JPS62112337A - Inspection of semiconductor device - Google Patents

Inspection of semiconductor device

Info

Publication number
JPS62112337A
JPS62112337A JP25221385A JP25221385A JPS62112337A JP S62112337 A JPS62112337 A JP S62112337A JP 25221385 A JP25221385 A JP 25221385A JP 25221385 A JP25221385 A JP 25221385A JP S62112337 A JPS62112337 A JP S62112337A
Authority
JP
Japan
Prior art keywords
semiconductor device
liquid crystal
heat
infrared
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25221385A
Other languages
Japanese (ja)
Inventor
Hirokazu Yuasa
湯淺 啓和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25221385A priority Critical patent/JPS62112337A/en
Publication of JPS62112337A publication Critical patent/JPS62112337A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the heating distribution to be inspected accurately and efficiently by a method wherein infrared rays are used jointly to inspect the heating distribution on the surface of a semiconductor device using liquid crystal. CONSTITUTION:A semiconductor device 1 is thinly and evenly coated with liquid crystal 2. The device 1 driven by a driving circuit 3 is supplied with specified power supply voltage, input signal and output load. Besides, a thermostatic oven 4 shuts off any external temperature fluctuation to maintain the ambient temperature of device 1 constant. In the thermostatic oven 4, an infrared ray source 5 emits even infrared rays to heat the surface of semiconductor device 1 and the liquid crystal 2 evenly while an infrared ray beam source 6 emits finely throttled infrared ray beams to heat any one liquid crystal on the point. Finally a beam controller 7 controls the infrared ray beams to scan the surface of semiconductor device 1 while an optical microscope 8 observes any optical change of liquid crystal. Through these procedures, the results of observation can be stored in an image memory 9 to be converted into a heating distribution chart by an image processor 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の検査方法に関し、特に半導体装置
の表面の発熱分布を検査する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of testing a semiconductor device, and more particularly to a method of testing heat distribution on the surface of a semiconductor device.

〔概 要〕〔overview〕

本発明は、半導体装置の表面に液晶を均一に塗布し、特
定温度で液晶の光学的特性が変化することを利用して半
導体装置の表面の発熱分布を検査する半導体装置の検査
方法において、 半導体装置の表面に赤外線を照射しながら検査を行うこ
とにより、 半導体装置の表面の発熱分布を正確に、能率よく経済的
に検査できるようにしたものである。
The present invention provides a method for inspecting a semiconductor device in which the surface of the semiconductor device is uniformly coated with liquid crystal and the optical characteristics of the liquid crystal change at a specific temperature to inspect the heat distribution on the surface of the semiconductor device. By performing the inspection while irradiating the surface of the device with infrared rays, it is possible to accurately, efficiently and economically inspect the heat distribution on the surface of the semiconductor device.

〔従来の技術〕[Conventional technology]

