JPS62112811A - Improving work of soft cohesive ground with heat pipe - Google Patents

Improving work of soft cohesive ground with heat pipe

Info

Publication number
JPS62112811A
JPS62112811A JP25450485A JP25450485A JPS62112811A JP S62112811 A JPS62112811 A JP S62112811A JP 25450485 A JP25450485 A JP 25450485A JP 25450485 A JP25450485 A JP 25450485A JP S62112811 A JPS62112811 A JP S62112811A
Authority
JP
Japan
Prior art keywords
ground
soft
heat pipe
soil
frozen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25450485A
Other languages
Japanese (ja)
Other versions
JPH0573849B2 (en
Inventor
Kimitoshi Riyoukai
公利 了戒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP25450485A priority Critical patent/JPS62112811A/en
Publication of JPS62112811A publication Critical patent/JPS62112811A/en
Publication of JPH0573849B2 publication Critical patent/JPH0573849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To dewater and consolidate soft cohesive ground by means of water absorption and expanding pressure of frost-heaving phenomenon by a method in which a heat pipe packed with a working fluid in its air-tight container is buried under the soft ground, and the ground is frozen by the heat pipe and then thawed. CONSTITUTION:A working fluid, e.g., flon, etc., is packed into an air-tight container 1 to form a heat pipe A. The pipe A is vertically buried in soft cohesive ground 10 by projecting its upper part on the ground's surface. Under the condition, when the upper part of the pipe A is cooled in a cold atmosphere, the cold heat is transmitted to the lower part by the working fluid, and frozen soil F is formed around the pipe A. The frozen soil F is thawed by the atmospheric temperature in the summer season to settle the ground 10. The ground is dewatered and consolidated by water absorption and expanding pressure of the frost-heaving phenomenon, and the ground can thus be improved at low cost.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ヒートパイプによって軟弱粘性土地盤を凍結
させ、該地盤の凍結時に生じる吸水力および凍結膨張圧
力で軟弱粘性土地盤を脱水、圧密さ仕る地盤改良工法に
関するらのである。
Detailed Description of the Invention "Industrial Application Field" The present invention freezes a soft and viscous ground using a heat pipe, and dehydrates and consolidates the soft and viscous ground using the water absorption force and freezing expansion pressure generated when the ground freezes. This article is about the ground improvement method.

「従来の技術」 一般に、軟弱粘性土地盤は、粘性土や育機質を多く含み
、また含水簗乙多い柔らかい土層(軟弱土層)が厚く堆
積していることから、地盤の沈下量が大きく、また地震
等の外力に対して極めて弱いらのである。したがって、
軟弱粘性土地盤を宅地造成してそこに構造物を築造する
にあfこっては、あらかじめ地盤の強度を高め、外力に
対する抵抗力を強める等の対策が必要であり、そのため
地盤の改良がなされなければならない。
"Conventional technology" In general, soft and cohesive soil contains a lot of cohesive soil and nurturing substances, and has a thick layer of soft soil (soft soil layer) with a lot of water content, so the amount of ground subsidence is small. It is large and extremely vulnerable to external forces such as earthquakes. therefore,
In order to create a housing site on a soft and viscous ground and build a structure there, it is necessary to take measures such as increasing the strength of the ground and increasing its resistance to external forces in advance, so the ground must be improved. There must be.

そのような軟弱粘性土地盤を改良ずろ手段としては、従
来、例えばサントトレーン工法とプレロード工法とを併
用した乙のが適用されている。サントトレーン工法は、
圧密時間を短縮する目的で衿X聞t、: fit;セ1
;十巾に2牌のサンドパイル(砂喧)を打設し、これを
排水路として利用するものであり、まfコ、前記プレロ
ード工法は、軟弱地盤上に適当な厚さの盛土を行い、こ
の盛土の重量によって軟弱土層を圧縮することにより締
め固め、土の密度を増大させてその強度を高める、すな
わち圧密さ仕るものである。
Conventionally, as a means for improving such soft and viscous soil, a combination of the Santo Train method and the preload method has been used. The Santo Train method is
Collar x length for the purpose of shortening consolidation time: fit;
; Two sand piles are placed in a ten-width area and used as a drainage channel. In the pre-load construction method, embankment of an appropriate thickness is placed on soft ground. The weight of this embankment compresses the soft soil layer and compacts it, increasing the density of the soil and increasing its strength, that is, consolidation.

「発明が解決しようとする問題点」 しかしながら、前記した軟弱粘性土地盤を改良する工法
では、サンドパイルに使用する良質な砂の人手が困難な
傾向にあり、また地盤の改良効果ら、深度が深くなると
、盛土による応力増加が少なく、しかも軟弱粘性土地盤
上の大量の盛土を長期間載置しておかねばならず、地盤
改良後に撤去する必要があるので、経済性と作業能率が
悪いといっfこ問題点があった。
``Problems to be solved by the invention'' However, in the above-mentioned method of improving soft and viscous soil, it tends to be difficult to obtain high-quality sand for use in sand piles, and the depth The deeper the embankment, the less the stress increase due to the embankment.Moreover, a large amount of embankment on a soft and viscous soil base must be left in place for a long period of time, and it must be removed after ground improvement, resulting in poor economic efficiency and work efficiency. There were a few problems.

