JPS62113126A - Optical information processor - Google Patents

Optical information processor

Info

Publication number
JPS62113126A
JPS62113126A JP25272685A JP25272685A JPS62113126A JP S62113126 A JPS62113126 A JP S62113126A JP 25272685 A JP25272685 A JP 25272685A JP 25272685 A JP25272685 A JP 25272685A JP S62113126 A JPS62113126 A JP S62113126A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
wavelength
lens
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25272685A
Other languages
Japanese (ja)
Inventor
Shigeru Nakamura
滋 中村
Yoshito Tsunoda
義人 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25272685A priority Critical patent/JPS62113126A/en
Priority to US06/920,423 priority patent/US4815058A/en
Publication of JPS62113126A publication Critical patent/JPS62113126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To permit high-speed information recording of multiple gradations and multiple values with simple constitution and to permit halftone copying and increase in the capacity of an optical disk by providing a semiconductor laser, wavelength changing means and imaging optical system and driving the wavelength changing means by a multiple gradation signal. CONSTITUTION:Laser light emitted from the semiconductor laser 1 is made to parallel luminous fluxes by a collimate lens 2 and the fluxes are deflected by a rotary polygon mirror 4 rotating in the direction of an arrow 3 so as to image a spot 7 on the surface of a photosensitive drum 6 by an imaging lens 5. A power source 8 changes the current to be passed to the semiconductor laser 1 by the multiple-gradation recorded information to change the wavelength of the semiconductor laser 1. The laser light emitted from the semiconductor laser 41 is made to the parallel luminous fluxes by the collimate lens 2 and the spot 45 is imaged on the surface of the disk 44 by a stopping down lens 43 in the case of using this device for an optical disk device. The light reflected from the disk 44 is conducted by a lambda/4 plate 46 and a polarizing beam splitter 47 to a known out of focus detecting system 48.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学的情報処理装置に係り、特に半導体レーザ
を用いたレーザビームプリンタや光デイスク装置、光カ
ード装置などに好適な記録用光学系に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical information processing device, and in particular to a recording optical system suitable for a laser beam printer using a semiconductor laser, an optical disk device, an optical card device, etc. Regarding.

〔従来の技術〕[Conventional technology]

従来のレーザビームプリンタの記録用光学系は。 The recording optical system of conventional laser beam printers.

電気通信学会側「実用レーザ技術」 (昭和58年10
月20日)の第49頁から第54頁に記載のように、H
e−Neなどのガスレーザと光強度変調器を回転多面鏡
とFeレンズと感光ドラムから成り、レーザ光をFeレ
ンズで感光ドラム面上にスポットとして結像させ、回転
多面鏡によって感光ドラム面上をスポットが走査しつつ
、光強度変調器によってスポットの光強度を変調して感
光ドラム面上に一定の直径のドツトを記録していた。
Institute of Electrical Communication Engineers side “Practical laser technology” (October 1982)
As described on pages 49 to 54 of
It consists of a gas laser such as e-Ne and a light intensity modulator, a rotating polygon mirror, an Fe lens, and a photosensitive drum. While the spot was scanning, the light intensity of the spot was modulated by a light intensity modulator to record a dot of a constant diameter on the surface of the photosensitive drum.

又、光源に半導体レーザを用いたレーザビームプリンタ
の記録光学系では、光強度変調器のかわりに半導体レー
ザの放射光強度を直接変調して一定の直径のドツトを記
録していた。
Furthermore, in the recording optical system of a laser beam printer using a semiconductor laser as a light source, dots of a constant diameter are recorded by directly modulating the intensity of the emitted light from the semiconductor laser instead of using a light intensity modulator.

