電流が1次及び2次帯電器高圧電源回路57,
58よりドラム11に流れる。次に前記ドラムの
表面電位は表面電位計50より検出され電位測定
回路53で前記表面電位に対して1/300の電圧出
力としてホールド回路54に入力される。前記ホ
ールド回路54はホールド信号HSが不図示の制
御回路より出力されたときの表面電位検出出力を
保持するものである。前記ホールド信号HSはド
ラムの表面電位被検出位置が表面電位計に対向す
る位置に来たとき出力されるものである。前記演
算回路55はホールド回路54の出力に基づき即
ち表面電位に基づき帯電器22,23に流す適正
電流値に対応する信号を出力するものである。以
上のようなルーチンが終了すると前記マルチプレ
クサ56は前記初期セツト電圧から前記演算回路
55で演算された最適値が前記1次および2次帯
電器高圧電源回路57,58に出力され、ドラム
の表面電位が適正値となるように前記1次帯電器
22、前記2次帯電器23を流れるコロナ電流を
制御する。
During the pre-rotation of the drum before the copying operation starts, an initial value set voltage is inputted to the multiplexer via the terminal 59, and a corona current corresponding to the set voltage is applied to the primary and secondary charger high voltage power supply circuits 57,
58 and flows to the drum 11. Next, the surface potential of the drum is detected by a surface electrometer 50, and a potential measuring circuit 53 inputs a voltage output of 1/300 of the surface potential to a hold circuit 54. The hold circuit 54 holds a surface potential detection output when a hold signal HS is output from a control circuit (not shown). The hold signal HS is output when the surface potential detection position of the drum comes to a position opposite to the surface electrometer. The arithmetic circuit 55 outputs a signal corresponding to an appropriate current value to be applied to the chargers 22 and 23 based on the output of the hold circuit 54, that is, based on the surface potential. When the above routine is completed, the multiplexer 56 outputs the optimum value calculated by the calculation circuit 55 from the initial set voltage to the primary and secondary charger high voltage power supply circuits 57 and 58, and adjusts the surface potential of the drum. The corona current flowing through the primary charger 22 and the secondary charger 23 is controlled so that the value becomes an appropriate value.

しかし複写動作中は前回転中に測定された表面
電位で継続して前記高圧電源57,58を制御し
ている為、多数枚複写など長く前回転が入らない
で表面電位検出による帯電器制御が行なわれな
い。この場合、環境変動による帯電器とドラムの
間の負荷変動を補正できないが、前記高圧電源を
流れる電流を定電流とすることで補正することが
できる。斯かる目的を達成する為の公知の定電流
回路を第3図に示す。
However, during the copying operation, the high-voltage power supplies 57 and 58 are continuously controlled using the surface potential measured during the pre-rotation, so the charger control based on surface potential detection can be performed without pre-rotation for a long time, such as when copying a large number of sheets. Not done. In this case, load fluctuations between the charger and the drum due to environmental changes cannot be corrected, but can be corrected by making the current flowing through the high-voltage power supply a constant current. A known constant current circuit for achieving this purpose is shown in FIG.

抵抗R1を流れる電流IはI=V/Rで決定され る。つまり抵抗R1の値が変動しても入力電圧V
が一定ならば抵抗R1に流れる電流は一定であ
る。
The current I flowing through the resistor R 1 is determined by I=V/R 2 . In other words, even if the value of resistor R1 changes, the input voltage V
If is constant, the current flowing through resistor R1 is constant.

第4図に第3図に示した如き定電流回路を用い
た前記高圧電源回路57,58の更に詳細なブロ
ツク図を示す。
FIG. 4 shows a more detailed block diagram of the high voltage power supply circuits 57 and 58 using constant current circuits as shown in FIG.

前記マルチプレクサ56より出力された1次帯
電器補正電圧Vp、2次帯電器補正電圧VACはそ
れぞれオペアンプOP1,OP2の反転入力端子に入
力される。オペアンプOP1,OP2の非反射入力端
子は抵抗VR1,VR2で定つた電圧と比較され増幅
される。
The primary charger correction voltage V p and the secondary charger correction voltage V AC output from the multiplexer 56 are input to the inverting input terminals of operational amplifiers OP 1 and OP 2 , respectively. The non-reflective input terminals of operational amplifiers OP 1 and OP 2 are compared with voltages determined by resistors VR 1 and VR 2 and amplified.