本発明は、前記事情に鑑みてなされたもので、サンドパ
イルの打設工程や盛土を施す工程等を省略し得、単純な
工程で、軟弱粘性土地盤を脱水、圧密する効果のあろヒ
ートパイプによる軟弱粘性土地盤の改良工法を提供する
ことを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to omit the process of placing sand piles, embankment, etc., and is a heat pipe that is effective in dewatering and compacting soft and viscous soil with a simple process. The purpose of this study is to provide an improvement method for soft and viscous soil.

「問題点を解決するための手段」 かかる目的を達成するために本発明の工法は、(イ)軟
弱粘性土地盤内に、上部を突出した状態でヒートパイプ
を構成する気密容器を鉛直に埋設する工程と、 (ロ)前記気密容器の上部を寒気により冷却し、気密容
器内の作動流体を凝縮させて、液化した作動流体を重力
により落下させ、この時運ばれた冷熱により気密容器周
囲の軟弱粘性土を凍結させて気密容器の周囲に凍土を形
成する工程と、(ハ)この凍土を解凍さ仕て地盤を沈下
させる工程とを具備したもので、ヒートパイプにより自
然冷熱を地下に貯蔵し、そのとき発生する凍上現象によ
る吸水力と膨張に伴う圧力で地盤を脱水、圧密すること
を特徴とするしのである。
``Means for Solving the Problems'' In order to achieve this objective, the construction method of the present invention consists of (a) vertically burying an airtight container constituting a heat pipe in a soft and viscous ground with its upper part protruding; (b) The upper part of the airtight container is cooled with cold air, the working fluid in the airtight container is condensed, the liquefied working fluid is allowed to fall by gravity, and the cold heat carried at this time causes the surrounding area of the airtight container to This method involves the steps of freezing soft and sticky soil to form frozen soil around an airtight container, and (c) thawing this frozen soil to cause the ground to sink.It uses heat pipes to store natural cold energy underground. It is characterized by dewatering and consolidating the ground using the water absorption force caused by the frost heaving phenomenon that occurs at that time and the pressure caused by expansion.

「作用」 このような本発明の工程において、軟弱粘性土地盤が凍
結すると、アイスレンズと呼ばれる水の層がヒートパイ
プと同心円状1ξ析出する。これは凍結面に水を引きよ
せようとする力(吸水力)が生じろためである。その結
果、そこで水が凍結し膨張するために、凍結膨張圧力が
発生し、これらの圧力(吸水力と凍結膨張圧力)が、地
盤を圧密する行動応力として作用する。そして、アイス
レンズか解凍されると、解凍したアイスレンズ層の間隙
にそって、改良された地盤の自重により地上に脱水され
る。その結果、地盤の支持力が増加するものである。
"Operation" In such a process of the present invention, when the soft and viscous ground freezes, a layer of water called an ice lens is precipitated 1ξ concentrically with the heat pipe. This is because a force (water absorption force) that tries to draw water to the frozen surface is generated. As a result, water freezes and expands there, generating freezing expansion pressure, and these pressures (water absorption force and freezing expansion pressure) act as behavioral stress that consolidates the ground. When the ice lens is thawed, water is dewatered onto the ground by the weight of the improved soil along the gaps between the thawed ice lens layers. As a result, the bearing capacity of the ground increases.

「実施例」 以下、本発明の一実施例を図面にしたがって説明する。"Example" An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の工法に使用されるヒートパイプの一
例を示す乙ので、このヒートパイプAは、十分脱気され
fコ長寸の円筒状気密容器I内に作動流体Gを封入し、
その流体Gの相変化に伴って熱移動か生じるように構成
した乙ので、軟弱粘性土地盤lO内に埋設されてこれを
凍結させるようになっている。そして、気密容器lの上
部外周には受放参入111/7′17ノ′ノq、+、<
2斗六メ17′いノζ−このヒートパイプAの代表的構
成材料と使用温度を第1表に示す。
FIG. 1 shows an example of a heat pipe used in the construction method of the present invention. This heat pipe A is made by enclosing a working fluid G in a cylindrical airtight container I that is sufficiently deaerated and has a length of f. ,
Since it is configured so that heat transfer occurs with the phase change of the fluid G, it is buried in a soft and viscous ground lO to freeze it. Then, on the upper outer periphery of the airtight container l, there is a receiving/receiving entry 111/7'17'noq, +, <
Table 1 shows typical constituent materials and operating temperatures of this heat pipe A.

第1表 曲記気密容器Iは、熱伝導率の良い銅やアルミニウムが
使われるが、ヒートパイプの使用条件(温度、周囲の腐
食条件なと )により任ひに選択されろ。作動流体Gは
、ヒートパイプAの作動温度により決まる蒸気圧力と気
密容器1の適合性に応じて選択される。
Copper or aluminum, which has good thermal conductivity, is used for the airtight container I in Table 1, but it should be selected depending on the usage conditions of the heat pipe (temperature, surrounding corrosion conditions, etc.). The working fluid G is selected depending on the vapor pressure determined by the operating temperature of the heat pipe A and the compatibility of the airtight container 1.

次に、前記のように構成されたヒートパイプAを用いて
軟弱粘性土地盤10を改良するための本発明の地盤改良
工法について述べる。
Next, a ground improvement method of the present invention for improving the soft and viscous ground 10 using the heat pipe A configured as described above will be described.