しかし、従来のレーザプリンタは、主に文字や線などの
黒色部分と白色部分が明瞭に区別できる情報をあつかつ
ていたので、写真などのいわゆるハーフトーン情報の記
録については配慮されていなかった。
However, conventional laser printers primarily process information such as characters and lines in which black areas and white areas can be clearly distinguished, so they do not take into consideration the recording of so-called halftone information such as photographs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のレーザビームプリンタの記録用光学系では、
黒色から白色へと連続的に変化する多階調記録について
配慮がされておらず、写真などの複写物に過度のコント
ラストを生じさせてしまうという問題があった。
In the recording optical system of the conventional laser beam printer mentioned above,
No consideration was given to multi-gradation recording in which the color changes continuously from black to white, and there was a problem in that excessive contrast was produced in copies of photographs and the like.

本発明の目的は、N単な構成で、黒色から白色へと連続
的に変化する多階調記録を実現する光学的情報処理装置
を提供することにある。
An object of the present invention is to provide an optical information processing device that realizes multi-gradation recording that continuously changes from black to white with an N-unit configuration.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、半導体レーザと、半導体レーザの駆動電流
を変えてレーザ発光出力を変化させるとともにレーザ波
長も変化させる波長変化手段と、半導体レーザの出射光
を平行光束にするコリメートレンズとその平行光を感光
ドラム面上にスポットとして結像させる結像レンズ(F
eレンズ)などから成りかつこれらのレンズ系が全体と
して色収差を有する結像光学手段とからなり、多階調情
報信号によって波長変化手段を駆動することにより、達
成される。
The above purpose is to provide a semiconductor laser, a wavelength changing means that changes the driving current of the semiconductor laser to change the laser emission output and also changes the laser wavelength, a collimating lens that converts the emitted light of the semiconductor laser into a parallel beam, and a collimator lens that converts the emitted light of the semiconductor laser into a parallel beam. An imaging lens (F
This is achieved by driving the wavelength changing means with a multi-gradation information signal, and an imaging optical means, such as an optical lens (e-lens), in which these lens systems have chromatic aberration as a whole.

〔作用〕[Effect]

波長変化手段は、多階調情報信号によって半導体レーザ
の波長を変化させる。結像光学手段は、色収差によって
レーザの異なる波長に対して光軸方向の焦点位置を変化
させる。よって多階調情報信号に応じて、レーザ波長が
変化し感光ドラム面に絞り込まれる光束の焦点位置が光
軸方向に変化し、感光ドラム面上のスポットの直径が変
化し、感光ドラム面に記録されるドツトの直径も変化す
る。それによって、黒色部分と白色部分との面積比率が
変化するので、多階調記録が実現される。
The wavelength changing means changes the wavelength of the semiconductor laser using the multi-gradation information signal. The imaging optical means changes the focal position in the optical axis direction for different wavelengths of the laser due to chromatic aberration. Therefore, according to the multi-gradation information signal, the laser wavelength changes, the focal position of the light beam focused on the photosensitive drum surface changes in the optical axis direction, the diameter of the spot on the photosensitive drum surface changes, and recording is performed on the photosensitive drum surface. The diameter of the dots produced also changes. As a result, the area ratio between the black part and the white part changes, so multi-gradation recording is realized.

また、多階調情報信号によって感光ドラム面上のスポッ
ト径が大きくなるとレーザ出力も増し、スポットのエネ
ルギ面密度は感光ドラムの感光に必要な一定値以上に保
たれるので、多階調情報に対応した直径のドツトが記録
される。
In addition, as the spot diameter on the photosensitive drum surface increases due to the multi-tone information signal, the laser output also increases, and the energy surface density of the spot is kept above a certain value required for exposure of the photosensitive drum. A dot of corresponding diameter is recorded.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、本発明をレーザビームプリンタに適用した場
合の一実施例を示す構成IJである。′f−導体レーザ
1から出射されたレーザ光をコリター1〜レンズ2で平
行光束にし、矢印3の方向に回転する回転多面fi4で
偏向させ、Feレンズと呼ばれる結像レンズ5で感光ド
ラム6の面上にスポット7を結像させる。電源8は、半
導体レーザ1に流す電流を多階調記録情報によって変化
させ、それによって半導体レーザ1の波長を変化させる
ものである。
FIG. 1 shows a configuration IJ showing an embodiment in which the present invention is applied to a laser beam printer. 'The laser beam emitted from the f-conductor laser 1 is made into a parallel beam by the collator 1 to the lens 2, deflected by the rotating polygon fi 4 rotating in the direction of the arrow 3, and the laser beam emitted from the photosensitive drum 6 by the imaging lens 5 called an Fe lens. A spot 7 is imaged onto the surface. The power source 8 changes the current flowing through the semiconductor laser 1 according to the multi-gradation recording information, thereby changing the wavelength of the semiconductor laser 1.

