JPS62112704A - Production of composite powder - Google Patents

Production of composite powder

Info

Publication number
JPS62112704A
JPS62112704A JP60252907A JP25290785A JPS62112704A JP S62112704 A JPS62112704 A JP S62112704A JP 60252907 A JP60252907 A JP 60252907A JP 25290785 A JP25290785 A JP 25290785A JP S62112704 A JPS62112704 A JP S62112704A
Authority
JP
Japan
Prior art keywords
powder
vacuum
sputtering
coated
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60252907A
Other languages
Japanese (ja)
Inventor
Masatoshi Sugimori
正敏 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60252907A priority Critical patent/JPS62112704A/en
Publication of JPS62112704A publication Critical patent/JPS62112704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily produce composite powder of which the surface is partly or wholly coated with other materials by sticking a material evaporated in a vacuum to the surface of the flowing or rotating powder. CONSTITUTION:The material such as metal or oxide is evaporated by a method such as sputtering, vacuum deposition or ion plating in a vacuum under about <=0.3Torr pressure. The evaporated material is stuck to the surface of the powder flowing and/or rotating in the above-mentioned vacuum. The powder of a metal, alloy, compod. such as oxide, org. material, high polymer, etc. is usable as the above-mentioned powder. The shape of the above-mentioned powder may be any including spherical, square, irregular and fibrous shapes. Many kinds of materials are thereby coated in an extremely clean state on many kinds of powders. The composite powder is thus easily obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合粉末の製造法に関する。さらに詳しくは、
真空中で物質を気化し、流動及び/又は回転している粉
末の表面に付着させろことにより、粉末の表面を他の物
質で被覆することを特徴とする複合粉末の製造法に関す
るものである。複合粉末は、焼結・プレス等による機能
材料製造用原料。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing composite powder. For more details,
The present invention relates to a method for producing a composite powder, characterized in that the surface of the powder is coated with another substance by vaporizing the substance in a vacuum and depositing the substance on the surface of the flowing and/or rotating powder. Composite powder is a raw material for manufacturing functional materials through sintering, pressing, etc.

溶射材料、触媒等として用いられる。Used as thermal spray material, catalyst, etc.

〔従来の技術〕[Conventional technology]

従来、粉末の表面の一部または全部を他の物質で被覆す
る方法としては、金属、酸化物等の粉末を、ニッケル等
の金属塩および還元剤を含む水溶液に浸せきあるいは懸
濁させ、表面にニッケル等の金属を析出させる方法、金
属、酸化物等の粉末を白金族金属塩等の水溶液に浸せき
あるいは懸濁させ、表面に白金族金属を析出させる方法
などがあった。
Conventionally, the method of coating part or all of the surface of powder with another substance is to immerse or suspend powder of metal, oxide, etc. in an aqueous solution containing a metal salt such as nickel and a reducing agent, and then coat the surface with other substances. There were methods of precipitating metals such as nickel, and methods of immersing or suspending powders of metals, oxides, etc. in an aqueous solution of platinum group metal salts and depositing platinum group metals on the surface.

これらの方法では、ろ過、洗浄、乾燥等の煩雑な操作が
必要である、粉末および被覆させる物質が限定される、
水溶液に溶解していた不要物質が不純物として混入する
、等の欠点がある。
These methods require complicated operations such as filtration, washing, and drying; powders and substances to be coated are limited;
There are drawbacks such as unnecessary substances dissolved in the aqueous solution being mixed in as impurities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、以上のような、操
作が煩雑である、粉末および被&物質が限定される、不
純物の混入がある等の点である。
The problems to be solved by the present invention are as described above, such as complicated operations, limited powder and materials to be mixed, and contamination with impurities.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は真空中で気化された物質を、流動9回転してい
る粉末の表面に付着させることにより、粉末の表面の一
部または全部を他の物質で被覆してなる複合粉末を製造
する方法を与えるものであり、本発明によれば極めて簡
単な方法により、多種類の粉末に多種類の物質を、極め
て清浄な状態で被覆し、複合粉末を製造することが出来
る。
The present invention is a method for producing a composite powder in which a part or all of the surface of the powder is coated with another substance by attaching a substance vaporized in a vacuum to the surface of the powder that is rotating nine times. According to the present invention, a composite powder can be produced by coating various types of powders with various substances in an extremely clean state using an extremely simple method.

〔作 用〕[For production]

本発明でいう真空とは、[15Torr以下の圧力状態
を言う。
Vacuum in the present invention refers to a pressure state of 15 Torr or less.

