JPS62112241A - Semiconductor laser for optical head - Google Patents

Semiconductor laser for optical head

Info

Publication number
JPS62112241A
JPS62112241A JP60250632A JP25063285A JPS62112241A JP S62112241 A JPS62112241 A JP S62112241A JP 60250632 A JP60250632 A JP 60250632A JP 25063285 A JP25063285 A JP 25063285A JP S62112241 A JPS62112241 A JP S62112241A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical recording
face
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60250632A
Other languages
Japanese (ja)
Inventor
Hiroo Ukita
宏生 浮田
Tomoyuki Toshima
戸島 知之
Yoshinori Isomura
磯村 嘉伯
Yuji Uenishi
祐司 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60250632A priority Critical patent/JPS62112241A/en
Publication of JPS62112241A publication Critical patent/JPS62112241A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To suppress the output change and to stabilize the recording action by forming the optical recording media side output edge surface by inclining in to the light axis and forming the reflecting edge surface of the semiconductor laser opposite to the output edge surface vertically to the light axis. CONSTITUTION:For the formation of the edge surface of the semiconductor laser, to constitute the laser resonator, a light axis 31 of the semiconductor laser arranges a reflecting edge surface 33 at an angle B diagonal to the reflecting surface of optical recording media 21 and the light axis 31 is made vertical to the optical recording media 21 and the reflecting edge surface 33. Namely, the light axis is inclined in the thickness direction of a semiconductor laser 14. In case of the semiconductor laser 14 provided on a heat sink 34, at an output edge surface 32, the laser light is almost refracted, comes out into an air 35 and reflected on the optical recording media surface, and thereafter, a light R1 to return into the activated layer is specially minimized. Thus, the modulating degree of the light strength due to the interference with a reflecting light R2 from the optical recording media 21 is significantly reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、光ディスクなどの光記録媒体に対し非接触
で記録、または記録済情報を再生するために使用する光
ヘッド用半導体レーザの改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to improvements in semiconductor lasers for optical heads used for non-contact recording or reproducing recorded information on optical recording media such as optical disks. .

〈従来の技術〉 光ヘッドは第6図に示すように位置制御モータ1の駆動
によって回転するアーム2に取り付け、光ヘッドから出
射する光ビームを光記録媒体面4に射出し、情報の記録
又は再生に使用される。従来のこの種の光ヘッドは、第
7図に示すようにケース5中に収納した半導体レーザ6
などの光源から放射された光ビームを半透明鏡7、光集
束レンズ8を通して光記録媒体面にあて、所定の情報を
記録したり、記録ピットからの反射光を、光集束レンズ
8、半透明鏡7を介して光検出器9で検出し、情報を再
生する構造になっていた。
<Prior art> As shown in FIG. 6, an optical head is attached to an arm 2 that rotates by the drive of a position control motor 1, and a light beam emitted from the optical head is emitted onto an optical recording medium surface 4 to record or record information. used for playback. A conventional optical head of this type includes a semiconductor laser 6 housed in a case 5, as shown in FIG.
A light beam emitted from a light source, such as The structure was such that the information was detected by a photodetector 9 via a mirror 7 and reproduced.

しかし、上記構造の光ヘッドは光源6、半透明鏡7、光
集束レンズ8の各部品が有機的な関係をもつように組立
てられて(よいるが、装置を小型化しようとしても一定
の限度がある。したがって、このような光ヘッドを光記
録媒体に対し円滑に動かそうとすると駆動装置を大型に
しなければならなかった。
However, in the optical head with the above structure, the light source 6, semi-transparent mirror 7, and light focusing lens 8 are assembled in such a way that they have an organic relationship. Therefore, in order to smoothly move such an optical head relative to an optical recording medium, the drive device had to be made large.