第2図は、半導体レーザ1に流す電流とレーザ波長の関
係を実allで示した図で、横!11112は電流値I
を、縦軸13はレーザ波長λを示す。例えば、半導体レ
ーザ1は、点111で示す電流値Ith=50mAでレ
ーザ発光を始め、点15で示す電流値It=68mAで
レーザ発光出力PI =6mWになり、点16で示す波
長λs= 780nmになる。点17で示す電流値Iz
=152mAでは、レーザ発光出力Pz = 34 m
Wになり、点18で示す波長λ2 =782.8  n
mになる。さらに点19で示す電流値Is =194m
Aでは、レーザ発光出力Ps=48mWになり、点20
で示す波長784.2  nmになる。半導体レーザは
、レーザ両端の共振器面間隔をL、屈折率をn、Nを整
数として2 n L=Nλをみたす波長λで発振する。
FIG. 2 is an actual diagram showing the relationship between the current flowing through the semiconductor laser 1 and the laser wavelength, and the horizontal! 11112 is the current value I
, the vertical axis 13 indicates the laser wavelength λ. For example, the semiconductor laser 1 starts emitting laser light at a current value Ith = 50 mA shown at a point 111, the laser emission output PI becomes 6 mW at a current value It = 68 mA shown at a point 15, and the wavelength λs = 780 nm shown at a point 16. Become. Current value Iz indicated by point 17
= 152 mA, laser emission output Pz = 34 m
W, and the wavelength λ2 shown at point 18 = 782.8 n
It becomes m. Furthermore, the current value Is shown at point 19 = 194m
At A, the laser emission output Ps = 48 mW, and the point 20
The wavelength is 784.2 nm. A semiconductor laser oscillates at a wavelength λ that satisfies 2 n L=Nλ, where L is the resonator surface spacing at both ends of the laser, n is the refractive index, and N is an integer.

電流を増加すると活成層の温度が上昇して屈折率nや共
振器長しが変化し、第2図の実線部分21で示すように
連続的に変化する。さらに電流を増加すると、NがN−
1である次のモードで発振し、実線部分22で示すよう
に不連続な波長変化を示す。この不連続な波長変化分は
λ2/2いては、後で述べるように0.3 n m 程
度の不連続な波長変化は問題にならないので1点15で
示す電流値Ix:68mAを基準にして、電流工までの
電流変化ΔI=(I−It)に対する波長変化Δλ=(
λ−λl)の割合いをαで表わすと、α=Δλ/ΔI 
= 0 、0333 n m / m Aである。
When the current is increased, the temperature of the active layer increases, and the refractive index n and the cavity length change continuously as shown by the solid line portion 21 in FIG. When the current is further increased, N becomes N-
It oscillates in the next mode, which is 1, and shows a discontinuous wavelength change as shown by the solid line portion 22. If this discontinuous wavelength change is λ2/2, as will be described later, a discontinuous wavelength change of about 0.3 nm will not be a problem. , the wavelength change Δλ=(
If the ratio of λ−λl) is expressed as α, then α=Δλ/ΔI
= 0, 0333 nm/mA.

一方、結像レンズ5とコリメートレンズ2は色収差を有
する。結像レンズ5の焦点距離をfo。
On the other hand, the imaging lens 5 and the collimating lens 2 have chromatic aberration. The focal length of the imaging lens 5 is fo.

コリメートレンズの焦点距離をfz とすると、これら
のレンズの色収差量ΔfoとΔf1はΔf。
If the focal length of the collimating lens is fz, the amounts of chromatic aberration Δfo and Δf1 of these lenses are Δf.