本発明に用いられる粉末は、金属9合金、および酸化物
、炭化物、窒化物、はう化物、硫化物等の化合物、有機
物、高分子の粉末な用いることが出来る。粉末の形状は
、球状、角状1円板状、角板状、不規則形状等任意の物
を用いることが出来る。さらに針状、繊維状の物も使用
可能である。
The powder used in the present invention can be powders of metal 9 alloys, compounds such as oxides, carbides, nitrides, ferrides, and sulfides, organic substances, and polymers. The shape of the powder may be arbitrary, such as spherical, angular disc-shaped, angular plate-shaped, irregular shape, etc. Furthermore, needle-like or fibrous materials can also be used.

粉末の粒度は数百オングストロームから数ミリメートル
の範囲のものを用いることが出来る。
The particle size of the powder can range from several hundred angstroms to several millimeters.

また被覆させる物質は、金属、酸化物、炭化物。The materials to be coated are metals, oxides, and carbides.

窒化物、はう化物、硫化物等の化合物を用いることが出
来る。被覆の厚さは数オングストロームから数百ミクロ
ンまで任意の厚さにすることが出来る。以下複合粉末の
製造プロセスについて説明する。
Compounds such as nitrides, ferrides, and sulfides can be used. The thickness of the coating can be any thickness from a few angstroms to hundreds of microns. The manufacturing process of the composite powder will be explained below.

真空中で物質を気化し、粉末の表面に付着させる方法と
しては、スパッタリング、真空蒸着、イオンプレーティ
ング等のいわゆるPVDがある。
Methods for vaporizing a substance in a vacuum and depositing it on the surface of powder include so-called PVD such as sputtering, vacuum evaporation, and ion plating.

スパッタリングにより複合粉末を製造するには、真空容
器内に設置した容器に被覆しようとする粉末を所定量い
れる。ターゲットホルダーに被覆物質から成るターゲッ
トをセットする。真空容器を脱気し、所定の真空度に達
せしめた後、電極間にW圧をかけ、スパッタリングの操
作を行う。必要時間スパッタリングを行った後、これを
中止し、粉末を取り出す。その際特に酸化等による表面
の変質を防ぎたい場合は、容器内をAr等の不活性ガス
で置換した後、粉末を不活性雰囲気中で容器に封入する
方法をとることが出来る。また、真空容器にもう一つの
チャンバーを連結させ、スパッタリング終了後もう一つ
のチャンバーも脱気した後、複合粉末をこのチャンバー
に移し、このチャンバー内で真空中もしくは不活性ガス
雰囲気中で複合粉末を試料容器に封入する方法をとるこ
とも出来る。
To produce a composite powder by sputtering, a predetermined amount of the powder to be coated is placed in a vacuum container. A target made of a coating material is set on a target holder. After the vacuum container is degassed to reach a predetermined degree of vacuum, W pressure is applied between the electrodes and sputtering is performed. After sputtering has been performed for the required time, it is stopped and the powder is taken out. At this time, if it is particularly desired to prevent surface deterioration due to oxidation or the like, a method can be used in which the inside of the container is replaced with an inert gas such as Ar, and then the powder is sealed in the container in an inert atmosphere. In addition, another chamber is connected to the vacuum container, and after sputtering is completed, the other chamber is also degassed, and the composite powder is transferred to this chamber. A method of enclosing it in a sample container can also be used.

スパッタリングの方式は、2極Doグロー放電。The sputtering method is 2-pole Do glow discharge.

3極DOグロー放電、2極RFグロー放電、イオンビー
ムスパッタ、マグネトロンスパッタなどの任意の方式を
選ぶことが出来る。
Any method can be selected, such as three-pole DO glow discharge, two-pole RF glow discharge, ion beam sputtering, and magnetron sputtering.

真空蒸着、イオンプレーティングの場合も同様に、真空
容器内に設置した容器に粉末を入れ、蒸@源もしくは加
熱装置に被覆させようとする物質を入れた後、真空容器
内を脱気し、蒸着またはイオンプレーティングの操作を
行えばよい。真空蒸着の場合は抵抗加熱、誘導加熱、電
子ビーム法などの方法を用いることが出来る。イオンブ
レーティグのばあいは、直流法、高周波法、クラスタ・
イオ/ビーム蒸着法、熱陰極法などの方法を用いること
が出来る。
Similarly, in the case of vacuum evaporation and ion plating, the powder is placed in a container placed inside the vacuum container, and the substance to be coated is placed in the evaporation source or heating device, and then the inside of the vacuum container is degassed. Vapor deposition or ion plating may be performed. In the case of vacuum deposition, methods such as resistance heating, induction heating, and electron beam method can be used. In the case of ion bracing, DC method, high frequency method, cluster/
Methods such as ion/beam evaporation method and hot cathode method can be used.