第2図(イ)ないしく二)は、この実施例の改良工法に
よって軟弱粘性土地盤の改良を行う工程を示す側断面図
であり、図中符号IOは、その改良が行なイつれている
軟弱粘性土地盤である。この軟弱粘性土地盤10に対す
る改良の手順は、次の各工程を経て実施する。
Figures 2 (a) to 2) are side sectional views showing the process of improving soft and cohesive soil by the improved construction method of this embodiment, and the reference IO in the figure indicates the progress of the improvement. It is a soft and viscous land surface. The procedure for improving the soft and viscous land 10 is carried out through the following steps.

(1)ヒートパイプの打設 第2図(イ)に示すように、しゅんせつした軟弱粘性土
地盤10の任意の位置に、ヒートパイプAを所定のピッ
チで鉛直に打設する。このヒートパイプAの軟弱粘性土
地盤lOへの打設位置は、特に限定されないが、ヒート
パイプAを打設する地域の気温および地盤の凍結膨張圧
力、吸水力等を配慮し、所定の圧力が発生するように、
各ヒートパイプAの間隔を適当に設定して配置ずろのが
好ましい。
(1) Placement of heat pipes As shown in FIG. 2(a), heat pipes A are placed vertically at a predetermined pitch at arbitrary positions on the dredged soft and slightly viscous ground 10. The installation position of this heat pipe A in the soft and viscous ground lO is not particularly limited, but the predetermined pressure is As it happens,
It is preferable that the heat pipes A be arranged at appropriate intervals.

(11)凍土の横築 このようにして、ヒートパイプAの埋設が完了し、気密
容器1の上部が、例えば冬季の寒気により冷却されると
、気密容器1内の作動流体Gが凝縮し液体となり、重力
によって気密容器1の胃壁を伝わって落下する。その結
果、冷熱が下部に運ばれ、この運ばれた冷熱によって、
気密容器1周囲の軟弱粘性土地盤IOが凍結させられて
、第2図(ロ)に示すように、アイスレンズと呼ばれる
水の層Sが、凍結面に、ヒートパイプAと同心円状に析
出し、気密容器lの周囲に凍土Fが構築(形成)される
。また、この時、地表に而している軟弱粘性土地盤10
は、ヒートパイプAとはまた別に地表の冷気(寒気)に
よって凍結され、アイスレンズ層Sが析出し、凍土Fが
構築される。
(11) Lateral construction in frozen soil When the heat pipe A is buried in this way and the upper part of the airtight container 1 is cooled, for example by cold air in winter, the working fluid G in the airtight container 1 condenses and becomes liquid. , and falls along the stomach wall of the airtight container 1 due to gravity. As a result, cold heat is carried to the lower part, and by this carried cold heat,
The soft and viscous ground IO surrounding the airtight container 1 is frozen, and as shown in Figure 2 (b), a layer of water S called an ice lens is deposited on the frozen surface in a concentric circle with the heat pipe A. , frozen soil F is constructed (formed) around the airtight container l. Also, at this time, the soft viscous land plate 10 on the ground surface
is frozen by cold air on the ground surface separately from the heat pipe A, an ice lens layer S is precipitated, and frozen soil F is formed.

そして、このような凍土Fが構築される際、すなわち軟
弱粘性土地盤10が凍結する際、吸水力および凍結膨張
圧力が生じ、これらの圧力が地盤10を圧密する有効応
力として、第3図に示すように、増加し、地盤10を圧
密させ、しかも、有効応力の増加とともに軟弱粘性土地
盤10が脱水させられ、その支持力を増加させるもので
ある。
When such frozen soil F is constructed, that is, when the soft and viscous ground 10 freezes, water absorption force and freezing expansion pressure occur, and these pressures are shown in Fig. 3 as the effective stress that consolidates the ground 10. As shown, the stress increases and consolidates the ground 10, and as the effective stress increases, the soft and viscous ground 10 is dehydrated, increasing its bearing capacity.

地盤10を圧密する有効応力は、次のような過程を経て
生じる。すなイつち、軟弱粘性土地盤10が凍結すると
、アイスレンズと呼ばれる水の層Sが、凍結面に、第2
図(ロ)および(ハ)などに示すように、ヒートパイプ
Aと同心円状に析出する。これは凍結面に水を引きよせ
ようとする力(吸水力)が生じるためである。その結果
、そこで水が凍結し膨張するために、凍結膨張圧力が発
生するのである。そして、このような圧力により、軟弱
粘性土地盤10が脱水、圧密さ仕られ、地盤改良される
のである。
The effective stress that consolidates the ground 10 is generated through the following process. In other words, when the soft and viscous land plate 10 freezes, a layer of water S called an ice lens forms a second layer on the frozen surface.
As shown in Figures (B) and (C), it is deposited concentrically with the heat pipe A. This is because a force (water absorption force) is generated that tries to draw water to the frozen surface. As a result, the water freezes and expands there, creating freeze-expansion pressure. Due to such pressure, the soft and viscous ground 10 is dehydrated and consolidated, thereby improving the ground.

一方、気密容器lの下部の作動流体Gは、第1図矢印イ
で示すように、そこで、加熱されて、液体の表面から蒸
発が始まる。発生した蒸気は、上部との圧力差により上
方へ移動する。このプロセる。
On the other hand, the working fluid G in the lower part of the airtight container I is heated there, and evaporation begins from the surface of the liquid, as shown by arrow A in FIG. The generated steam moves upward due to the pressure difference with the upper part. This process is complete.