1次帯電器駆動信号HVT1が出力されると該信
号HVT1は1次高圧制御回路HC1に入力され前記
オペアンプOP1の出力を増幅器AMP1に送る。
When the primary charger drive signal HVT 1 is output, the signal HVT 1 is input to the primary high voltage control circuit HC 1 and the output of the operational amplifier OP 1 is sent to the amplifier AMP 1 .

同様に2次帯電器駆動信号HVT2が出力される
と該信号HVT2は2次高圧制御回路HC2に入力さ
れ前記オペアンプOP2の出力を増幅器AMP2に送
る。増幅器AMP1の出力は一次帯電器高圧トラン
スTC1の出力電圧を増減する。同様に増幅器
AMP2の出力は2次帯電器トランスTC2の出力電
圧を制御する。
Similarly, when the secondary charger drive signal HVT 2 is output, the signal HVT 2 is input to the secondary high voltage control circuit HC 2 and the output of the operational amplifier OP 2 is sent to the amplifier AMP 2 . The output of the amplifier AMP 1 increases or decreases the output voltage of the primary charger high voltage transformer TC 1 . Similarly amplifier
The output of AMP 2 controls the output voltage of secondary charger transformer TC 2 .

1次帯電器22を流れる一次コロナ電流Ip
2次帯電器23を流れる2次コロナ電流IAC
各々抵抗R11,R12で検出され、前記1次高圧トラ
ンスTC1は抵抗R1,VR1で決まる電圧VFPと前記
1次帯電器補正電圧VPが一致するまで一次コロ
ナ電流IPを流し、前記電圧VFPと前記1次補正
電圧VPと一致したら前記1次補正電圧VPが変化
しないかぎり一次コロナ電流IPは一定に制御さ
れる。同様に2次高圧トランスTC2は抵抗R12
VR2で決まる電圧VFACと前記2次帯電器補正電
圧VACと一致するまで2次コロナ電流IACを流
し、前記電圧VFACと前記2次補正電圧VACが一
致したら前記2次補正電圧VACが変化しないかぎ
り2次コロナ電流IACは一定に制御される。つま
り次の表面電位の測定が行なわれない限りコロナ
電流は1次2次共に一定に制御される。又、時間
が経過して表面電位の検出が再び行なわれ、適正
な表面電位でなかつた場合再度コロナ電流が制御
されるものである。表面電位の制御は前回に補正
されたコロナ電流を流した感光体の部分の測定を
行なつたのちコロナ電流の制御をしてもよいし、
再び初期設定コロナ電流を流した感光体の部分の
測定を行なつたのちに、コロナ電流の制御をして
もよい。
Primary corona current I p flowing through the primary charger 22,
The secondary corona current I AC flowing through the secondary charger 23 is detected by resistors R 11 and R 12 respectively, and the primary high voltage transformer TC 1 detects the voltage V FP determined by the resistors R 1 and VR 1 and the primary charger. The primary corona current I P is passed until the correction voltage V P matches, and when the voltage V FP and the primary correction voltage V P match, the primary corona current I P remains constant as long as the primary correction voltage V P does not change. controlled. Similarly, the secondary high voltage transformer TC 2 has a resistance R 12 ,
The secondary corona current I AC is caused to flow until the voltage V FAC determined by VR 2 matches the secondary charger correction voltage V AC , and when the voltage V FAC and the secondary correction voltage V AC match, the secondary correction voltage The secondary corona current I AC is controlled to be constant unless V AC changes. That is, unless the next surface potential measurement is performed, both the primary and secondary corona currents are controlled to be constant. Further, as time passes, the surface potential is detected again, and if the surface potential is not appropriate, the corona current is controlled again. The surface potential may be controlled by measuring the part of the photoreceptor where the previously corrected corona current was passed, and then controlling the corona current.
The corona current may be controlled after measuring the portion of the photoreceptor through which the initially set corona current is applied again.