粉末は1種類を用いてもよいし、2種以上の異なった特
質の粉末を混合してもよい。また、粉末の表面を被覆さ
せる物質は、1穐類でもよく、2種類以上用いてもよい
。例えば2種以上の物質のターゲットを同時にあるいは
交互にあるいは順番にスパッタリングを行うことにより
これらの物質を積層あるいは混合の状態で被覆させるこ
とが出来る。真空蒸着またはイオンプレーティングにお
いても同様に2種以上の物質を、同時に交互にあるいは
順番に蒸着またはイオンプレーティングすることにより
、これらの物質を積層あるいは混合の状態で被覆させる
ことが出来る。
One type of powder may be used, or two or more types of powder with different characteristics may be mixed. Furthermore, the number of substances to be coated on the surface of the powder may be one type or two or more types. For example, by sputtering targets of two or more materials simultaneously, alternately, or sequentially, these materials can be coated in a layered or mixed state. Similarly, in vacuum deposition or ion plating, two or more materials can be deposited or ion plated simultaneously or alternately or sequentially, so that these materials can be coated in a layered or mixed state.

粉末の流動9回転は、例えば粉末を入れる容器中に設置
した回転羽根を回転させる方法によって行うことが出来
る。また、粉末を入れた容器を振動、揺動させる、ある
いは機械的衝撃を与える方法によっても行うことが出来
る。また容器を回転させ、邪魔板のような物で粉末の動
きを変化させることによっても可能である。また、超音
波によって行うことも出来る。さらにこれらの方法の2
つ以上を組み合わせてもよい。
The nine rotations of the powder flow can be performed, for example, by rotating a rotary blade installed in a container containing the powder. It can also be carried out by vibrating, rocking, or applying mechanical shock to the container containing the powder. This can also be done by rotating the container and changing the movement of the powder using something like a baffle plate. It can also be performed using ultrasound. Furthermore, two of these methods
Two or more may be combined.

粉末は必要に応じて加熱または冷却してもよい。The powder may be heated or cooled as necessary.

加熱または冷却する方法は、例えば粉末をいれる容器中
に、加熱管もしくは冷却管を設置し、これを加熱もしく
は冷却する方法がある。あるいは容器を加熱または冷却
槽に入れ、容器の外側から粉末を加熱もしくは冷却する
方法もある。
As a method for heating or cooling, for example, there is a method in which a heating tube or a cooling tube is installed in a container containing the powder, and the tube is heated or cooled. Alternatively, there is a method in which the container is placed in a heating or cooling bath and the powder is heated or cooled from the outside of the container.

〔効 果〕〔effect〕

以上の説明で明らかなように、本発明によれば、極めて
簡単な方法により、多種類の粉末に多種類の物質を、極
めて清浄な状態で被覆することが出来、従来の方法では
得ることの出来なかった複合粉末を、極めて簡単に作成
することが出来る。
As is clear from the above explanation, according to the present invention, it is possible to coat many kinds of powders with many kinds of substances in an extremely clean state using an extremely simple method, which is impossible to obtain with conventional methods. Composite powders that previously could not be made can be created extremely easily.

以下、実施例について説明するが、これに限るものでは
ない。
Examples will be described below, but the invention is not limited thereto.

実施例1 平均粒径56ミクロンのニッケル粉末109を真空蒸着
装置の試料容器に入れ、クロムの小片をタングステンボ
ートにセットした。真空蒸着装置のペルジャー内を10
−’ Torrまで脱気した。試料容器は毎分600回
転回転させ、4ケ所に固定した邪魔板で粉末の動きを変
えて粒子を流動1回転させた。
Example 1 Nickel powder 109 having an average particle size of 56 microns was placed in a sample container of a vacuum evaporation apparatus, and a small piece of chromium was set in a tungsten boat. 10 in the Pelger of the vacuum evaporation equipment
-' Degassed to Torr. The sample container was rotated at 600 revolutions per minute, and the movement of the powder was changed using baffles fixed at four locations to cause the particles to flow one revolution.

タングステンボートに25  Aの電流を流しクロムの
真空蒸着を行った。ニッケル粒子の色が変わることで、
表面にクロムが被覆されていることが認識出来た。
Chromium was vacuum-deposited by passing a current of 25 A through the tungsten boat. By changing the color of the nickel particles,
It was recognized that the surface was coated with chromium.