そこで、本発明者等は、このような光ヘッドを小型化で
・きかっ信頼性の高い光ヘッドとして、特願昭59−1
86406号において、第8図に示すように半導体基板
10上に 液相またば気相成長法により下々ラッド層1
1、活性層12、上クラッド層13等を成長させ、PN
接合層を有する半導体ウーハ−の中央部に半導体レーザ
部14を、その両側にウェハーの表面から活性層を越丸
る深さまで形成した絶縁溝15を隔てて光検出器16a
、16bを配した一体構成のものを使用すべきことを提
案した。
Therefore, the inventors of the present invention proposed a patent application filed in 1983 to develop such an optical head as a compact and highly reliable optical head.
No. 86406, as shown in FIG. 8, a rad layer 1 is formed on a semiconductor substrate 10 by liquid phase or vapor phase growth.
1. Grow the active layer 12, upper cladding layer 13, etc., and form the PN
A semiconductor laser section 14 is located in the center of a semiconductor woofer having a bonding layer, and photodetectors 16a are arranged on both sides of the semiconductor laser section 14 across an insulating groove 15 formed from the surface of the wafer to a depth extending beyond the active layer.
, 16b was proposed.

この構造の光ヘッド17は、上記構成要素の他に、半導
体レーザ1丁の上面に、上側電極18と光検出116a
、16b上面(?O′  光検出器用電極18a、]、
8bを設け、これら電極と反対側の基板10r面に、共
通電極19を設けている。半導体レーザ17の」ニアM
8’Ggは順方向に、光検出器上下電極は逆方向にバイ
アスされろ。
In addition to the above-mentioned components, the optical head 17 with this structure includes an upper electrode 18 and a photodetector 116a on the top surface of one semiconductor laser.
, 16b upper surface (?O′ photodetector electrode 18a, ],
8b, and a common electrode 19 is provided on the surface of the substrate 10r opposite to these electrodes. Near M of semiconductor laser 17
8'Gg should be biased in the forward direction, and the upper and lower photodetector electrodes should be biased in the opposite direction.

この光ヘッド17を、光記録媒体への記録または再生に
使用するときは、第9図に示すように、たとえば光ディ
スクの任意の場所に半導体レーザから出射されろ光の光
スポットを形成するために、光ディスク21の半径方静
A速移動できるアーム22J:のジンバルバネ23によ
って光デイスク面に近接浮上できるスライダー24に取
り付けて使用されろ。
When this optical head 17 is used for recording on or reproducing from an optical recording medium, as shown in FIG. , the arm 22J, which can move statically at a speed of A in the radial direction of the optical disc 21, is attached to a slider 24 that can fly close to the surface of the optical disc by means of a gimbal spring 23.

上述の光ヘッド17は半導体レーザ14から出射するレ
ーザ光25が活性層12と平行方向に向い、光ディスク
21のトラック案内溝(非図示)から反射回折光26 
a、 26 bをそれぞれ光検出器16 a、  16
 bで受け、両者の差信号によりトラック誤差イコ号を
、また、和信号からはデータ信号を得ることがで ゛き
ろ。
In the optical head 17 described above, the laser beam 25 emitted from the semiconductor laser 14 is oriented in a direction parallel to the active layer 12, and the reflected diffracted beam 26 is emitted from the track guide groove (not shown) of the optical disk 21.
a, 26 b are respectively photodetectors 16 a, 16
b, and the track error equal sign can be obtained from the difference signal between the two, and the data signal can be obtained from the sum signal.

〈発明が解決しようとする問題点〉 しかし、上記構造の光ヘッド用半導体レーザにおいては
、光記録媒体から反射回折されろ光の一部が半導体レー
ザに帰還し、半導体レーザの出力端面からの反射光と干
渉して半導体レーザの出力を変動させる欠点があった。
<Problems to be Solved by the Invention> However, in the semiconductor laser for an optical head having the above structure, a part of the light that is reflected and diffracted from the optical recording medium returns to the semiconductor laser, and some of the light is reflected from the output end face of the semiconductor laser. It has the disadvantage that it interferes with light and fluctuates the output of the semiconductor laser.

さらに具体的に説明すt]ば、光ヘッド用半導体レーザ
の出力端面と光記録媒体との間隔(浮上量)が半波長(
λ/2)を周期とする出力変動を生じ、信号のSN比を
低下させる。
More specifically, if the distance (flying height) between the output end face of the semiconductor laser for an optical head and the optical recording medium is half a wavelength (
This causes an output fluctuation with a period of λ/2), lowering the signal-to-noise ratio of the signal.