=fo/ν、Δfs=fs/νで見積ることができる。It can be estimated by =fo/ν and Δfs=fs/ν.

ここでνはレンズ材質で決まるアツベ数で、F線とD線
の波長差的170nmに対しておおよそシ430〜60
の光学ガラスが良く使われている。2つのレンズとも賃
=45の材質を用いると波長変化Δλnmに対して色収
差量は、Δfo=fo ・Δλ/V′、Δft=fz 
 ・Δλ/ヤ′、(ただしり’ =45X170)であ
る。
Here, ν is the Atsube number determined by the lens material, and is approximately 430 to 60
optical glass is often used. If both lenses are made of materials with a thickness of 45, the amount of chromatic aberration for the wavelength change Δλnm is Δfo=fo ・Δλ/V', Δft=fz
・Δλ/Y', (However' = 45X170).

第1図の電波8により電流をIz=68mA流して波長
がλ1 =780nmの場合に、レーザ光の最も良く絞
り込まれる焦点が感光ドラム面にあってスポット7を結
像したとする。多階調記録情報により電流を変化させ■
にすると、波長がΔλ=α(I  It)だけ変化し、
レーザ光の最も良く絞り込まれる焦点9は光軸方向にΔ
Z=Δf。
Assume that when a current Iz = 68 mA is caused by the radio wave 8 in FIG. 1 to flow and the wavelength is λ1 = 780 nm, the best focus of the laser beam is on the photosensitive drum surface and a spot 7 is formed. Change the current using multi-gradation recording information■
, the wavelength changes by Δλ=α(I It),
The focal point 9 where the laser beam is best narrowed down is Δ in the optical axis direction.
Z=Δf.

+Δfl(fo/ft ) 2だけずれる。ここで、右
辺第1項は結像レンズ5の色収差によるずれ、第2項は
コリメートレンズ2の色収差がJ6 aレンズ5とコリ
ツー1−レンズ2の縦倍重分だけ拡大されたずれである
。よって感光ドラム6面上には大きなスポット10が結
像される。コリメートレンズ2で平行光束になったレー
ザ光束の直径をφとすると、スポット10の直径Sは、
S=φΔZ/foで表わされ、S=(φ/ν′)・ (
1+f。
+Δfl(fo/ft) deviates by 2. Here, the first term on the right side is the deviation due to the chromatic aberration of the imaging lens 5, and the second term is the deviation resulting from the chromatic aberration of the collimating lens 2 being magnified by the vertical multiplication of the J6a lens 5 and the Cori2 lens 2. Therefore, a large spot 10 is imaged on the surface of the photosensitive drum 6. If the diameter of the laser beam that is parallelized by the collimating lens 2 is φ, the diameter S of the spot 10 is
It is expressed as S=φΔZ/fo, and S=(φ/ν′)・(
1+f.

If1)・Δλとなる。よって、同じΔλに対してfo
>fzの場合の方がSが大きくなり、多くの多階調記録
が可能になる。Δλ=α(I−Ia)を用いて、S=(
αφ/ν′)・ (1+f/f1)・ (I  Io)
(1式)になる。
If1)・Δλ. Therefore, for the same Δλ, fo
> fz, S becomes larger and more multi-tone recording becomes possible. Using Δλ=α(I-Ia), S=(
αφ/ν′)・(1+f/f1)・(I Io)
(1 formula)