10分間蒸着後、粉末を取りだし重量を測定したところ
、1α1gであった。このことからクロムの蒸着量は[
lLlgであり、粉末が球状で平滑な表面を有すると仮
定して計算すると、被覆の厚さは(112ミクロンと求
められた。
After 10 minutes of vapor deposition, the powder was taken out and its weight was measured, and it was found to be 1α1 g. From this, the amount of chromium deposited is [
The coating thickness was determined to be 112 microns, assuming that the powder was spherical and had a smooth surface.

実施例2 平均粒子径56ミクロンのニッケル粉末509をスパッ
タリング装置の試料容器に入れ、酸化アルミニウムのタ
ーゲットをターゲットホルダーにセットした。スパッタ
リング装置内を脱気し、アルゴンガスを流して圧力を5
 X 10−’Torrに保った。試料容器は毎分10
0回転で回転させ、さらにバイブレータ−で振動を与え
て粒子を流動。
Example 2 Nickel powder 509 having an average particle diameter of 56 microns was placed in a sample container of a sputtering device, and an aluminum oxide target was set in a target holder. Degas the inside of the sputtering equipment, and flow argon gas to reduce the pressure to 5.
X 10-'Torr was maintained. sample container 10 times per minute
It is rotated at 0 rotations and further vibrated with a vibrator to flow the particles.

回転させた。500Wで11時間RF’スパッタリング
を行った。分析値より試料の形状を平滑な球状として計
算した酸化アルミニウム被膜の厚さは約1ミクロンであ
った。
Rotated. RF' sputtering was performed at 500W for 11 hours. The thickness of the aluminum oxide coating was calculated from the analytical values assuming that the sample had a smooth spherical shape, and was about 1 micron.

実施例3 平均粒子径15ミクロンの酸化ジルコニウムの粉末20
りをスパッタリング装置の試料容器に入れ、アルミニウ
ムターゲットをターゲットホルダーにセットした。スパ
ッタリング装置内を脱気し、アルゴンガスを流して圧力
を5 X 10−’ Torrに保った、試料容器を毎
分600回転回転させ、8ケ所に固定した邪魔板で粉末
の動きを変化させて粒子を流動1回転させた。500W
の電力で6時間マグネトロンスパッタリングを行った。
Example 3 Zirconium oxide powder 20 with an average particle size of 15 microns
The sample was placed in a sample container of a sputtering device, and an aluminum target was set in the target holder. The inside of the sputtering apparatus was degassed and argon gas was flowed to maintain the pressure at 5 × 10-' Torr.The sample container was rotated at 600 revolutions per minute, and the movement of the powder was changed using baffles fixed at eight locations. The particles were subjected to one rotation of the flow. 500W
Magnetron sputtering was performed for 6 hours with a power of .

次いでターゲットを銅ターゲツトに交換し、同じ条件で
3時間マグネトロンスパッタリングを行った。分析値よ
り粉末の形状を平滑な球状として計算した皮膜の厚さは
アルミニウム1ミクロン、銅a、bミクロンであった。
Next, the target was replaced with a copper target, and magnetron sputtering was performed under the same conditions for 3 hours. The thickness of the film calculated from the analytical values assuming that the powder was smooth and spherical was 1 micron for aluminum and A and B microns for copper.

実施例4 平均粒子径150ミクロンの塩ビ粉末59をスパッタリ
ング装置の試料容器に入れ、銅のターゲットをターゲッ
トホルダーにセットした。スパッタリング装置内を脱気
し、アルゴンガスな流して圧力を3 X 10−’To
rrに保った。試料容器は毎分300回転回転させ、さ
らにバイブレータ−で容器を振動させて粉末を流動0回
転させた。500Wの電力でマグネトロンスパッタリン
グを1時間行った。分析値から塩ビ粉末を平滑な球状と
して計算した銅の厚さは2ミクロンであった。
Example 4 PVC powder 59 having an average particle diameter of 150 microns was placed in a sample container of a sputtering device, and a copper target was set in a target holder. The inside of the sputtering equipment was degassed and argon gas was introduced to increase the pressure to 3 x 10-'To.
I kept it at rr. The sample container was rotated at 300 revolutions per minute, and the container was further vibrated with a vibrator to cause the powder to flow and rotate at zero revolutions. Magnetron sputtering was performed at a power of 500 W for 1 hour. The thickness of the copper calculated from the analytical values assuming that the PVC powder was smooth and spherical was 2 microns.