この発明はこのような、光ヘッド用半導体レーザの欠点
を除去するためになされたものであって、半導体レーザ
の出力端面と光記録媒体との間隔(浮上量)変化に起因
する出力変動を抑圧し、記録動作を安定させ、再生信号
のSN比の高い記録および再生を行いうる光ヘッド用半
導体レーザを提供しようとするものである。
This invention was made to eliminate these drawbacks of semiconductor lasers for optical heads, and suppresses output fluctuations caused by changes in the distance (flying height) between the output end face of the semiconductor laser and the optical recording medium. However, it is an object of the present invention to provide a semiconductor laser for an optical head that can perform recording and reproduction with a stable recording operation and a high signal-to-noise ratio of reproduced signals.

二間頂点を解決するhめの手段〉 を述の目的を達成すへく、この発明は光ヘッド用半導体
レーザを、その光記録媒体側出力端面を、光軸に傾斜さ
せて形成せしめると共に当該出力端面と対向する半導体
レーザの反射端面を光軸に対し垂直に形成しかつ光記録
媒体の反射面と互いにレーザ共振器を構成せしめること
を特徴とするものである。
In order to achieve the above object, the present invention forms a semiconductor laser for an optical head with its output end face on the optical recording medium side inclined to the optical axis. It is characterized in that the reflective end face of the semiconductor laser facing the output end face is formed perpendicular to the optical axis and forms a laser resonator together with the reflective face of the optical recording medium.

さらに、上記光ヘッド用半導体レーザにおいて、光記録
媒体側出力端面の好ましLN傾斜角θは、半導体レーザ
の活性層に垂直な1石に対し 56 ≦θ≦166 である。
Furthermore, in the above-mentioned semiconductor laser for an optical head, a preferable LN inclination angle θ of the output end face on the optical recording medium side is 56≦θ≦166 with respect to one stone perpendicular to the active layer of the semiconductor laser.

また、半導体レーザの端面の形成は、レーザ共振器を構
成させるために、半導体レーザの光軸31が反射端面3
3を、光記録媒体21の反射面に対角度βて配置し、光
軸31を光記録媒体21、反射端面33に垂直にする。
In addition, in forming the end face of the semiconductor laser, the optical axis 31 of the semiconductor laser is formed on the reflective end face 3 in order to form a laser resonator.
3 is placed at a diagonal angle β to the reflective surface of the optical recording medium 21, and the optical axis 31 is perpendicular to the optical recording medium 21 and the reflective end surface 33.

すなわち第1の方法は第1図(alに示すように、半導
体レーザ14の厚さ方向に傾斜させる方法、第2の方法
は第1図(blに示すように半導体レーザの活性層に平
行な面内でストライブ(幅S)の端部を光軸に対し傾斜
させる方法である。
That is, the first method is to tilt the semiconductor laser 14 in the thickness direction as shown in FIG. This is a method in which the end of the stripe (width S) is inclined with respect to the optical axis within the plane.

く作   用〉 以上のような構成になっているから、第1図(alのヒ
ートシンク34上に設置されり半導体レーザ14の(第
1図(alは厚み方向断面図)場合は、出力端面(傾斜
端面)32では殆んどレーザ光は屈折して大気中35に
出射し、光記録媒体面で反射された後活性層内に戻る光
R工は、従来の垂直端面の場合に比べて格段に少なくな
る。このため、光記録媒体21からの反射光へとの干渉
による光強度の変調度は著るしく低下する。
Since the structure is as described above, when the semiconductor laser 14 is installed on the heat sink 34 of FIG. 1 (al is a cross-sectional view in the thickness direction), the output end face ( At the inclined end face) 32, most of the laser light is refracted and emitted into the atmosphere 35, and after being reflected on the optical recording medium surface, the light beam returning into the active layer is much more dramatic than in the case of a conventional vertical end face. Therefore, the degree of modulation of the light intensity due to interference with the reflected light from the optical recording medium 21 is significantly reduced.

また第1図(b)の構成の場合は、半導体レーザ14の
活性層内の2光31a、31bを考えると、光記録媒体
からの反射光は、光路差Δlを生じるので、干渉効果を
抑圧できる。
Furthermore, in the case of the configuration shown in FIG. 1(b), considering the two beams 31a and 31b in the active layer of the semiconductor laser 14, the reflected light from the optical recording medium produces an optical path difference Δl, which suppresses the interference effect. can.