第3図は、横軸12を電流Iとし、縦軸23をスポット
径Sとして、1式を実1iA24と破!@25からなる
直線で示した。1式ではI = I oでS=Oになる
が、最もよく絞り込まれた焦点近傍のスポット径はS 
= 2 f o λ/φで表わされるので、破線26で
示すS = 2 f o λ/φに接した曲線部27の
ようになる。fo =500wa、ft =50閣、φ
=20m、a=0.0333  nm/mAの場合、電
流が点15で示すIf =68mAでλ=780nmと
なり、点28で示すS = 39 p mである。電流
が点17で示すIz=152mAになると波長はΔλ=
2.8  nm変化して点29で示す5=80.4  
μmとなり、スポット径は約2倍になる。この時、レー
ザ発光出力は前述のようにPz =34mWであるから
、11=68mAの時のPz=6mWに比べて約5.7
倍である。よってスポット径が約2倍になってもスポッ
トエネルギは5.7倍あるため、2倍の直径のドツトを
ドラム上に感光させることが充分できる。電流を点19
で示すIa =194mAにすると波長はΔλ=4.2
nm変化して点30で示す5=120.7μmとなり、
スポット径は約3倍になる。この時レーザ発光出力は前
述のようにPa=48mWであるからIz=68mAの
時のP1=6mWに比べて8倍である。よってスポット
径が約3倍になり、スポットエネルギは8倍であるため
、約3倍の直径のドツトをドラム上に感光させることが
できる。
In FIG. 3, the horizontal axis 12 is the current I, the vertical axis 23 is the spot diameter S, and 1 set is the actual 1iA24! It is shown by a straight line consisting of @25. In formula 1, I = I o and S = O, but the spot diameter near the most narrowed-down focus is S
= 2 fo λ/φ, so it becomes a curved line 27 that is in contact with S = 2 fo λ/φ, which is indicated by a broken line 26. fo = 500wa, ft = 50k, φ
= 20 m, a = 0.0333 nm/mA, the current If = 68 mA, shown at point 15, gives λ = 780 nm, and S = 39 p m, shown at point 28. When the current reaches Iz=152mA shown at point 17, the wavelength becomes Δλ=
5 = 80.4 shown by point 29 with a change of 2.8 nm
μm, and the spot diameter is approximately doubled. At this time, since the laser emission output is Pz = 34 mW as mentioned above, it is approximately 5.7 mW compared to Pz = 6 mW when 11 = 68 mA.
It's double. Therefore, even if the spot diameter is approximately doubled, the spot energy is 5.7 times greater, so it is sufficient to expose a dot with twice the diameter on the drum. Current point 19
If Ia = 194mA, the wavelength is Δλ = 4.2
It changes by nm and becomes 5=120.7 μm, which is indicated by point 30,
The spot diameter becomes approximately three times as large. At this time, since the laser emission output is Pa=48 mW as described above, it is eight times as much as P1=6 mW when Iz=68 mA. Therefore, the spot diameter is approximately tripled and the spot energy is eight times as large, so that a dot approximately three times the diameter can be exposed on the drum.

ここで、第2図で説明した不連続な波長変化の影響につ
いて述べると、例えば、電流をIz=152mAとした
時、波長変化がΔλ=2.8nmでなく0.3  nm
多い3.1  nm生じたとすると、スポット径は80
.4μmでなく 89.2μmになるが、スポット径の
誤差は10%以下であるから問題にはならない、また、
レーザ波長の変化はマイクロ秒の速い応答性があり、充
分高速な多階調記録が可能になる。
Here, to discuss the influence of the discontinuous wavelength change explained in Fig. 2, for example, when the current is Iz = 152 mA, the wavelength change is not Δλ = 2.8 nm but 0.3 nm.
If a large amount of 3.1 nm was generated, the spot diameter would be 80 nm.
.. Although it is 89.2 μm instead of 4 μm, the error in the spot diameter is less than 10%, so it is not a problem.
Changes in laser wavelength have a quick response of microseconds, allowing sufficiently high-speed multi-gradation recording.

本実施例によれば、簡単な構成で直径39μmから12
0μm程度までのドツトを感光ドラム面上に高速に感光
することができ、多階調情報記録を実現できる。
According to this embodiment, the diameter is 39 μm to 12 μm with a simple configuration.
Dots down to about 0 μm can be exposed on the photosensitive drum surface at high speed, and multi-gradation information recording can be realized.