しかして、本発明では、凍土Fの構築は、ヒートパイプ
Aを軟弱粘性土地盤1に埋設することにより行なわれる
ので、電力によるいわゆる強制冷却等に比へ、効果的に
凍土Fの構築が達成される。
Therefore, in the present invention, the construction of frozen soil F is carried out by burying the heat pipe A in the soft and viscous ground 1, so construction of frozen soil F is achieved more effectively than when so-called forced cooling using electric power is used. be done.

ずなわら、ヒートパイプAは、潜熱の形で熱量を輸送ず
ろので、熱を速やかに伝達し得ろとと6に、表面温度が
均一であり、しかも可動部がないため、メンテナスフリ
ーである等の利点かあるため、凍土Fの構築を比較的低
コストで達成することができる乙のである。
Since heat pipe A transports heat in the form of latent heat, heat pipe A should be able to transfer heat quickly, and secondly, the surface temperature is uniform, and since there are no moving parts, it is maintenance-free. Because of these advantages, the construction of frozen soil F can be achieved at a relatively low cost.

また、本発明では、このような凍土Fの構築により、軟
弱粘性土地盤IOを脱水、圧密ずろので、サンドパイル
を打設したり、盛土をしたりすることなく、これらの工
程で実施した以上の強大の改良効果を有効に発揮させる
ことができるしのである。
In addition, in the present invention, by constructing such frozen soil F, the soft and viscous ground IO can be dehydrated and consolidated, so that the construction of the frozen soil F can be carried out without the need to cast sand piles or embankments. It is possible to effectively demonstrate the powerful improvement effect of.

なお、ヒートパイプAの熱輸送量について説明をhli
足しておくと、これは、大気中の冷熱源と地盤との執抵
抗1こ、ψl:l−,fグ111.−その間Qつ、1−
1、丁Q’ 7= (こIトψ11する。
In addition, an explanation regarding the heat transport amount of heat pipe A is given below.
In addition, this is the resistance between the cold source in the atmosphere and the ground, ψl:l-, fg111. -During that time, Q times, 1-
1, Q' 7= (This is ψ11.

ヒートパイ11本当たりの熱輸送ff1Qは次式で与え
られる。
Heat transport ff1Q per 11 heat pies is given by the following equation.

Q =(Ta−Tg )/(rr+r2+r3)−−(
1)ここに、 Ta、大気の温度 Tg  地盤の温度 rl:地盤とヒートバイブ間の熱抵抗 r2 ・ヒートバイブの熱抵抗 r、J・フィンの熱抵抗 熱抵抗のうちr、は、地盤の熱伝導率、土の凍土特性、
ヒートパイプの形状によって、r3はフィンのピッチ、
直径などによって決まる。
Q = (Ta-Tg)/(rr+r2+r3)--(
1) Here, Ta, atmospheric temperature Tg Ground temperature rl: Thermal resistance between the ground and the heat vibrator r2 ・Thermal resistance of the heat vibrator r, J ・Thermal resistance of the fins Of the thermal resistance, r is the heat of the ground conductivity, frozen soil properties of soil,
Depending on the shape of the heat pipe, r3 is the fin pitch,
Determined by diameter etc.

(iii)凍土の解凍 夏季の気温によって、凍土Fは解凍し、沈下の進行ずろ
改良土に追随して、周囲の軟弱粘性土が沈下し、第2図
(ニ)に示すように、図中2点鎖線に示す位置から、前
記(11)の工程によって圧密された分、地盤全体が沈
下する。この、際、前記凍土Fの解凍によって生じた水
(すなわちアイスレンズの解凍により生した水)は、地
盤10の沈下により(改良された地盤10の自重により
 )、凍土Fの解凍とと乙に、解凍したアイスレンズ層
Sの間隙に沿って地表に排水されろ。
(iii) Thawing of frozen soil Depending on the summer temperature, frozen soil F thaws, and the surrounding soft cohesive soil sinks following the improved soil, as shown in Figure 2 (d). From the position shown by the two-dot chain line, the entire ground sinks by the amount of consolidation in the step (11). At this time, the water generated by the thawing of the frozen soil F (that is, the water produced by the thawing of the ice lens) is caused by the subsidence of the ground 10 (due to the weight of the improved ground 10), and the water generated by the thawing of the frozen soil F. , drain to the surface along the gaps in the thawed ice lens layer S.

なお、凍土Fの解凍により、排水された水を、適当な排
水手段(例えば、排水溝を地上に敷設する等)を用いる
ことにより、排水させる構成とすれば、改良された地盤
IOに水を浸透させることを防止する点等で好ましい。
In addition, if the water drained by the thawing of the frozen soil F is drained by using an appropriate drainage means (for example, laying a drainage ditch on the ground), it is possible to drain the water to the improved ground IO. This is preferable in terms of preventing penetration.

そして、第2図(ニ)に示すように、地盤10が沈下し
た後、ヒートパイプAを撤去すれば、地盤10の改良が
完了する。
Then, as shown in FIG. 2(d), after the ground 10 has subsided, the heat pipe A is removed, and the improvement of the ground 10 is completed.

以下、実験例を示し、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to experimental examples.

「実験例」 (+)選定したヒートパイプ 熱輸送量が多く、しかも経済的なヒートパイプを選定す
るために後述する4種類のヒートパイプを選定し、現地
に埋設した。容器は、銅製で、作動液体はフロン22で
ある。
``Experiment example'' (+) Selected heat pipes In order to select economical heat pipes that transport a large amount of heat, four types of heat pipes, which will be described later, were selected and buried at the site. The container is made of copper, and the working fluid is Freon 22.