なお、Δlは次のように計算されろ。すなわち出力端面
31の傾斜角度をα、光記録媒体21と半導体レーザの
反射面(垂直端面)33とを互いにレーザ共振器を構成
させるための配位角度をβ、とすると、活性層の屈折率
3.6、出力端面の傾斜角度αを10°((7=10°
)とすれば、β=28.7になるから、光31a。
Note that Δl is calculated as follows. That is, if the inclination angle of the output end face 31 is α, and the alignment angle for mutually forming a laser resonator between the optical recording medium 21 and the reflecting surface (vertical end face) 33 of the semiconductor laser is β, then the refractive index of the active layer is 3.6, set the inclination angle α of the output end face to 10° ((7=10°
), then β=28.7, so light 31a.

31bの間隔(ストライプ幅)S=2戸とすれば、 Δl−= l −1= sm(a+β) −n stt
mao、23(牌) となる。
If 31b interval (stripe width) S = 2 houses, Δl-= l -1= sm(a+β) -n stt
mao becomes 23 (tiles).

波長^=0.87Jnの場合、Δl=0.2岬ごとに光
強度の山と谷を生ずることを考えると、共振器内の光線
間には、それぞれ光路差を生じ、それらが総合的に作用
しあって、全体として干渉効果が少なくなり、光記録媒
体と半導体レーザの出力端面の距g!(浮上量)変化に
よる半導体レーザの出力変動を抑圧できる。
In the case of wavelength ^ = 0.87Jn, considering that peaks and valleys of light intensity occur every Δl = 0.2 cape, optical path differences occur between the light rays in the resonator, and these are collectively As a result, the interference effect decreases as a whole, and the distance g between the optical recording medium and the output end face of the semiconductor laser decreases! Fluctuations in semiconductor laser output due to changes in flying height can be suppressed.

く実 施 例〉 次に、実施例を挙げてこの発明をより具体的に説明する
。ただし、以下に述べる実施例中、実施例1および2は
第1図(alに示す構成のものに対応し、実施例3およ
び4に示すものは第1図(b)に示す構成に対応する。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples. However, among the examples described below, Examples 1 and 2 correspond to the configuration shown in FIG. 1(al), and Examples 3 and 4 correspond to the configuration shown in FIG. 1(b). .

実  施  例  1 第2図は乙の発明の実施例にかかる光ヘッド用半導体レ
ーザ14の斜視図であり、第8図に示した従来構造の光
ヘッド中央部の半導体レーザ14に対応している。光記
録媒体側出力端面32は活性層12に垂直な面と角度α
だけ傾けて形成される。αは端面32における活性層に
帰還する反射光量を低減させる条件、半導体レーザ14
の反射端面を光記録媒体21に対しレーザ共振器を構成
する配位角βが90″を超えない条件から56≦a≦1
6@に定められろ。半導体レーザの主力端面と対向する
反射端面ば垂直画33である。電流の流入、流出は上側
電極18のストライブ41と下側電極19を通して行わ
れろ。ストライブ41は下側電極の下の絶縁層42  
(Si、、N、)により幅が2戸程度に形成され、電流
密度を高くしレーザ発振を生ぜしめろ。光ヘッド半導体
レーザ14は基板10 (n−GaAs )上にM相あ
るいは気相エビクキシャル成長法により順次下側クラッ
ドA 11 (n−GaAlAs ) 、活性層12 
 (GaAlAs)、上側クラッド層13(P−GaA
LAs )、キャップ層43  (P−GaAq )を
作成し、前述のストライブ形成用の絶縁層42 (Si
、、N、) 、上側電極18.下側電極19が形成され
ろ。この実施例の傾斜した出力端面ば例えばブロムメチ
ル液を使用した研磨により加工される。
Embodiment 1 FIG. 2 is a perspective view of a semiconductor laser 14 for an optical head according to an embodiment of the invention of B, and corresponds to the semiconductor laser 14 in the center of the optical head of the conventional structure shown in FIG. . The output end surface 32 on the optical recording medium side is at an angle α with a plane perpendicular to the active layer 12.
It is formed by tilting only. α is a condition for reducing the amount of reflected light returning to the active layer at the end face 32 of the semiconductor laser 14
56≦a≦1 under the condition that the configuration angle β of the laser resonator with respect to the optical recording medium 21 does not exceed 90″.
It should be set at 6@. The reflective end face facing the main power end face of the semiconductor laser is a vertical image 33. The current flows in and out through the stripes 41 of the upper electrode 18 and the lower electrode 19. The stripe 41 is an insulating layer 42 under the lower electrode.
(Si, N,) is formed to have a width of about two doors, and the current density is increased to generate laser oscillation. The optical head semiconductor laser 14 is formed by sequentially forming a lower cladding A 11 (n-GaAlAs) and an active layer 12 on a substrate 10 (n-GaAs) by M-phase or vapor phase eviaxial growth.
(GaAlAs), upper cladding layer 13 (P-GaA
LAs), a cap layer 43 (P-GaAq) was created, and the insulating layer 42 (Si
,,N,) , upper electrode 18. The lower electrode 19 is now formed. The inclined output end face of this embodiment is processed, for example, by polishing using a bromomethyl solution.