ところで2次帯電器は交流帯電器であるので交
流電源ACSの交流電圧VACSと直流出力電圧VDC
を重畳した電圧を2次帯電器に印加している。つ
まり交流電圧VACSは一定で直流電圧VDCのみを
前記2次帯電器補正電圧VACで制御する定電流差
制御を行なつている。したがつて、抵抗R12で検
出された2次コロナ電流IACは増幅器AMP3で増
幅したのち、平滑回路RECで正負両成分の差す
なわち直流成分のみ検出し直流増幅器AMP4で増
幅して抵抗VR2に加えられている。
By the way, since the secondary charger is an AC charger, the AC voltage V ACS of the AC power supply ACS and the DC output voltage V DC
A superimposed voltage is applied to the secondary charger. In other words, constant current difference control is performed in which the AC voltage V ACS is constant and only the DC voltage V DC is controlled by the secondary charger correction voltage V AC . Therefore, the secondary corona current I AC detected by the resistor R 12 is amplified by the amplifier AMP 3 , and then the difference between the positive and negative components, that is, only the DC component is detected by the smoothing circuit REC, and the secondary corona current I AC detected by the resistor R 12 is amplified by the DC amplifier AMP 4 , and then the resistor Added to VR 2 .

第5図に第4図のブロツク図の実際の回路図を
示す。図においてRは抵抗、Cはコンデンサ、D
はダイオード、Q5,Q7,Q8,Q9はオペアンプ、
Q1,Q2,Q3は発振器、Q4,Q6はインバータ、
T1,T2,T3は変成器を各々示す。
FIG. 5 shows an actual circuit diagram of the block diagram of FIG. 4. In the figure, R is a resistance, C is a capacitor, and D
is a diode, Q 5 , Q 7 , Q 8 , Q 9 are operational amplifiers,
Q 1 , Q 2 , Q 3 are oscillators, Q 4 , Q 6 are inverters,
T 1 , T 2 , and T 3 represent transformers, respectively.