単管型はヒートパイプを不凍液の入った鋼管の中に入れ
た。これは、単管のみでは、その表面積か小さいので、
熱輸送量を大きくするために不凍液の対流による熱伝達
を期待したものである。
The single-tube type has a heat pipe placed inside a steel pipe containing antifreeze. This is because the surface area of a single tube is small.
The idea is to use antifreeze convection to increase heat transfer.

ループ型は表面積が大きく、しからヒートパイプの加工
手間が少ない。この型は、ヒートパイプの内側に溝を付
けたものと付けないものの2種類とした。
The loop type has a large surface area and requires less processing time to make the heat pipe. There were two types of this type: one with grooves on the inside of the heat pipe and one without grooves.

ダブルループ型は溝のないループ型のヒートパイプをダ
ブルにしたちのである。
The double loop type is a double loop heat pipe without grooves.

なお、前記いずれらヒートパイプ管のジヨイント1″A
≦は、アルミ粉入りの接着剤で熱伝導を良くした。
In addition, the joint 1″A of each of the heat pipe tubes
≦ improves heat conduction with adhesive containing aluminum powder.

(2)埋設位置 第4図および第5図に示すように、観測室Rから一定距
離離間した位置に2列に前記4種類のヒートパイプA 
1. A 2 、 i〜3.A4を埋設した。
(2) Buried location As shown in Figures 4 and 5, the four types of heat pipes A are arranged in two rows at a certain distance from the observation room R.
1. A2, i~3. A4 was buried.

凍上の成長状況は、各ヒートパイプA + 、 A 2
 。
The growth status of frost heave is shown for each heat pipe A + and A 2.
.

A 3 、7\4から50cm離れた位置に埋設した測
定管B+。
Measurement tube B+ buried 50cm away from A 3 and 7\4.

nnnrl−++、Ah−W;I)+−1・t)’tレ
ーLrぐノゴr図示例ではヒートパイプA、)の複数の
測点0において、土中温度の経時変化を測り、それによ
り類推した。
nnnrl-++, Ah-W;I)+-1・t)'trayLrgunogorIn the illustrated example, the change in soil temperature over time is measured at multiple measurement points 0 of the heat pipe A,), and It was inferred by

(3)実験結果 第6図(a)および(b)に1984年12月 1日よ
りの凍結指数と大気温度の経時変化を、また第7図(a
)および(b)並びに第8(a)および(b)に苛付き
ヒートパイプおよび°ダブルループ型の深度−2mの点
およびヒートパイプから50 c +n離れた土中iJ
度−2m)の温度の経時変化を示す。
(3) Experimental results Figures 6 (a) and (b) show the freezing index and atmospheric temperature changes over time since December 1, 1984, and Figure 7 (a)
) and (b) and 8th (a) and (b) of the heat pipe and °double loop type at a depth of −2 m and iJ in the soil 50 c + n away from the heat pipe.
-2 m) temperature change over time.

ダブルループ型のヒートパイプでは、深度−2mの点で
直径20cm程度の凍土か形成されたと思われるが、ル
ープでは温度が零度線を上下しているので、凍土の形成
はほとんとなかったものと思われる。
In the double-loop heat pipe, frozen soil with a diameter of about 20 cm was thought to have formed at a depth of -2 m, but since the temperature in the loop was above and below the zero temperature line, it is assumed that almost no frozen soil was formed. Seem.

次に、軟弱粘性土地盤lが凍結する際の有効応力等を如
何にして設計するかを説明する。
Next, a description will be given of how to design the effective stress etc. when the soft and viscous ground l freezes.

「設計法」 飽和上か凍結する場合、凍結による膨張率ξ、吸水率ξ
Wは凍結面の進行速度V、凍結面での釘効応力σ′との
関係として、次式で与えられる。
"Design method" When freezing above saturation, expansion coefficient ξ due to freezing, water absorption rate ξ
W is given by the following equation as a relationship between the advancing speed V of the frozen surface and the nail effective stress σ' on the frozen surface.

ξ−ξo +(1+、r’rエフ7)σ0/σ゛ ・・
・・・・(2)ξ−ξo +n、 r’+(1+r’)
Uw     −−(3)ここに、ξo1 σ0.Vo
は土固薄の定数、n、は間隙率、rは水の凍結膨張率で
ある。
ξ−ξo + (1+, r'rf7)σ0/σ゛...
...(2) ξ-ξo +n, r'+(1+r')
Uw --(3) Here, ξo1 σ0. Vo
is the soil solidification constant, n is the porosity, and r is the freezing expansion rate of water.

凍土および未凍土内の熱移動は、円筒モデルと考えられ
るので、それぞれ次のように求まる。
Heat transfer within frozen soil and unfrozen soil is considered to be a cylindrical model, so each can be determined as follows.

凍土内の熱移動 aTf/at−に、(θ’Tr/θr”+ I/r B
Tf/θr)・・・・・(4) 未凍土内の熱移動 El T Ll/(9t= /C2ca ”T u/E
l r2+ 1 /rθT r/a r)・・・・・・
(5) 未凍土内の水分移動 El U w/a t= Cv(a 2U w/θr2
+ 1 /r El Uw/θr)・・・・・・(6) ここに、T f、T uは凍土および未凍土の温度、U
wは間隙水圧、にいに2は凍土および未凍土の温度伝導
率、Cvは圧密係数、tは時間、rは位置を表す座標で
ある。
The heat transfer aTf/at- in the frozen ground is expressed as (θ'Tr/θr”+ I/r B
Tf/θr)・・・(4) Heat transfer in unfrozen soil El T Ll/(9t= /C2ca ”T u/E
l r2+ 1 /rθT r/a r)...
(5) Moisture movement in unfrozen soil El U w/a t= Cv(a 2U w/θr2
+ 1 /r El Uw/θr) (6) Here, T f and Tu are the temperatures of frozen soil and unfrozen soil, and U
w is the pore water pressure, 2 is the temperature conductivity of frozen soil and unfrozen soil, Cv is the consolidation coefficient, t is time, and r is the coordinate representing the position.