第4図は、本発明を光デイスク装置に用いた場合の一実
施例を示す構成図である。半導体し−ザ41から出射し
たレーザ光をコリメートレンズ42で平行光束にし、絞
り込みレンズ4:3でディスク44面上にスポット45
を結像する。ディスク44の反射光は、λ/4板46と
偏光ビームスプリッタ47で、公知の焦点ズレ検出系4
8に導かれる。焦点ズレ検出系48は、本発明とは関係
ヒ ないので説明を消略するが、例えば凸レンズを円柱レン
ズと4分割光検出器から構成され、非点収差によるビー
ム形状の変化を用いた焦点ズレ検出系などを用いても良
い。焦点ズレ検出系48による焦点ズレ検出信号はサン
プリング回路49を通って絞り込み1ノンズ43のアク
チュエータ50を駆動し、ディスク44のバタッキにス
ポット45を追従させる。半導体レーザ41は、例えば
、電流50 m Aからレーザ発光を始め、60mAで
発光出力4mW波長830nmになり、88mAで出力
15 m W波長830.9  nm、200 m A
で出力60mW波長834.7  nmになる。一方。
FIG. 4 is a configuration diagram showing an embodiment in which the present invention is applied to an optical disk device. The laser beam emitted from the semiconductor laser 41 is made into a parallel beam by a collimating lens 42, and a spot 45 is formed on the surface of the disk 44 by a diaphragm lens 4:3.
image. The reflected light from the disk 44 is detected by a λ/4 plate 46 and a polarizing beam splitter 47 using a known focal shift detection system 4.
Guided by 8. The focus shift detection system 48 is not related to the present invention, so its explanation will be omitted, but for example, it is composed of a convex lens, a cylindrical lens, and a 4-split photodetector, and detects focus shift using changes in beam shape due to astigmatism. A detection system or the like may also be used. The focus shift detection signal from the focus shift detection system 48 passes through a sampling circuit 49 and drives the actuator 50 of the first stop lens 43 to cause the spot 45 to follow the backlash of the disk 44 . For example, the semiconductor laser 41 starts to emit laser light at a current of 50 mA, and at 60 mA the emission output becomes 4 mW at a wavelength of 830 nm, and at 88 mA the output reaches 15 mW, a wavelength of 830.9 nm, and a wavelength of 200 mA.
The output is 60 mW and the wavelength is 834.7 nm. on the other hand.

コリメートレンズ42の焦点距離はfz=12m、絞り
込みレンズの焦点距離はfo=4.5nnであり、両レ
ンズともにF線とD線の波長差約170nmに対してア
ツベ数がν=45(ν’ =45X170)の材質から
成る。平行光束径はφ=4.5閣である。再生時には、
電源51にて電流60mAを半導体レーザに流して4m
Wで発光させ、この時の波長λ=830 nmの焦点が
ディスク44面上に結像するように焦点ズレ検出系48
の調整を行う、サンプリング回路49は半導体レー4り
11 ザ電流が菅えば80mA以下の場合に焦点ズレ検出信号
をサンプルホールドして、レンズアクチュエータ50に
出力するので、再生時には、常に合焦点状態に保たれる
。レーザ電源51は、多値情報記録信号により1例えば
レーザ電流を88mAと200mAのパルスに変換する
The focal length of the collimating lens 42 is fz = 12 m, the focal length of the diaphragm lens is fo = 4.5 nn, and the Atsube number of both lenses is ν = 45 (ν' =45x170) material. The parallel beam diameter is φ=4.5 mm. When playing,
A current of 60 mA is applied to the semiconductor laser using the power supply 51, and the distance is 4 m.
The focal point of the wavelength λ=830 nm at this time is focused on the surface of the disk 44 using the focal shift detection system 48.
The sampling circuit 49 samples and holds the defocus detection signal when the semiconductor laser current is less than 80 mA, and outputs it to the lens actuator 50, so that the in-focus state is always maintained during playback. It is maintained. A laser power source 51 converts, for example, a laser current into pulses of 88 mA and 200 mA according to a multilevel information recording signal.