従来、この種の検査方法としては、特定温度で光学的特
性が変化する液晶を半導体装置の表面に均一に塗布し、
その半導体装置を液晶の光学的特性が変化する温度より
低い温度に保たれた恒温槽内に設置し、半導体装置に所
定の電源電圧、入力信号および出力負荷を接続して動作
させ、光学顕微鏡で半導体装置の表面を観察し、液晶の
光学的特性が変化した領域を知ることによって、半導体
装置の表面の発熱分布を検査する方法となっていた。
Conventionally, this type of inspection method involves uniformly coating the surface of a semiconductor device with liquid crystal whose optical properties change at a specific temperature.
The semiconductor device is placed in a thermostatic chamber kept at a temperature lower than the temperature at which the optical characteristics of the liquid crystal change, and the semiconductor device is operated by connecting a predetermined power supply voltage, input signal, and output load. This has been a method of inspecting the heat generation distribution on the surface of a semiconductor device by observing the surface of the semiconductor device and determining areas where the optical characteristics of the liquid crystal have changed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の検査方法では、半導体装置
の表面の発熱分布を、液晶の光学的特性が変化する温度
と恒温槽の温度との差と、半導体装置の発熱による温度
上昇とを比較することによって検査していたので、半導
体装置の表面の発熱分布を知るためには、光学的特性が
変化する温度が異なる液晶を多種類用いるか、恒温槽の
温度を変化させるかする必要があった。しかるに、多種
類の液晶を用いることは、液晶を半導体装置の表面から
除去し、再び塗布しなければならないので非能率的であ
ること、高価な液晶を多種類必要なため非経済的である
こと、多種類の液晶を用いても連続的に発熱分布を知る
ことができない、二と、液晶の交換が終わるごとに半導
体装置を恒温槽内に設置して温度が安定するまで待たな
ldればならないため非能率的である等の欠点があった
In the conventional semiconductor device inspection method described above, the heat generation distribution on the surface of the semiconductor device is compared with the difference between the temperature at which the optical characteristics of the liquid crystal change and the temperature of the constant temperature oven, and the temperature rise due to the heat generation of the semiconductor device. In order to determine the distribution of heat generation on the surface of a semiconductor device, it was necessary to use multiple types of liquid crystals with different temperatures at which their optical properties change, or to vary the temperature of the thermostat. . However, using multiple types of liquid crystals is inefficient because the liquid crystal must be removed from the surface of the semiconductor device and reapplied, and it is uneconomical because multiple types of expensive liquid crystals are required. Second, it is not possible to continuously determine the heat distribution even if many types of liquid crystals are used.Secondly, if you do not place the semiconductor device in a constant temperature oven and wait until the temperature stabilizes every time you replace the liquid crystal. There were drawbacks such as inefficiency and inefficiency.

さらに、恒温槽を温度変化させることは、恒温槽の温度
設定を変化させる度ごとに、恒温槽内の温度が安定する
まで待たなければならないため非能率的である欠点があ
った。また、恒温槽の温度を徐々に変化させながら液晶
の変化を観察する方法もあるが、半導体装置を駆動する
ための配線等からの熱伝導や、それらの熱容量により半
導体装置の表面に対する恒温槽の設定温度の伝わり方が
不均一になり、正確な発熱分布の検査ができない欠点が
あった。
Furthermore, changing the temperature of the thermostatic oven has the drawback of being inefficient because it is necessary to wait until the temperature inside the thermostatic oven stabilizes each time the temperature setting of the thermostatic oven is changed. Another method is to observe changes in the liquid crystal while gradually changing the temperature of the thermostatic oven, but due to heat conduction from the wiring for driving the semiconductor device and their heat capacity, There was a drawback that the set temperature was transmitted unevenly, making it impossible to accurately inspect the heat distribution.

本発明の目的は、上記の欠点を除去することにより、半
導体装置の表面の発熱分布を正確にしがも能率よく経済
的に検査できる半導体装置の検査方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for testing a semiconductor device that can accurately, efficiently, and economically test the heat distribution on the surface of a semiconductor device by eliminating the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の検査方法は、半導体装置の表面に
液晶を均一に塗布し、特定温度で液晶の光学的特性が変
化することを利用して上記半導体装置の表面の発熱分布
を検査する半導体装置の検査方法において、上記半導体
装置の表面に赤外線を照射しながら上記発熱分布を検査
することを特徴とする。
The semiconductor device inspection method of the present invention involves uniformly applying liquid crystal to the surface of the semiconductor device, and inspecting the heat generation distribution on the surface of the semiconductor device by utilizing the fact that the optical characteristics of the liquid crystal change at a specific temperature. The device inspection method is characterized in that the heat generation distribution is inspected while irradiating the surface of the semiconductor device with infrared rays.

また本発明の半導体装置の検査方法は、赤外線を被測定
表面に均一に照射することが好ましい。
Further, in the semiconductor device inspection method of the present invention, it is preferable that the surface to be measured is uniformly irradiated with infrared rays.

さらに、本発明の半導体装置の検査方法は、赤外線をビ
ーム状に細く絞って走査しながら照射することが好まし
い。
Further, in the semiconductor device inspection method of the present invention, it is preferable that the infrared rays be focused into a narrow beam and irradiated while scanning.

さらにまた、本発明の半導体装置の検査方法は、赤外線
をビーム状に細く絞りパルス的に照射することが好まし
い。
Furthermore, in the method for inspecting a semiconductor device of the present invention, it is preferable that infrared rays be irradiated in a narrow beam-like manner in a pulsed manner.