1次帯電器補正電圧VPはオペアンプQ5の反転
入力端子に抵抗R7を介して入力される。抵抗VR1
からのオペアンプQ5の非反転入力端子にかかる
電圧VFPと前記補正電圧圧VPとの差電圧が−R/R
倍されてオペアンプQ5より出力される。一次帯
電器駆動信号HVT1が“H”の時はオペアンプQ5
の出力はダーリントン電流増幅器AMP1のトラン
ジスタTr3がオンしない。つまりダーリントン電
流増幅器AMP1の出力は0である。前記信号
HVT1が“L”の時前記トランジスタTr3がオン
してオペアンプQ5の出力電圧とほぼ同じ電極が
1次高圧トランスTC1に出力される。1次トラン
スTC1内の発振器Q1はトランジスタTr1,Tr2
交互にオンする。変成器T1は巻数比に応じて2
次側に昇圧し2次出力をダイオードD1で整流し
て1次帯電器22に印加する。一次帯電器を流れ
る1次コロナ電流IPは前記抵抗R11で検出され、
抵抗VR1を介してオペアンプQ5の非反転入力端子
に入力され前述の如く前記電圧VFPと前記1次補
正電圧VPが一致するように1次コロナ電流IP
制御される。同様に2次帯電器補正電圧VACはオ
ペアンプQ7の反転入力端子に抵抗R13を介して入
力される。抵抗VR2からのオペアンプQ7の非反転
入力端子にかかる電圧VFACと前記補正電圧VP
の差電圧が−R/R10倍されてオペアンプQ7より出
力 される。2次帯電器駆動信号HVT2が“H”の時
はオペアンプQ7の出力はダーリントン電流増幅
器AMP2のトランジスタTr5がオンしない。つま
りダーリントン電流増幅器AMP2の出力は0であ
る。前記信号HVT2が“L”の時前記トランジス
タTr5がオンしてオペアンプQ7の出力電圧とほぼ
同じ電圧が2次高圧トランスTC2に出力される。
2次高圧トランスTC2内の発振器Q2はトランジス
タTr7,Tr8を交互にオンする。変成器T2は巻数
比に応じて2次側に昇圧し2次側出力をダイオー
ドD12で整流して直流分出力としてとりだす。又
交流電圧発生器ACSは交流発振器Q3と変成器T2
により交流高電圧を出力し前記直流分出力と重畳
して2次帯電器23に出力する。2次帯電器を流
れる2次コロナ電流IACは抵抗R12で検出され
る。該検出出力は増幅器AMP3で増幅されたのち
平滑回路RECで正負両成分の差のみ検出して直
流増幅器AMP4で増幅される。更に前記検出出力
は前記増幅器AMP4で増幅された後抵抗VR2を介
してオペアンプQ7の非反転入力端子に入力さ
れ、前述の如く前記電圧VFACと前記1次補正電
圧VPが一致するように2次コロナ電流IACを制
御するものである。
The primary charger correction voltage V P is input to the inverting input terminal of the operational amplifier Q 5 via the resistor R 7 . Resistance VR 1
The difference voltage between the voltage V FP applied to the non-inverting input terminal of the operational amplifier Q 5 and the correction voltage voltage VP is −R 6 /R
It is multiplied by 7 and output from operational amplifier Q5 . When the primary charger drive signal HVT 1 is “H”, the operational amplifier Q 5
The output of Darlington current amplifier AMP 1 's transistor Tr 3 does not turn on. In other words, the output of Darlington current amplifier AMP 1 is 0. said signal
When HVT 1 is "L", the transistor Tr 3 is turned on and a voltage approximately equal to the output voltage of the operational amplifier Q 5 is output to the primary high voltage transformer TC 1 . The oscillator Q 1 in the primary transformer TC 1 turns on transistors Tr 1 and Tr 2 alternately. Transformer T 1 is 2 depending on the turns ratio
The voltage is boosted to the next side, and the secondary output is rectified by the diode D 1 and applied to the primary charger 22 . The primary corona current I P flowing through the primary charger is detected by the resistor R 11 ,
The primary corona current I P is input to the non-inverting input terminal of the operational amplifier Q 5 via the resistor VR 1 and is controlled so that the voltage V FP and the primary correction voltage V P match as described above. Similarly, the secondary charger correction voltage V AC is input to the inverting input terminal of the operational amplifier Q 7 via the resistor R 13 . The difference voltage between the voltage V FAC applied to the non-inverting input terminal of the operational amplifier Q 7 from the resistor VR 2 and the correction voltage V P is multiplied by -R 9 /R 10 and output from the operational amplifier Q 7 . When the secondary charger drive signal HVT 2 is "H", the output of the operational amplifier Q 7 does not turn on the transistor Tr 5 of the Darlington current amplifier AMP 2 . In other words, the output of Darlington current amplifier AMP 2 is 0. When the signal HVT 2 is "L", the transistor Tr 5 is turned on and a voltage substantially the same as the output voltage of the operational amplifier Q 7 is output to the secondary high voltage transformer TC 2 .
The oscillator Q 2 in the secondary high voltage transformer TC 2 turns on transistors Tr 7 and Tr 8 alternately. The transformer T2 boosts the voltage to the secondary side according to the turns ratio, rectifies the secondary side output with the diode D12 , and outputs it as a DC component output. Also, the AC voltage generator ACS consists of AC oscillator Q 3 and transformer T 2
This outputs an AC high voltage, superimposes it on the DC output, and outputs it to the secondary charger 23. The secondary corona current I AC flowing through the secondary charger is detected by the resistor R 12 . The detection output is amplified by an amplifier AMP 3 , and then a smoothing circuit REC detects only the difference between positive and negative components, and the detected output is amplified by a DC amplifier AMP 4 . Further, the detection output is amplified by the amplifier AMP 4 and then input to the non-inverting input terminal of the operational amplifier Q 7 via the resistor VR 2 , and as described above, the voltage V FAC and the primary correction voltage V P match. The secondary corona current I AC is controlled as follows.