更  施  例  2 第3図(fこの発明にかかわる光ヘッド用半導体レーザ
14の他の実施例である。第2図との相異点は光記録媒
体側の出力端面32の形状7・1する。この実施例では
上側電極18から活性層12を超えろ深さまで(例えば
3岬)反応性イオンビームエツチング加工により、傾斜
面32を形成する。加工溝の底51がら下側電極19ま
で(例えばxoOm)はへき開により形成した垂直端面
である。
Further Example 2 FIG. 3 (f) This is another embodiment of the semiconductor laser 14 for an optical head according to the present invention.The difference from FIG. 2 is that the shape of the output end face 32 on the optical recording medium side is In this embodiment, the inclined surface 32 is formed by reactive ion beam etching from the upper electrode 18 to a depth exceeding the active layer 12 (for example, 3 capes).From the bottom 51 of the processing groove to the lower electrode 19 (for example, xoOm ) is the vertical end face formed by cleavage.

反応性イオンビームエツチング:よ、まず半導体レーザ
表面にマスク材となるT、02. S、q等の薄膜を形
成し、フォトレジストをスピンコードした後、反応性イ
オンビームエツチングにより、傾斜端面32を形成する
。次にこの半導体レーザをイオン軸の直交面に対してα
゛だけ傾けて配置し、C12を反応性ガスとして用いろ
反応性イオンビームエツチング法により活性層を超える
深さまでエツチングしスリットパターンを転写する。イ
オンビームスパッタ法ではイオンビームはイオン軸に対
してほぼ平行に流れる。またC12ガスを用いると半導
体レーザの基板であるGaAsとT 、02のエツチン
グ速度比は1o:1以上になるので例えばGaAsを3
1jOエツチングするとしてもT、02マスクの細りは
ほとんど生じない。それゆえ半導体レーザをイオン軸の
直交面に対してa。
Reactive ion beam etching: First, T, 02. After forming a thin film of S, q, etc. and spin-coding a photoresist, an inclined end face 32 is formed by reactive ion beam etching. Next, align this semiconductor laser with α
The slit pattern is transferred by etching to a depth exceeding the active layer by reactive ion beam etching using C12 as a reactive gas. In the ion beam sputtering method, the ion beam flows approximately parallel to the ion axis. Furthermore, when C12 gas is used, the etching rate ratio of GaAs, which is the substrate of the semiconductor laser, and T.
Even if 1jO etching is performed, the T and 02 masks will hardly become thinner. Therefore, the semiconductor laser is placed in a plane perpendicular to the ion axis.