〔作 用〕[For production]

本発明は、恒温槽の温度設定を変化させるかわりに、例
えば赤外線を半導体装置の表面に均一に照射することに
よって、半導体装置の表面に均一、かつ迅速に熱を与え
ることができ、これにより半導体装置の表面の発熱分布
を得ることができる。
The present invention makes it possible to uniformly and quickly apply heat to the surface of a semiconductor device by uniformly irradiating the surface of the semiconductor device with, for example, infrared rays instead of changing the temperature setting of a thermostatic oven. The heat distribution on the surface of the device can be obtained.

また、本発明は、動作中の半導体装置の表面にビーム状
に細く絞った赤外線、例えば赤外線レーザ光を照射し、
赤外線の照射点の周囲で液晶の光学的特性が変化した領
域の面積を測定しながら赤外線ビームを半導体装置の表
面上で走査する。液晶の光学的特性が変化した領域の面
積は照射点の発熱量に比例するので、赤外線の1回の走
査で半導体装置の表面の発熱分布を得ることができる。
Further, the present invention irradiates the surface of an operating semiconductor device with a narrow beam of infrared light, such as infrared laser light,
The infrared beam is scanned over the surface of the semiconductor device while measuring the area of the region where the optical properties of the liquid crystal have changed around the infrared irradiation point. Since the area of the region where the optical properties of the liquid crystal have changed is proportional to the amount of heat generated at the irradiation point, it is possible to obtain the heat generation distribution on the surface of the semiconductor device with one scan of infrared rays.

さらに、本発明は、動作中の半導体装置の表面にビーム
状に細く絞った赤外線をパルス的に照射し、赤外線ビー
ムパルスの照射点の周囲で液晶の光学的特性が変化した
領域の面積、またはその面積が増加する速さを測定しな
がら赤外線ビームパルスを半導体装置の表面上へ走査す
る。液晶の光学的特性が変化した領域の面積、およびそ
の面積の増加する速さは照射点の発熱量に比例するので
、赤外線ビームの1回の走査で半導体装置の表面の発熱
分布を得ることができる。
Furthermore, the present invention irradiates the surface of an operating semiconductor device with infrared rays narrowly focused into a beam in a pulsed manner, and detects the area of the region where the optical characteristics of the liquid crystal have changed around the irradiation point of the infrared beam pulse, or An infrared beam pulse is scanned over the surface of the semiconductor device while measuring the rate at which its area increases. Since the area of the region where the optical properties of the liquid crystal have changed and the rate at which the area increases are proportional to the amount of heat generated at the irradiation point, it is possible to obtain the heat generation distribution on the surface of the semiconductor device with one scan of the infrared beam. can.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施するための検査装置の一実
施例構成図である。半導体装置1には薄く均一に液晶2
が塗布されている。駆動回路3は半導体装置1を動作さ
せるための所定の電源電圧、入力信号および出力負荷を
半導体装置lに印加する。恒温槽4は発熱分布の測定に
誤差を与える恐れのある外界の温度変動を遮断し、半導
体装置1の周囲温度を一定に保つ。赤外線光源5は半導
体装W1の表面、および液晶2に均一に熱を与えるため
の均一な赤外線を発生する。赤外線ビーム光源6は半導
体装置lの表面」二の一点およびその点の液晶2に熱を
与えるための細く絞った赤外線ビームを発生する。
FIG. 1 is a block diagram of an embodiment of an inspection apparatus for carrying out the method of the present invention. A thin and uniform liquid crystal 2 is placed on the semiconductor device 1.
is coated. The drive circuit 3 applies a predetermined power supply voltage, input signal, and output load to the semiconductor device 1 to operate the semiconductor device 1. The thermostat 4 blocks external temperature fluctuations that may cause errors in the measurement of heat generation distribution, and keeps the ambient temperature of the semiconductor device 1 constant. The infrared light source 5 generates uniform infrared light to uniformly heat the surface of the semiconductor device W1 and the liquid crystal 2. The infrared beam light source 6 generates a narrow infrared beam for applying heat to one point on the surface of the semiconductor device 1 and the liquid crystal 2 at that point.