Claims (1)

【特許請求の範囲】 1、真空中で物質を気化し、流動及び/又は回転してい
る粉末の表面に付着させることにより他の物質で被覆す
ることを特徴とする複合粉末の製造方法。 2、真空中で物質を気化し付着させる方法がスパッタリ
ング、真空蒸着又はイオンプレーティングである特許請
求の範囲第一項記載の製造方法。
[Claims] 1. A method for producing a composite powder, characterized in that the substance is vaporized in vacuum and coated with another substance by adhering it to the surface of the flowing and/or rotating powder. 2. The manufacturing method according to claim 1, wherein the method of vaporizing and depositing the substance in vacuum is sputtering, vacuum evaporation, or ion plating.
JP60252907A 1985-11-13 1985-11-13 Production of composite powder Pending JPS62112704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60252907A JPS62112704A (en) 1985-11-13 1985-11-13 Production of composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252907A JPS62112704A (en) 1985-11-13 1985-11-13 Production of composite powder

Publications (1)

Publication Number Publication Date
JPS62112704A true JPS62112704A (en) 1987-05-23

Family

ID=17243824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252907A Pending JPS62112704A (en) 1985-11-13 1985-11-13 Production of composite powder

Country Status (1)

Country Link
JP (1) JPS62112704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287202A (en) * 1988-05-13 1989-11-17 Morimichi Fujiyoshi Manufacture of fine metal powder and fine metal powder
JPH0421739A (en) * 1989-06-09 1992-01-24 Matsushita Electric Ind Co Ltd Composite and its manufacture
US5147686A (en) * 1988-03-17 1992-09-15 Ishihara Sangyo Kaisha, Ltd. Method of making titanium oxide powder having antimicrobial metal supported thereon
WO1996021050A1 (en) * 1994-12-29 1996-07-11 Spray Tech, Inc. Clad plastic particles suitable for thermal spraying

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147686A (en) * 1988-03-17 1992-09-15 Ishihara Sangyo Kaisha, Ltd. Method of making titanium oxide powder having antimicrobial metal supported thereon
JPH01287202A (en) * 1988-05-13 1989-11-17 Morimichi Fujiyoshi Manufacture of fine metal powder and fine metal powder
JPH0421739A (en) * 1989-06-09 1992-01-24 Matsushita Electric Ind Co Ltd Composite and its manufacture
WO1996021050A1 (en) * 1994-12-29 1996-07-11 Spray Tech, Inc. Clad plastic particles suitable for thermal spraying
US5660934A (en) * 1994-12-29 1997-08-26 Spray-Tech, Inc. Clad plastic particles suitable for thermal spraying
US5718970A (en) * 1994-12-29 1998-02-17 Longo; Frank N. Thermal sprayed coating containing plastic
US5885663A (en) * 1994-12-29 1999-03-23 Spray-Tech, Inc. Method for depositing a coating containing plastic on a surface

Similar Documents

Publication Publication Date Title
US6355146B1 (en) Sputtering process and apparatus for coating powders
US20060251917A1 (en) Method for magnetron sputter deposition
US5853816A (en) Method of coating a sputter cathode with a layer of material to be applied to a substrate by sputtering
CN1793416A (en) Apparatus and tech., for composite preparing metal film
CA1193227A (en) Magnetron sputtering apparatus
JP3294263B2 (en) Process for producing coatings and workpieces coated in this way
WO2006083725A2 (en) Vacuum deposition of coating materials on powders
JPH0333778B2 (en)
JPS62112704A (en) Production of composite powder
JPH03153864A (en) Method and device for surface coating of particle
JPH03173798A (en) Formation of high temperature gas corrosion layer deposited electrically
US6200643B1 (en) Methods for coating substrates
CN116288206B (en) Method for preparing Au-Sn alloy solder by magnetron co-sputtering
JPH01147065A (en) Formation of film on powder
CN113278931A (en) Method for thickening magnetron sputtering coating on surface of composite material
US3752691A (en) Method of vacuum evaporation
RU2649355C1 (en) METHOD OF SYNTHESIS OF TiN-Cu COMPOSITE COATINGS AND DEVICE FOR ITS IMPLEMENTATION
CN104271793B (en) High surface area coatings
AU613530B2 (en) Preparation method of amorphous multilayer alloy films
JPH06158350A (en) Method for coating substrate
JPS62139801A (en) Sintering method
JPS63199806A (en) Production of sintered body
BE1030855B1 (en) Conductive sputtering target and method for depositing a layer with it
JPH06101021A (en) Production of alloy type sputtered film
JP2001115259A (en) Magnetron sputtering system