また、凍土と未凍−にとの境界において、次の弐が成り
立ノーなければならない。
Furthermore, the following two must hold true at the boundary between frozen and unfrozen soil.

λ、9Tr/ar−λtEJ T u/a r=L s
7 sV +L w7 wV w・・(7) ここに、λ1、λ2は凍土および未凍土の熱伝導率2L
s、Lwは地盤および水の凍結潜熱、γS、γWは地盤
及び水の密度、■およびVwは凍結速度及び吸水速度で
ある。
λ, 9Tr/ar-λtEJ T u/a r=L s
7 sV +L w7 wV w...(7) Here, λ1 and λ2 are the thermal conductivity 2L of frozen soil and unfrozen soil
s and Lw are the latent heat of freezing of the ground and water, γS and γW are the densities of the ground and water, and ■ and Vw are the freezing rate and water absorption rate.

凍結面での吸水速度Vwは、ダルノー則により、次式で
与えられる。
The water absorption rate Vw on the frozen surface is given by the following equation based on d'Arnaud's law.

Vw=に/γw aUw/ar       −(8)
なる関係がなり立つ。また式(2) 、 (3)から吸
水速度は、 Vt=(V+r盲ηv o/((ey −Uuto−5
,)(1+1” ))−4n、 r” /(1+I” 
)         −−(9)で与えられる。
Vw=ni/γw aUw/ar −(8)
A relationship is established. Also, from equations (2) and (3), the water absorption rate is Vt=(V+r blind ηvo/((ey −Uuto−5
,)(1+1"))-4n, r"/(1+I"
) -- given by (9).

よって、式(8)、(9)から吸水力Srを求め、それ
による脱水圧密量を差し引いた強制変位による凍結面で
の応力増分が凍結膨張圧力の増分である。
Therefore, the stress increment on the frozen surface due to the forced displacement obtained by calculating the water absorption force Sr from equations (8) and (9) and subtracting the resulting dehydration consolidation amount is the increment in the freezing expansion pressure.

さらに、式(1)、(7)の境界条件のらとに、式(4
)〜(6)を解き、温度分布、間隙水圧分布、有効応力
分布を求める。
Furthermore, in addition to the boundary conditions of equations (1) and (7), equation (4
) to (6) to determine the temperature distribution, pore water pressure distribution, and effective stress distribution.

第9図(a)および(b)にヒートバイブ内の温度が一
15℃と一30℃の一定温度とした場合の境界力と凍結
膨張圧力の一例を示す。
FIGS. 9(a) and 9(b) show an example of the boundary force and freezing expansion pressure when the temperature inside the heat vibrator is constant at 115°C and 130°C.

冷却温度が一15℃で、ヒートパイプから15cm離れ
た点で、吸水力が約0.7kgf/cm2、凍結膨張圧
力として約2.0kgf/cm2であるので、有効応力
としては約2゜7kgf/cm2発生している。これは
15〜20mの盛土をした場合と、同程度の強大な改良
効果が発生することを示すものである。
When the cooling temperature is -15°C, the water absorption force is approximately 0.7 kgf/cm2 and the freezing expansion pressure is approximately 2.0 kgf/cm2 at a point 15 cm away from the heat pipe, so the effective stress is approximately 2°7 kgf/cm2. cm2 is generated. This shows that the improvement effect is as strong as that obtained by embanking 15 to 20 meters.

なお、通常、従来のプレロード工法などでは、例えば、
5m程度の盛土によって、軟弱粘性土地盤を圧密するの
であるが、本発明では、前記したように、ヒートパイプ
の冷却温度が一15℃において、それ以上の佇効応力を
、盛上することなく、発揮し得て、強大な改良効果を得
ろことができる乙のである。
In addition, in conventional preload construction methods, for example,
The soft and viscous soil is consolidated by embankment of about 5 m, but as mentioned above, in the present invention, when the cooling temperature of the heat pipe is 115°C, it is possible to suppress the standing stress beyond that without embankment. , which can be exerted and obtain a powerful improvement effect.