第6図に示したのは本発明の他の実施例であ
る。図において101は固定出力のDC−ACイン
バータ、102は可変出力のDC−ACインバー
タ、T2′,T3′はトランス、11′は2層構成の感
光ドラム、11′aは光導電層、11′bは導電
層、C11は電流差検出用コンデンサ、EXPは
不図示の原稿からの反射光、50′は表面電位
計、DEVは現像ユニツト、OP11,OP12はオペア
ンプ、D31は整流用ダイオードである。
Another embodiment of the invention is shown in FIG. In the figure, 101 is a fixed output DC-AC inverter, 102 is a variable output DC-AC inverter, T2 ' and T3 ' are transformers, 11' is a two-layer photosensitive drum, 11'a is a photoconductive layer, 11'b is a conductive layer, C11 is a capacitor for detecting a current difference, EXP is reflected light from a document (not shown), 50' is a surface electrometer, DEV is a developing unit, OP 11 and OP 12 are operational amplifiers, and D31 is for rectification. It is a diode.

反射光EXPは帯電器23′で形成された光導電
層11′a上の電荷を除いて前記光導電層11′a
上に原稿画像に対応した潜像を形成する。前記潜
像は現像ユニツトDEVで現像され不図示の転写
ユニツトにより転写紙に転写される。表面電位計
50′は前記ドラム11′上の表面電位を測定して
オペアンプOP12の一方の入力端子に入力され
る。前記オペアンプOP12のもう一方の入力端子
には基準表面電位に対応した基準電圧が入力され
ており、オペアンプOP12は前記基準電圧と表面
電位検出出力電圧の差分を増幅して出力する。オ
ペアンプOP12の出力はオペアンプOP11の一方の
入力端子に出力されており、オペアンプOP11
もう一方の入力端子には後述の電流差検出用コン
デンサからの出力が入力されている。
The reflected light EXP removes the charge on the photoconductive layer 11'a formed by the charger 23', and the photoconductive layer 11'a is
A latent image corresponding to the original image is formed thereon. The latent image is developed by a developing unit DEV and transferred onto transfer paper by a transfer unit (not shown). A surface potential meter 50' measures the surface potential on the drum 11' and inputs the measured value to one input terminal of the operational amplifier OP12 . A reference voltage corresponding to the reference surface potential is input to the other input terminal of the operational amplifier OP12 , and the operational amplifier OP12 amplifies and outputs the difference between the reference voltage and the surface potential detection output voltage. The output of the operational amplifier OP 12 is output to one input terminal of the operational amplifier OP 11 , and the output from the current difference detection capacitor, which will be described later, is input to the other input terminal of the operational amplifier OP 11 .

オペアンプOP11はオペアンプOP12の出力と電
流差検出用コンデンサC11の出力とが一致する
ように出力する。つまりオペアンプOP11はオペ
アンプOP12の出力に応じて前記電流差が変化す
るように動作する。
The operational amplifier OP11 outputs an output so that the output of the operational amplifier OP12 and the output of the current difference detection capacitor C11 match. In other words, the operational amplifier OP11 operates so that the current difference changes according to the output of the operational amplifier OP12 .

オペアンプOP11の出力は可変DC−ACインバ
ータ102の出力を変化させ帯電器23′に印加
する交流電圧の直流シフト分をトランスT2′より
出力する。
The output of the operational amplifier OP11 changes the output of the variable DC-AC inverter 102, and a DC shifted portion of the AC voltage applied to the charger 23' is outputted from the transformer T2 '.

固定DC−AC−インバータ101は100Hz程度
の交流電圧をトランスT3′より出力する。
The fixed DC-AC-inverter 101 outputs an alternating current voltage of about 100 Hz from the transformer T 3 '.

トランスT2′及びT3′の重畳された電圧が帯電器
23′に印加される。コンデンサC11には帯電
器23′を流れる電流の正の成分と負の成分の差
の電流に対応する電荷が蓄積され、蓄積電荷に対
応した電圧がオペアンプOP11にフイードバツク
される。
The superimposed voltages of transformers T 2 ' and T 3 ' are applied to charger 23'. Charge corresponding to the difference between the positive and negative components of the current flowing through the charger 23' is accumulated in the capacitor C11, and a voltage corresponding to the accumulated charge is fed back to the operational amplifier OP11 .