ビーム制御部7は、赤外線ビームを連続的に、またはパ
ルス的に照射するように制御する。また、ビーム制御部
7は、赤外線ビームが半導体装置1の表面上を走査する
ように制御する。光学顕微鏡8は液晶の光学的特性の変
化を観察するためのもので、観察結果は画像として画像
記憶装置9に記憶され、画像処理装置10で発熱分布図
に変換される。
The beam control unit 7 controls the infrared beam to be emitted continuously or in a pulsed manner. The beam control unit 7 also controls the infrared beam to scan the surface of the semiconductor device 1 . The optical microscope 8 is used to observe changes in the optical characteristics of the liquid crystal, and the observation results are stored as images in an image storage device 9 and converted into a heat generation distribution diagram by an image processing device 10.

第2図(司、(bl、<e+は1、第1図において、赤
外線光源5により赤外線を均一に照射することにより得
られた液晶2の光学的特性の観察結果例の模式図である
。第2図は(al、(1))、(C)の順で均一な赤外
線を照射し始めてからの時間が経過している。発熱によ
って液晶の光学的特性が変化した液晶特定変化領域1)
を斜線で示している。赤外線を照射し始めた直後では、
液晶が赤外線から受は取る熱量がまだ少ないため、第2
図(a)に示すように、特に発熱量の多い部分の液晶の
光学的特性だけが変化している。すなわち、第2図(a
)の斜線の部分では特に発熱が多いことを示している。
FIG. 2 is a schematic diagram of an example of the observation results of the optical characteristics of the liquid crystal 2 obtained by uniformly irradiating infrared rays from the infrared light source 5 in FIG. 1. Figure 2 shows the elapsed time from the start of uniform infrared ray irradiation in the order of (al, (1)), and (C).Liquid crystal specific change area 1) where the optical characteristics of the liquid crystal changed due to heat generation.
is indicated by diagonal lines. Immediately after starting to irradiate infrared rays,
The amount of heat that the liquid crystal receives from infrared rays is still small, so the second
As shown in Figure (a), only the optical characteristics of the liquid crystal in the portion where the amount of heat generated is particularly large is changed. That is, Fig. 2 (a
) indicates that heat generation is particularly high in the shaded area.

さらに均一な赤外線を照射し続けると、液晶が赤外線か
ら受ける熱量が増大し、第2図tb)に示すよ・うに、
次に発熱の多い領域の液晶の光学的特性が変化する。さ
らに均一な赤外線を照射し続けると、第2図ic)に示
すように、はとんどの領域の液晶の光学的特性が変化す
る。第2図(C)で斜線のない部分は、はとんど発熱の
ない領域であることを意味している。
If the infrared rays are further uniformly irradiated, the amount of heat that the liquid crystal receives from the infrared rays will increase, as shown in Figure 2 (tb).
Next, the optical properties of the liquid crystal in areas that generate a lot of heat change. When uniform infrared rays are further irradiated, the optical characteristics of the liquid crystal in most regions change, as shown in FIG. 2 (ic). In FIG. 2(C), the area without diagonal lines means an area where almost no heat is generated.

この3枚の画像に各々別の色を付け、画像処理装置10
で重ね合わせれば発熱分布図が得られる。
Each of these three images is given a different color, and the image processing device 10
By overlapping them, a heat distribution map can be obtained.