傾けてエツチングすることにより、半導体レーザの垂直
面に対してα°だけ傾いた傾斜端面32を形成すること
ができる。イオンビームスパッタ法ではイオンビームの
加速電圧の制御範囲が広く数十Vの加速電圧でも動作さ
せろことができろ。それゆえイオン衝撃による加工損傷
を反応性イオンエツチング法や機械加工法と比較して著
しく減少させることができる。本実施例では第1の実施
例に比べ加工歪の少い傾斜角で出力端面を形成できるの
で、半導体レーザの発振特性が良好になる。
By etching at an angle, it is possible to form an inclined end face 32 which is inclined by α° with respect to the vertical plane of the semiconductor laser. In the ion beam sputtering method, the ion beam acceleration voltage can be controlled over a wide range and can be operated at an acceleration voltage of several tens of volts. Therefore, machining damage caused by ion bombardment can be significantly reduced compared to reactive ion etching and machining methods. In this embodiment, since the output end face can be formed at an angle of inclination with less processing distortion than in the first embodiment, the oscillation characteristics of the semiconductor laser are improved.

実施例3 第4図はこの発明にかかる光ヘッドの半導体レーザ部1
4の第3の実施例であり、第1図(blに対応する構成
のものである。半導体レーザの光記録媒体側の端面52
に対し出力端面32は傾斜し、活性層12に垂直でかつ
端面52と角度αをなし、上側電極18から活性層12
を超九る深まで達している。このような傾斜端面は、実
施例2と同様反応性イオンビームエツチングにより形成
する。その概略は、実施例2 (第3図)で述へたもの
と、はぼ同じであるが、スリットパターンを半導体レー
ザの端面に対しαだけ傾け、反応性イオンビームエツチ
ング(ζ際しては半導体レーザ端面に対し、イオンが9
0°の角度で入射するように半導体レーザを配置する。
Embodiment 3 FIG. 4 shows a semiconductor laser section 1 of an optical head according to the present invention.
4 and has a configuration corresponding to FIG. 1 (bl).The end face 52 of the semiconductor laser on the optical recording medium side
On the other hand, the output end face 32 is inclined, is perpendicular to the active layer 12 and forms an angle α with the end face 52, and extends from the upper electrode 18 to the active layer 12.
has reached an extremely deep level. Such an inclined end face is formed by reactive ion beam etching as in the second embodiment. The outline is almost the same as that described in Example 2 (Fig. 3), but the slit pattern is tilted by α with respect to the end face of the semiconductor laser, and reactive ion beam etching (ζ There are 9 ions of ions against the semiconductor laser end facet.
A semiconductor laser is arranged so that it is incident at an angle of 0°.

本実施例の構成の半導体レーザは、光記録媒体側の出力
端面が傾斜角を有するエツチドミラー面、他方の反射端
面が活性層12に垂直なへき開面である。
In the semiconductor laser having the structure of this embodiment, the output end face on the optical recording medium side is an etched mirror surface having an inclined angle, and the other reflective end face is a cleavage face perpendicular to the active layer 12.

そして、本光ヘッド用半導体レーザの反射端面は、光記
録媒体の反射面とレーザ共振器を構成するように活性層
12に対し垂直なへき開面61が角度βて配位されろ。
The reflective end face of the semiconductor laser for the present optical head is arranged with a cleavage plane 61 perpendicular to the active layer 12 at an angle β so as to form a laser resonator with the reflective surface of the optical recording medium.

この角度βは、a=10” 、n=3.6の場合、β−
=28.7° となる。
This angle β is β-
=28.7°.

実施例4 第5図は、第4図の実施例の光ヘッド用半導体レーザで
ある。
Embodiment 4 FIG. 5 shows a semiconductor laser for an optical head according to the embodiment of FIG. 4.

この実施例では、光記録媒体に対する半導体レーザ14
の反射端面の配位角度を零度とするために、出力端面と
対向する側のへき開面61に対し、活性層12に垂直で
、へき開面61と角度β(たとえば28.7°)をなし
、上側電極18から活性層12の深さに達する反射端面
71を形成させる。なお、光軸は反射端面71に垂直で
ある。
In this embodiment, a semiconductor laser 14 for an optical recording medium is used.
In order to make the alignment angle of the reflective end face 0 degrees, it is perpendicular to the active layer 12 and forms an angle β (for example, 28.7°) with the cleavage face 61 on the side opposite to the output end face; A reflective end face 71 extending from the upper electrode 18 to the depth of the active layer 12 is formed. Note that the optical axis is perpendicular to the reflective end surface 71.