「発明の効果」 以上説明しfコように本発明の軟弱粘性土地盤の改良工
法は、 (イ)軟弱粘性土地盤内に、上部を突出しfコ状態でヒ
ートパイプを溝成する気密容器を鉛直に埋設する工程と
、 (ロ)前記気密容器上部を寒気により冷却し、気密、容
器内の作動流体を凝縮させて、液化した作動流体を重力
により落下させ、この時運ばれた冷熱により気密容器周
囲の軟弱粘性土を凍結さ仕て気密容器の周囲に凍土を形
成する工程と、 (ハ)この凍土を解凍させて、アイスレンズ部の水がヒ
ートパイプ添いに排出されることによ・ジ、地盤を沈下
させろ工作とを具備し、ヒートパイプにより自然冷熱を
地下に貯蔵し、そのとき発生オろ凍上現象による吸水力
と膨張に伴う圧力で地盤を脱水、圧密することを特徴と
するしのであるから、次ぎのような種々の浸れた効果を
秦する。
``Effects of the Invention'' As explained above, the method for improving soft and viscous soil according to the present invention is as follows: (a) An airtight container is installed in the soft and viscous soil, with its upper part protruding to form a groove with a heat pipe. (b) The upper part of the airtight container is cooled with cold air to make it airtight, the working fluid in the container is condensed, the liquefied working fluid is allowed to fall by gravity, and the cold heat transported at this time creates an airtight seal. A process of freezing the soft and viscous soil around the container to form frozen soil around the airtight container, and (c) thawing this frozen soil and draining the water from the ice lens along the heat pipe. The method is characterized by the fact that natural cold energy is stored underground using a heat pipe, and the ground is dehydrated and consolidated by the water absorption force and pressure caused by expansion due to the frost heaving phenomenon that occurs at that time. Since it is Shino, it has various soaked effects such as:

(1)ザンドドレーンのような砂杭を打設し、その上に
盛土をして地盤を圧密ずろ■程を省略し得て、軟弱粘性
土地盤を圧密させろことがてき、まf二その作業性を向
上6g−ることかできろ。
(1) It is possible to omit the process of driving sand piles such as sand drains and placing embankments on top of them to consolidate the ground, thereby consolidating the soft and viscous soil. Can you improve your sex by 6g?

(2)地盤の改良効果も地盤の深度にかかわりなく応力
を増加することかできる。
(2) The effect of improving the ground can also increase stress regardless of the depth of the ground.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の工法に使用されるのヒートパイプの一
例を示す側断面図、第2図(イ)ないしく二)は本発明
工法の一実施例の工程を説明するために示したもので、
それぞれ側断面図、第3図は吸水力および凍結膨張圧力
の経時変化の模式図、第4図および第5図は実験例を説
明するために示した乙ので、第4図は平面図、第5図は
側断面図、第6図(a)および(b)は、凍結指数と大
気温度の経時変化を示すグラフ、第7図(a)および(
b)は溝付きヒートパイプの深度−2mにおけるヒート
パイプと土中温度の経時変化を示すグラフ、第8図(a
)および(b)はダブルループ型ヒートパイプの深度−
2111におけるヒートパイプと土中温度の経時変化を
示すグラフ、第9図(a)および(b)は冷却温度によ
る吸水力および凍結膨張圧力への影響を示すグラフであ
る。 A・・・・ヒートパイプ、 l・・気密容器、 3・・・・・受放熱用フィン、 10・・・・・・軟弱粘性土地盤、 G・・・・・・作動流体、 F・・・・・凍土、 S・・・・・・アイスレンズの層。
Figure 1 is a side sectional view showing an example of a heat pipe used in the construction method of the present invention, and Figures 2 (a) and 2) are shown to explain the steps of an embodiment of the construction method of the present invention. Something,
Figure 3 is a schematic diagram of changes in water absorption force and freezing expansion pressure over time, and Figures 4 and 5 are shown to explain experimental examples, so Figure 4 is a plan view and Figure 3 is a side sectional view, respectively. Figure 5 is a side sectional view, Figures 6 (a) and (b) are graphs showing changes in freezing index and atmospheric temperature over time, and Figures 7 (a) and (
b) is a graph showing the change over time in the heat pipe and soil temperature at a depth of -2 m for the grooved heat pipe, Figure 8 (a)
) and (b) are the depth of the double-loop heat pipe -
9(a) and (b) are graphs showing the influence of cooling temperature on water absorption power and freezing expansion pressure. A: heat pipe, l: airtight container, 3: heat receiving and dissipating fin, 10: soft and viscous ground, G: working fluid, F... ... Frozen soil, S ... Ice lens layer.

Claims (1)

【特許請求の範囲】 気密容器の内部に作動流体を充填してなるヒートパイプ
により軟弱粘性土地盤を凍結させ、該地盤の凍結時に生
じる吸水力および凍結膨張圧力で軟弱粘性土地盤を脱水
、圧密する工法であって、(イ)軟弱粘性土地盤内に、
上部を突出した状態で前記気密容器を鉛直に埋設する工
程と、 (ロ)前記気密容器の上部を寒気により冷却し、気密容
器内の作動流体を凝縮させて、液化した作動流体を重力
により落下させ、この時運ばれた冷熱により気密容器周
囲の軟弱粘性土地盤を凍結させて気密容器の周囲に凍土
を形成する工程と、(ハ)この凍土を解凍させて地盤を
沈下させる工程とを具備したヒートパイプによる軟弱粘
性土地盤の改良工法。
[Claims] Soft, slightly viscous ground is frozen using a heat pipe formed by filling a working fluid inside an airtight container, and the soft, slightly viscous ground is dehydrated and consolidated by the water absorption force and freezing expansion pressure generated when the ground is frozen. It is a construction method that
(b) cooling the upper part of the airtight container with cold air, condensing the working fluid in the airtight container, and letting the liquefied working fluid fall by gravity; and (c) thawing the frozen soil to cause the ground to sink. A method for improving soft and viscous soil using heat pipes.
JP25450485A 1985-11-13 1985-11-13 Improving work of soft cohesive ground with heat pipe Granted JPS62112811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25450485A JPS62112811A (en) 1985-11-13 1985-11-13 Improving work of soft cohesive ground with heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25450485A JPS62112811A (en) 1985-11-13 1985-11-13 Improving work of soft cohesive ground with heat pipe