第3図は、第1図において赤外線ビーム光源6とビーム
制御部7とにより赤外線をビーム状に細く絞って走査し
ながら照射した場合の、ある時点における液晶2の光学
的特性の変化の観察結果の模式図である。同図において
斜線部は液晶2の光学的特性が変化した液晶特性変化領
域1)であり、その液晶特性変化領域1)の中央付近に
ある黒点が細く絞った赤外線ビームを照射している赤外
線ビーム照射点12である。液晶特性変化領域1)の大
きさは赤外線ビーム照射点12の発熱量に比例するので
、液晶特性変化領域1)の大きさを測定しながら赤外線
ビームを走査し、液晶特性変化領域1)の大きさに比例
して輝度を変調して表示すれば発熱分布図が得られる。
FIG. 3 shows the observed results of changes in the optical characteristics of the liquid crystal 2 at a certain point in time when the infrared beam source 6 and the beam controller 7 narrow the infrared beam into a narrow beam and irradiate it while scanning in FIG. 1. FIG. In the figure, the shaded area is the liquid crystal property change area 1) where the optical properties of the liquid crystal 2 have changed, and the black dot near the center of the liquid crystal property change area 1) is the infrared beam that is irradiated with a narrow infrared beam. This is the irradiation point 12. Since the size of the liquid crystal property changing area 1) is proportional to the amount of heat generated at the infrared beam irradiation point 12, the infrared beam is scanned while measuring the size of the liquid crystal property changing area 1), and the size of the liquid crystal property changing area 1) is determined. If the brightness is modulated and displayed in proportion to the temperature, a heat generation distribution map can be obtained.

また、赤外線ビームをパルス的に照射して半導体装置の
表面の発熱分布を検査する場合には、ある時点における
液晶の光学的特性の変化を観察した図は第3図と同様と
なる。ただし、この場合、赤外線ビームはパルス的に照
射するので、照射開始から一定時間後の液晶特性変化領
域1)の大きさ、またはその大きさが増加する割合を測
定して、この測定値を輝度信号とし、赤外線ビームの走
査位置を発熱分布の位置情報として画像を作れば発熱分
布図から得られる。赤外線ビーム照射による場合には、
1回の赤外線ビームの走査で発熱分布図を得ることがで
きるが、多数回の走査によって得た発熱分布を重ね合わ
せることによって測定値の誤差を低減させ、さらに精度
のよい発熱分布図を得ることも可能である。
Furthermore, when the heat generation distribution on the surface of a semiconductor device is inspected by pulsed infrared beam irradiation, a diagram showing changes in the optical characteristics of the liquid crystal at a certain point in time is similar to FIG. 3. However, in this case, the infrared beam is irradiated in a pulsed manner, so the size of the liquid crystal characteristic change area 1) or the rate at which the size increases after a certain period of time from the start of irradiation is measured, and this measured value is used as the brightness. If an image is created using the scanning position of the infrared beam as a signal and the positional information of the heat generation distribution, it can be obtained from a heat generation distribution map. In the case of infrared beam irradiation,
Although it is possible to obtain a heat generation distribution map with a single infrared beam scan, it is possible to reduce errors in measurement values and obtain a more accurate heat generation distribution map by overlapping heat generation distributions obtained through multiple scans. is also possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、液晶を用いて半導体装
置の表面の発熱分布を検査する方法において、赤外線を
併用することにより、発熱分布を正確にかつ能率よく経
済的に検査ができる効果がある。
As explained above, the present invention has the advantage that in a method of inspecting the heat distribution on the surface of a semiconductor device using a liquid crystal, the heat distribution can be accurately, efficiently, and economically inspected by using infrared light in combination. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の検査方法を実施するだめの検査装置の
一実施例の構成図。 第2図(a)、(b)、(C1および第3図はそれぞれ
検査結果の一例を示す模式図。 1・・・半導体装置、2・・・液晶、3・・・駆動回路
、4・・・恒温槽、5・・・赤外線光源、6・・・赤外
線ビーム光源、7・・・ビーム制御部、8・・・光源顕
微鏡、9・・・画像記憶装置、10・・・画像処理装置
、1)・・・液晶特性変化領域、12・・・赤外線ビー
ム照射点。 、鷹、′ ・−・ジ′ 実施例 7fi1(21 (α) フ、 兜 (b)          (c) 判例 2 図 コ
FIG. 1 is a configuration diagram of an embodiment of an inspection apparatus for carrying out the inspection method of the present invention. Figures 2 (a), (b), (C1 and Figure 3 are schematic diagrams showing examples of inspection results, respectively. 1... Semiconductor device, 2... Liquid crystal, 3... Drive circuit, 4... ... Constant temperature bath, 5... Infrared light source, 6... Infrared beam light source, 7... Beam control section, 8... Light source microscope, 9... Image storage device, 10... Image processing device , 1)...Liquid crystal characteristic change area, 12...Infrared beam irradiation point. , hawk,'・-・ji' Example 7 fi1 (21 (α) Fu, Kabuto (b) (c) Case 2