オペアンプOP11はオペアンプOP12の出力に対
して前記コンデンサC11の出力が同じになるよ
うに前記DC−ACインバータ102を制御するも
のである。従つて表面電位計によりセツトした基
準値に対応する所望のコロナ電流を維持すること
ができる。
The operational amplifier OP11 controls the DC-AC inverter 102 so that the output of the capacitor C11 becomes the same as the output of the operational amplifier OP12 . It is therefore possible to maintain a desired corona current corresponding to the reference value set by the surface electrometer.

以上の如く本発明は表面電位の検出出力とコロ
ナ電流の検出出力とによりコロナ電流値を一定に
制御している為、一時的な環境変化による帯電器
負荷変動或はコロナ放電装置の電源変動を補正し
コロナ電流を一定に保つことができると共にドラ
ム劣化等の経時的変化によるコロナ電流に対する
表面電位の変動の補正も可能である。したがつて
表面電位の測定を毎回する必要がなく数十枚或は
数百枚に一回のオーダーで行なえばよい為、表面
電位の測定に伴う画像形成処理スピードの低下を
防止することができる。
As described above, since the present invention controls the corona current value to be constant using the surface potential detection output and the corona current detection output, it is possible to prevent charger load fluctuations or corona discharge device power supply fluctuations due to temporary environmental changes. The corona current can be kept constant through correction, and it is also possible to correct variations in surface potential with respect to the corona current due to changes over time such as drum deterioration. Therefore, it is not necessary to measure the surface potential every time, and it is only necessary to measure it once every several dozen or hundreds of sheets, so it is possible to prevent a decrease in the image forming processing speed due to the measurement of the surface potential. .

又、本実施例は転写方式の電子写真装置に基づ
き説明したが感光紙を用いた電子写真装置におい
ても感光紙の表面電位を測定することにより本発
明を適用できる。
Further, although this embodiment has been explained based on a transfer type electrophotographic apparatus, the present invention can also be applied to an electrophotographic apparatus using photosensitive paper by measuring the surface potential of the photosensitive paper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用しうる複写装置の断面
図、第2図はコロナ放電装置の制御ブロツク図、
第3図は公知の定電流回路図、第4図は高圧電源
回路のブロツク図、第5図は第4図のブロツク図
の実際の回路図、第6図は他の実施例の制御ブロ
ツク図である。 図において、11は感光ドラム、22は1次帯
電器、23は2次帯電器、50は表面電位計、
OP1,OP,OP2,Q5,Q7はオペアンプ、R11は1
次コロナ電流検出抵抗、R12は2次コロナ電流検
出抵抗、TC1は1次帯電器高圧トランス、TC2
2次帯電器高圧トランスを各々示す。
FIG. 1 is a sectional view of a copying machine to which the present invention can be applied, FIG. 2 is a control block diagram of a corona discharge device,
Fig. 3 is a known constant current circuit diagram, Fig. 4 is a block diagram of a high voltage power supply circuit, Fig. 5 is an actual circuit diagram of the block diagram in Fig. 4, and Fig. 6 is a control block diagram of another embodiment. It is. In the figure, 11 is a photosensitive drum, 22 is a primary charger, 23 is a secondary charger, 50 is a surface electrometer,
OP 1 , OP, OP 2 , Q 5 , Q 7 are operational amplifiers, R 11 is 1
R12 is a secondary corona current detection resistor, TC1 is a primary charger high-voltage transformer, and TC2 is a secondary charger high-voltage transformer.

Claims (1)