Publications (2)

Publication Number Publication Date
JPS62112811A true JPS62112811A (en) 1987-05-23
JPH0573849B2 JPH0573849B2 (en) 1993-10-15

Family

ID=17265972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25450485A Granted JPS62112811A (en) 1985-11-13 1985-11-13 Improving work of soft cohesive ground with heat pipe

Country Status (1)

Country Link
JP (1) JPS62112811A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881024A (en) * 2010-06-28 2010-11-10 连云港港口工程设计研究院有限公司 Freeze thawing consolidation method for silt soft foundation
CN104863117A (en) * 2014-02-24 2015-08-26 中国科学院寒区旱区环境与工程研究所 Permafrost foundation refrigerating structure for buried heat pipeline
CN105239557A (en) * 2015-08-30 2016-01-13 中国科学院武汉岩土力学研究所 Device and method for accelerating consolidation of soft soil through combination of frost heaving and melting shrinking method and vacuum preloading
JP2017186858A (en) * 2016-03-31 2017-10-12 清水建設株式会社 Calculation method of freezing expansion pressure in freezing method
CN110295588A (en) * 2019-06-25 2019-10-01 东莞市广渠建筑工程有限公司 A kind of Soft Ground device and its processing method
RU202182U1 (en) * 2020-11-18 2021-02-05 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT
RU203876U1 (en) * 2021-01-13 2021-04-23 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT
WO2023061818A1 (en) * 2021-10-12 2023-04-20 The Soil Research Lab Sprl System for the decontamination of contaminated materials by means of heating tubes with conductive supports
RU218712U1 (en) * 2022-11-24 2023-06-06 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101454713B1 (en) * 2012-12-31 2014-10-27 갑을오토텍(주) A condenser structure for a dual refrigeration system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881024A (en) * 2010-06-28 2010-11-10 连云港港口工程设计研究院有限公司 Freeze thawing consolidation method for silt soft foundation
CN104863117A (en) * 2014-02-24 2015-08-26 中国科学院寒区旱区环境与工程研究所 Permafrost foundation refrigerating structure for buried heat pipeline
CN105239557A (en) * 2015-08-30 2016-01-13 中国科学院武汉岩土力学研究所 Device and method for accelerating consolidation of soft soil through combination of frost heaving and melting shrinking method and vacuum preloading
JP2017186858A (en) * 2016-03-31 2017-10-12 清水建設株式会社 Calculation method of freezing expansion pressure in freezing method
CN110295588A (en) * 2019-06-25 2019-10-01 东莞市广渠建筑工程有限公司 A kind of Soft Ground device and its processing method
RU202182U1 (en) * 2020-11-18 2021-02-05 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT
RU203876U1 (en) * 2021-01-13 2021-04-23 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT
WO2023061818A1 (en) * 2021-10-12 2023-04-20 The Soil Research Lab Sprl System for the decontamination of contaminated materials by means of heating tubes with conductive supports
BE1029844B1 (en) * 2021-10-12 2023-05-08 The Soil Res Lab Sprl SYSTEM FOR DEPOLLUTION OF CONTAMINATED MATERIALS BY MEANS OF HEATING TUBES WITH CONDUCTIVE SUPPORTS
RU218712U1 (en) * 2022-11-24 2023-06-06 Вадим Васильевич Пассек COAXIAL INSERT FOR THERMAL SUPPORT

Also Published As

Publication number Publication date
JPH0573849B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
Kane et al. Snow hydrology of a headwater Arctic basin: 1. Physical measurements and process studies
Hinzman et al. Potential repsonse of an Arctic watershed during a period of global warming
Mackay Active layer slope movement in a continuous permafrost environment, Garry Island, Northwest Territories, Canada
Chen et al. Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone
Woo Permafrost and hydrology
Appels et al. Infiltration into frozen soil: From core‐scale dynamics to hillslope‐scale connectivity
JPS62112811A (en) Improving work of soft cohesive ground with heat pipe
Varlamov Thermal monitoring of railway subgrade in a region of ice-rich permafrost, Yakutia, Russia
US9593868B2 (en) Horizontal ground-coupled heat exchanger for geothermal systems
CA1124093A (en) Method for preventing damage to a refrigerated gas pipeline due to excessive frost heaving
Hamilton Effects of environment on the performance of shallow foundations
CA1170849A (en) Method and apparatus for constructing buried pipeline systems
Ashpiz The problems of the railway subgrade construction in the subarctic part of the Russian cryolithozone and the ways of their solution
CA1174063A (en) Ice island construction
You et al. Model tests of the barrier measures on moisture and salt migration in soils subjected to freeze-thaw cycles
Zottola et al. Investigating the effects of groundwater flow on the thermal stability of embankments over permafrost
Dalai et al. Permafrost and geotechnical investigations in Nalaikh Depression of Mongolia
Goering Convective cooling in open rock embankments
SU841418A1 (en) Method of erecting embankment in permafrost environment
Harms et al. Variability of snowmelt runoff and soil moisture recharge
CN2702054Y (en) Anti-freezing heat-insulating layer for cold area tunnel
JPH10227032A (en) Cohesive soil banking method utilizing natural cold during winter season
Kane et al. Permafrost
Ryckborst On the origin of pingos
RU2592113C2 (en) Ground dam on permafrost base and method for creation thereof