本実施例ではレーザの出力端面ば両方とも工・ソチドミ
ラーとなるため発振閾値の増大などの欠点はあるが、半
導体レーザひいては光ヘッドの光記録媒体に対する配置
が容易になる。
In this embodiment, since both of the output end faces of the laser are optical mirrors, there are drawbacks such as an increase in the oscillation threshold, but the arrangement of the semiconductor laser and the optical head relative to the optical recording medium is facilitated.

以上の実施例の半導体レーザは、光へ、ンドとして使用
するときは、通常半導体レーザの両側に光検出器を配し
て使用されるが、かかる構成では光ヘッドはトラック案
内溝からの回折光の差動検出によりトラック課差信号が
検出されろ。しかし、例えば1〜ランク誤差イ3号検出
にウォーブリング法を摘要する場合には光検出器は半導
体レーザの両側に配する必要はなく、半導体レーザの出
力端面と対向する側の反射端面側に配することも可能で
ある。
When the semiconductor laser of the above embodiment is used as a light source, it is usually used with photodetectors arranged on both sides of the semiconductor laser. The track difference signal is detected by differential detection. However, for example, if the wobbling method is used to detect rank errors 1 to 3, it is not necessary to place the photodetector on both sides of the semiconductor laser, but on the side of the reflective end face opposite to the output end face of the semiconductor laser. It is also possible to arrange

このような構成の光ヘツ7ドに対しても本発明の傾斜し
た構成の出力端面が有効である。
The output end face having the inclined structure of the present invention is also effective for the optical head 7 having such a structure.

〈発明の効果〉 以上の説明から明らかなように、この発明の光ヘッド用
半導体レーザは光記録媒体側の出力端面が該光記録媒体
と半導体レーザの反射端面とで形成される共振語内の光
軸に対し傾斜しているので ■ 活性層内に帰還する傾斜端面からの反射光量が極め
て少い ■ 活性層内の光路の位置により、光記録媒体までの光
学距離が異る。
<Effects of the Invention> As is clear from the above description, in the semiconductor laser for an optical head of the present invention, the output end face on the optical recording medium side is within the resonant word formed by the optical recording medium and the reflective end face of the semiconductor laser. Since it is tilted with respect to the optical axis, (1) the amount of reflected light from the inclined end face that returns into the active layer is extremely small; (2) the optical distance to the optical recording medium varies depending on the position of the optical path within the active layer;

この結果、出力端面からの反射光と光記録媒体からの反
射光の干渉がほとんど発生しない0 したがって、光記録媒体と出力端面の間隔の変動に起因
する従来の光ヘッド用半導体レーザのように出力変動が
ないので信号記録においては記録特性の均一イ乙し、ま
た信号再生においてはSN比が向上する。
As a result, there is almost no interference between the reflected light from the output end face and the reflected light from the optical recording medium. Since there is no fluctuation, the recording characteristics are uniform in signal recording, and the signal-to-noise ratio is improved in signal reproduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) fb)は、この発明にかかる光ヘッド用
半導体レーザの構成原理の説明図、第2図ないし第5図
はこの発明の光ヘッド用半導体レーザの実施例の概略構
成を示す斜視図、第6図は従来の光ヘッドの構成を示す
斜視図、第7図(よ第6図の光ヘッドの使用状態図、第
8図は従来の他の光ヘッドの概略構成を示す斜視図、第
9図は第8図の光ヘッドの吏用状態図である。 図面中、 14・・・半導体レーザ、 16a、J6b−−−光検出部、 10・基板、 11・・・上側クラッド層、 12・・・活性層、 13・・・下側クラッド層、 18・上#I電極、 21・・・光記録媒体、 32・・・傾斜端面、 33 垂直端面、 41・・ストライプ、 42・・・絶縁層、 43・・・キャップ層。 特  許  出  願  人 日本電信電話株式会社 代    理    人
FIGS. 1(a) fb) are explanatory diagrams of the construction principle of a semiconductor laser for an optical head according to the present invention, and FIGS. 2 to 5 show a schematic construction of an embodiment of the semiconductor laser for an optical head according to the present invention. FIG. 6 is a perspective view showing the configuration of a conventional optical head, FIG. 7 is a perspective view showing the state of use of the optical head in FIG. 9 is a state diagram of the optical head shown in FIG. 8. In the drawings, 14... Semiconductor laser, 16a, J6b --- Photodetecting section, 10. Substrate, 11... Upper cladding. Layer, 12... Active layer, 13... Lower cladding layer, 18... Upper #I electrode, 21... Optical recording medium, 32... Inclined end surface, 33 Vertical end surface, 41... Stripe, 42 ...Insulating layer, 43...Cap layer. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザの光記録媒体側出力端面を、光軸に
傾斜して形成せしめると共に、当該出力端面と対向する
半導体レーザの反射端面を半導体レーザの光軸に対し垂
直に形成しかつ光記録媒体の反射面と互いにレーザ共振
器を構成せしめることを特徴とする光ヘッド用半導体レ
ーザ。
(1) The output end face of the semiconductor laser on the optical recording medium side is formed to be inclined to the optical axis, and the reflective end face of the semiconductor laser facing the output end face is formed perpendicular to the optical axis of the semiconductor laser, and optical recording is performed. A semiconductor laser for an optical head, characterized in that a laser resonator is formed together with a reflecting surface of a medium.
(2)前記半導体レーザの光記録媒体側出力端面の傾斜
角θは、半導体レーザの活性層に垂直な面に対し、 5°≦θ≦16° に形成せしめることを特徴とする特許請求の範囲第1項
記載の光ヘッド用半導体レーザ。
(2) The inclination angle θ of the output end face on the optical recording medium side of the semiconductor laser is formed such that 5°≦θ≦16° with respect to a plane perpendicular to the active layer of the semiconductor laser. The semiconductor laser for an optical head according to item 1.
JP60250632A 1985-11-11 1985-11-11 Semiconductor laser for optical head Pending JPS62112241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250632A JPS62112241A (en) 1985-11-11 1985-11-11 Semiconductor laser for optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250632A JPS62112241A (en) 1985-11-11 1985-11-11 Semiconductor laser for optical head