【特許請求の範囲】 1 感光体上に画像に応じた静電潜像を形成し、
現像した後、記録材に転写する画像形成装置にお
いて、 出力を可変できる帯電用コロナ放電手段と、 前記コロナ放電手段に電流供給する電源手段
と、 前回転中に前記感光体上の表面電位を検出する
検出手段と、 前回転時の前記感光体の表面電位を所定電位に
制御するべく前記検出手段の検出電位に応じて前
記コロナ放電手段に供給する電流を制御する電位
制御手段、 前記電位制御の終了後、前記電位制御手段によ
り設定された電流を一定に維持するべく前記コロ
ナ放電手段に供給される電流を検出し、その検出
出力に応じて前記電源手段を制御する電流制御手
段と、 を有することを特徴とする画像形成装置。
[Claims] 1. Forming an electrostatic latent image according to the image on a photoreceptor,
An image forming apparatus that transfers onto a recording material after development includes a charging corona discharge means whose output can be varied, a power supply means for supplying current to the corona discharge means, and a surface potential on the photoreceptor detected during pre-rotation. a detection means for controlling the current supplied to the corona discharge means in accordance with a detection potential of the detection means in order to control the surface potential of the photoreceptor during pre-rotation to a predetermined potential; After the termination, current control means detects the current supplied to the corona discharge means in order to keep the current set by the potential control means constant, and controls the power supply means according to the detected output. An image forming apparatus characterized by:
JP10303678A 1978-08-24 1978-08-24 Image former Granted JPS5529856A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10303678A JPS5529856A (en) 1978-08-24 1978-08-24 Image former
GB7929344A GB2039101B (en) 1978-08-24 1979-08-23 Control of electrostatic recording apparatus
DE19792934337 DE2934337A1 (en) 1978-08-24 1979-08-24 ELECTROSTATIC RECORDING DEVICE WITH A SURFACE POTENTIOMETER
GB08228797A GB2108719B (en) 1978-08-24 1982-10-08 Image formation apparatus
US07/675,053 US5164771A (en) 1978-08-24 1991-03-25 Image forming apparatus which adjusts illumination levels independently for test samples and for originals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10303678A JPS5529856A (en) 1978-08-24 1978-08-24 Image former

Publications (2)

Publication Number Publication Date
JPS5529856A JPS5529856A (en) 1980-03-03
JPS6211345B2 true JPS6211345B2 (en) 1987-03-12

Family

ID=14343421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10303678A Granted JPS5529856A (en) 1978-08-24 1978-08-24 Image former

Country Status (1)

Country Link
JP (1) JPS5529856A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477678A (en) * 1990-07-20 1992-03-11 Hitachi Koki Co Ltd Photosensitive surface potential measuring device and electrostatic recorder using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106336A (en) * 1973-01-18 1974-10-08
JPS5255537A (en) * 1975-10-31 1977-05-07 Sumitomo Electric Ind Ltd Chargning device
JPS5317339A (en) * 1976-07-30 1978-02-17 Canon Inc Method and device for stabilizing surface potential
JPS5317732A (en) * 1976-07-31 1978-02-18 Canon Inc Method and device for charging by corona discharge
JPS5355031A (en) * 1976-10-27 1978-05-19 Xerox Corp Method of and device for controlling electric charge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106336A (en) * 1973-01-18 1974-10-08
JPS5255537A (en) * 1975-10-31 1977-05-07 Sumitomo Electric Ind Ltd Chargning device
JPS5317339A (en) * 1976-07-30 1978-02-17 Canon Inc Method and device for stabilizing surface potential
JPS5317732A (en) * 1976-07-31 1978-02-18 Canon Inc Method and device for charging by corona discharge
JPS5355031A (en) * 1976-10-27 1978-05-19 Xerox Corp Method of and device for controlling electric charge

Also Published As

Publication number Publication date
JPS5529856A (en) 1980-03-03

Similar Documents

Publication Publication Date Title
JPH0127422B2 (en)
JPH0215070B2 (en)
JPS59136728A (en) Image forming device
JPS59149377A (en) Separating system of transfer material
JPS6211345B2 (en)
JPS59164582A (en) Correcting method of sensitivity of photosensitive body
JPH09101656A (en) Controlling method for image forming device
JPH0255783B2 (en)
JPH0480772A (en) Image forming device using photosensitive body
KR100477669B1 (en) Electrophotographic printer
JPS6114671A (en) Electrophotographic copying device
JPH0434573A (en) Image forming device
JPS6321184B2 (en)
JPS5829511B2 (en) automatic bias device
JPH0365975A (en) Electrophotographic recorder
JPS5981662A (en) Picture forming device
JP2875669B2 (en) Image forming device
JPH1138702A (en) Image forming device
JPH09101658A (en) Image forming device
JP2561857Y2 (en) Image forming device
JPH0362269B2 (en)
JPS61232475A (en) Automatic image density controller for copying machine
JPH075734A (en) Image forming device
JPS60218671A (en) Electrophotographic copying device
JPS60131574A (en) Control method of image density