Claims (4)

【特許請求の範囲】[Claims] (1)半導体装置の表面に液晶を均一に塗布し、特定温
度で液晶の光学的特性が変化することを利用して上記半
導体装置の表面の発熱分布を検査する半導体装置の検査
方法において、 上記半導体装置の表面に赤外線を照射しながら上記発熱
分布を検査する ことを特徴とする半導体装置の検査方法。
(1) In a method for inspecting a semiconductor device, which involves uniformly applying liquid crystal to the surface of the semiconductor device and inspecting the heat generation distribution on the surface of the semiconductor device by utilizing the fact that the optical characteristics of the liquid crystal change at a specific temperature, the method includes: A method for inspecting a semiconductor device, comprising inspecting the heat generation distribution while irradiating the surface of the semiconductor device with infrared rays.
(2)赤外線を被測定表面に均一に照射する特許請求の
範囲第(1)項に記載の半導体装置の検査方法。
(2) The method for inspecting a semiconductor device according to claim (1), wherein the surface to be measured is uniformly irradiated with infrared rays.
(3)赤外線をビーム状に細く絞って走査しながら照射
する特許請求の範囲第(1)項に記載の半導体装置の検
査方法。
(3) The method for inspecting a semiconductor device according to claim (1), in which the infrared rays are focused into a narrow beam and irradiated while scanning.
(4)赤外線をビーム状に細く絞りパルス的に照射する
特許請求の範囲第(1)項に記載の半導体装置の検査方
法。
(4) The method for inspecting a semiconductor device according to claim (1), in which infrared rays are irradiated in a narrow beam-like pulsed manner.
JP25221385A 1985-11-11 1985-11-11 Inspection of semiconductor device Pending JPS62112337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25221385A JPS62112337A (en) 1985-11-11 1985-11-11 Inspection of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25221385A JPS62112337A (en) 1985-11-11 1985-11-11 Inspection of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62112337A true JPS62112337A (en) 1987-05-23

Family

ID=17234078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25221385A Pending JPS62112337A (en) 1985-11-11 1985-11-11 Inspection of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62112337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520210A (en) * 2008-04-17 2011-07-14 テラダイン、 インコーポレイテッド Disk drive emulator and its usage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520210A (en) * 2008-04-17 2011-07-14 テラダイン、 インコーポレイテッド Disk drive emulator and its usage

Similar Documents

Publication Publication Date Title
US5971608A (en) Apparatus for inspecting bump junction of flip chips and method of inspecting the same
KR920008783B1 (en) Control method of heat treatment apparatus for substrate
US5774259A (en) Photorestrictive device controller and control method therefor
JP6433543B2 (en) X-ray analyzer
US8040146B2 (en) Inspection apparatus having a heating mechanism for performing sample temperature regulation
CN106896138A (en) One kind scanning thermal excitation infrared imaging detecting system and method
US4618934A (en) Ultrasonic microscope apparatus
US10955458B2 (en) Semiconductor device inspection apparatus and semiconductor device inspection method
JPS62112337A (en) Inspection of semiconductor device
JP2006343325A (en) Device and method for measuring thermophysical property
JPH02119128A (en) Laser annealing system
JP2005188933A (en) Tft array inspection device
KR101298974B1 (en) Apparatus and method for processing images through light sources control and image calibration
US20210356405A1 (en) Inspection apparatus and inspection method
JP5358373B2 (en) Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JPH11238483A (en) Charged particle beam device
JPH11329993A (en) Device and method for board processing
JP5389586B2 (en) Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JPH09265931A (en) Image acquisition device and its method
US20200393660A1 (en) Method and optical arrangement for ascertaining a resultant power of radiation in a sample plane
JP2008051719A (en) Crystallinity measuring instrument of thin-film semiconductor and its crystallinity measuring method
EP3974849B1 (en) Control method of inspection apparatus and inspection apparatus
JPH11211612A (en) Light radiation device for inspection of photo sensor and photo sensor inspection device using the same
JPH02278148A (en) Soldering inspecting device
JP2003106978A (en) Optical radiation pressure measuring device