Publications (1)

Publication Number Publication Date
JPS62112241A true JPS62112241A (en) 1987-05-23

Family

ID=17210740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250632A Pending JPS62112241A (en) 1985-11-11 1985-11-11 Semiconductor laser for optical head

Country Status (1)

Country Link
JP (1) JPS62112241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310659U (en) * 1989-06-20 1991-01-31
WO2021124733A1 (en) * 2019-12-17 2021-06-24 パナソニック株式会社 Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310659U (en) * 1989-06-20 1991-01-31
WO2021124733A1 (en) * 2019-12-17 2021-06-24 パナソニック株式会社 Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP5240156B2 (en) Manufacturing method of semiconductor light emitting device
US20010009541A1 (en) Optical head, magneto-optical head, disk apparatus and manufacturing method of optical head
US6084848A (en) Two-dimensional near field optical memory head
US6597715B2 (en) Semiconductor laser, optical head, optical disk apparatus and semiconductor laser manufacturing method
EP0383237B1 (en) Recording/reproducing apparatus of optical card
JP3426962B2 (en) Optical head and optical information recording / reproducing device using the same
KR100253810B1 (en) Optical source module with two kinds of wavelengths and optical pickup device thereof
US5801880A (en) Confocal microscope with optical recording and reproducing apparatus
US6128258A (en) Tilt detection method and optical disk drive
JPS62112241A (en) Semiconductor laser for optical head
JPH10143895A (en) Recording and reproducing optical memory head
JP3385983B2 (en) Optical head and optical disk device
US5757029A (en) Triangular pyramidal semiconductor structure and optical device using the same
KR100230246B1 (en) Semiconductor laser and flooting optical pickup using it
KR100293464B1 (en) optical source module for generating beams different from the wave length and method for fabricating the same and optical pick-up apparatus using the same
JPH0452536B2 (en)
JP4376578B2 (en) Optical head for optical recording / reproducing apparatus
JPS6316435A (en) Optical head
JPS637952Y2 (en)
JPS6129423A (en) Recording and reproducing method of optical recording medium
JPH1022562A (en) Semiconductor laser device
JP3131497B2 (en) Optical head device
JP2888317B2 (en) Optical pickup device
JPH039588A (en) Multi-beam semiconductor laser
WO2005015701A1 (en) Light source using multiple beam laser