第5図の実線52は、第3図と同じく、横軸53に電流
Tをとり、縦軸54をディスク44面上のスポット径S
とした場合の関係を示す。再生時でのレーザ電流は点5
5で示す60mAで、スポット径は1.66μmである
。電流をパルス状に点57で示す88mAにすると、ス
ポット径はほぼ1.66 μmに保たれたままレーザパ
ワーが15mWになるので、1μm程度の穴があく。次
に電流がパルス状に点58で示す200mAになると波
長はΔλ=4.7  nm変化する。スポット径Sは、
S=(φ/ν′)・ (1+fo/fL)・Δλで、φ
=4.5nm、γ’ =45X170、fo =4.5
 nu、f t = 12nm、Δλ=4.7nmとお
い℃、S=3.8  μmとなり、スポット径は約2倍
になる。一方、この時のレーザ発光出力は60mWだか
ら、スポットエネルギは、60mW÷15mW=4倍に
なるためエネルギ面密度が一定に保たれるので2μm程
度の穴をあけることができる。また、サンプリング回路
49は、レーザの電流が80mAを越えると焦点ズレ検
出信号を通さないので、焦点ズレ誤検出を防止できる。
As in FIG. 3, the solid line 52 in FIG. 5 shows the current T on the horizontal axis 53 and the spot diameter S on the disk 44 surface on the vertical axis
The relationship is shown below. The laser current during playback is point 5.
At 60 mA, indicated by 5, the spot diameter is 1.66 μm. When the current is pulsed to 88 mA as indicated by point 57, the laser power becomes 15 mW while the spot diameter is maintained at approximately 1.66 μm, so a hole of about 1 μm is created. Next, when the current pulses to 200 mA as indicated by point 58, the wavelength changes by Δλ=4.7 nm. The spot diameter S is
S=(φ/ν')・(1+fo/fL)・Δλ, and φ
=4.5nm, γ' =45X170, fo =4.5
nu, f t = 12 nm, Δλ = 4.7 nm, and S = 3.8 μm, and the spot diameter is approximately doubled. On the other hand, since the laser emission output at this time is 60 mW, the spot energy is 60 mW÷15 mW=4 times, so the energy surface density is kept constant, and a hole of about 2 μm can be made. Further, since the sampling circuit 49 does not pass the focus shift detection signal when the laser current exceeds 80 mA, erroneous detection of focus shift can be prevented.

従来の’l1iffでは、同一径のスポット例えばスポ
ット径1.66 μmで記録を行っていたので、本実施
例のようにスポット径より大きな2μmの穴をあけるの
は困難であった。
In the conventional 'l1iff, recording was performed using a spot of the same diameter, for example, a spot diameter of 1.66 μm, so it was difficult to make a hole of 2 μm larger than the spot diameter as in this embodiment.

本実施例によれば、部用な構成で、1μm程度の穴と2
μm程度の穴を光デイスク面上に高速にあけることがで
き、光デイスク装置で多値記録を実現することができる
According to this embodiment, the configuration is for partial use, and a hole of about 1 μm and 2
Holes on the order of micrometers can be made at high speed on the surface of an optical disk, and multilevel recording can be realized in an optical disk device.

本発明は、以上述べてきた実施例に限ることなく、例え
ば、ホログラムレンズやグレーティングレンズなども使
用できることは言うまでもない。
It goes without saying that the present invention is not limited to the embodiments described above, and that, for example, a hologram lens or a grating lens can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡単な構成で高速の多階調情報記録又
は多値情報記録ができるので、ハーフトーン複写や光デ
ィスクの大容量化可能の効果がある。
According to the present invention, high-speed multi-gradation information recording or multi-value information recording can be performed with a simple configuration, which has the effect of enabling halftone copying and increasing the capacity of optical discs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明をレーザビームプリンタへ適用した一
実施例を示す構成図、第2図および第3図は第1図の実
施例を説明するための図、第4図は本発明を光デイスク
装置へ適用した一実施例を示す構成図、第5図はその動
作を説明するための図である。
FIG. 1 is a block diagram showing an embodiment in which the present invention is applied to a laser beam printer, FIGS. 2 and 3 are diagrams for explaining the embodiment in FIG. 1, and FIG. FIG. 5 is a block diagram showing one embodiment applied to an optical disk device, and is a diagram for explaining its operation.

Claims (1)

【特許請求の範囲】 1、半導体レーザと、前記半導体レーザからの出射光を
情報記録媒体面上にスポットとして結像させる結像光学
手段とから成る記録用光学系を有し、記録情報により前
記半導体レーザの波長を変化させる波長変化手段を設け
るとともに、前記結像光学手段が異なるレーザ波長に対
して異なる径のスポットを結像することを特徴とする光
学的情報処理装置。 2、前記結像光学手段が少なくとも2個以上の分離され
たレンズ群から成ることを特徴とする特許請求の範囲第
1項に記載の光学的情報処理装置。 3、前記2個以上のレンズ群のうち前記情報記録媒体に
最も近い結像レンズ群の焦点距離が、少なくとも前記結
像レンズ群の前記半導体レーザ側に配置されたレンズ群
の焦点距離よりも長いことを特徴とする特許請求の範囲
第2項記載の光学的情報処理装置。
[Scope of Claims] 1. A recording optical system comprising a semiconductor laser and an imaging optical means for forming an image of the light emitted from the semiconductor laser as a spot on the surface of an information recording medium; What is claimed is: 1. An optical information processing device comprising: wavelength changing means for changing the wavelength of a semiconductor laser; and said imaging optical means images spots of different diameters for different laser wavelengths. 2. The optical information processing apparatus according to claim 1, wherein the image forming optical means comprises at least two separate lens groups. 3. Of the two or more lens groups, the focal length of the imaging lens group closest to the information recording medium is longer than at least the focal length of the lens group disposed on the semiconductor laser side of the imaging lens group. An optical information processing device according to claim 2, characterized in that:
JP25272685A 1985-10-21 1985-11-13 Optical information processor Pending JPS62113126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25272685A JPS62113126A (en) 1985-11-13 1985-11-13 Optical information processor
US06/920,423 US4815058A (en) 1985-10-21 1986-10-20 Optical information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25272685A JPS62113126A (en) 1985-11-13 1985-11-13 Optical information processor

Publications (1)

Publication Number Publication Date
JPS62113126A true JPS62113126A (en) 1987-05-25

Family

ID=17241407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25272685A Pending JPS62113126A (en) 1985-10-21 1985-11-13 Optical information processor

Country Status (1)

Country Link
JP (1) JPS62113126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349394U (en) * 1989-09-20 1991-05-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349394U (en) * 1989-09-20 1991-05-14

Similar Documents

Publication Publication Date Title
US4770507A (en) Prism optics and optical information processing apparatus
US20100103962A1 (en) Light source device, observation device, and processing device
JPS63171439A (en) Optical type data recorder
JP2738713B2 (en) Second harmonic generator
JPH0554184B2 (en)
US4815058A (en) Optical information processing apparatus
JPS63259579A (en) Electronic printer
JPH07225349A (en) Optical system for variable focal position and optical beam scanning device
KR970076528A (en) Objective Lenses for Optical Pickups and Optical Pickups
JP5039529B2 (en) Light source unit, light detection unit, optical head, optical drive device, information processing device, optical scanning device, and image forming device
JPH10188322A (en) Optical head
JPH04501621A (en) holographic laser printer
KR0149036B1 (en) Radiation source for a printer
JPS62113126A (en) Optical information processor
JPH11254741A (en) Laser recorder
JPH04507012A (en) Multi-channel integrated light modulator for laser printers
JP3920014B2 (en) Achromatic beam shaping prism
JP3756358B2 (en) Image recording device
JPH0973056A (en) Optical device formed by using acousto-optical element
JP2000141724A (en) Laser thermal printing system, and method for controlling homogeneity of laser thermal printer spots
JPS6022329Y2 (en) optical scanning device
JPH04235520A (en) Optical scanning device
JP2000218859A (en) Laser recorder
JPS6292144A (en) Optical recording and reproducing device having plural optical spots
JP3641542B2 (en) Image recording device