JPS62111481A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS62111481A
JPS62111481A JP60251199A JP25119985A JPS62111481A JP S62111481 A JPS62111481 A JP S62111481A JP 60251199 A JP60251199 A JP 60251199A JP 25119985 A JP25119985 A JP 25119985A JP S62111481 A JPS62111481 A JP S62111481A
Authority
JP
Japan
Prior art keywords
lens
light emitting
optical fiber
emitting diode
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60251199A
Other languages
Japanese (ja)
Other versions
JPH0750796B2 (en
Inventor
Takeshi Fujitani
藤谷 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25119985A priority Critical patent/JPH0750796B2/en
Publication of JPS62111481A publication Critical patent/JPS62111481A/en
Publication of JPH0750796B2 publication Critical patent/JPH0750796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficiently large coupling efficiency even if a distance from the surface of the lens of a light emitting diode to the end surface of an optical fiber is made large, by adopting a composite lens system comprising two lenses, and optimizing the design. CONSTITUTION:A first lens 2 of a light emitting diode is a spherical glass lens made of Na2O-CaO-SiO2 which has a refractive index of 1.5 and a diameter of 200mum. A second lens 5 is a glass convex lens made of Na2O-CaO-SiO2 which has a radium of curvature of 0.8mm for both an incident surface and an output surface, a thickness of 1mm and a refractive index of 1.5. The lenses 2 and 5 are fixed with an interval of 0.8mm being provided. Light comes into a graded index type optical fiber, which has a core diameter of 50mum and an angular aperture of 0.2. A ratio between the power of the incident light and the power of total light emitted from the surface of an LED chip 1 is determined. The relation between said ratio and a distance between the output surface of the second lens and the end surface of the optical fiber is determined from an experiment and computer simulation. Then relative coupling efficiency of about 42%, which is equal to the conventional value, is determined at a position, which is separated from the surface of a cap by about 1.5mm.

Description

【発明の詳細な説明】 イ0発明の目的 (a)産業上の利用分野 本発明は光フアイバー通信に使用する発光ダイオードに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (a) Field of Industrial Application The present invention relates to a light emitting diode used in optical fiber communications.

(b)従来の技術 従来、光フアイバー通信の光源として用いられる面発光
型発光ダイオードとマルチモード光ファイバーとの結合
効率を向上させる方法としては、半導体チップ表面に屈
折率1.8〜2.0、直径100〜300μm程度の球
レンズを固定したもの(例えば、S、Horiuchi
、 K、 Ikeda、 T、Tanaka and〜
V、5usaki、  “ A  New  LED 
 5tructure  with  a  Self
−Aligned 5phere−Lens for 
Efficient Couplingto 0pti
cal Fibers、”IEEE Trans、 E
lectron。
(b) Conventional Technology Conventionally, as a method for improving the coupling efficiency between a surface-emitting light emitting diode used as a light source for optical fiber communication and a multimode optical fiber, a semiconductor chip with a refractive index of 1.8 to 2.0 is coated on the surface of a semiconductor chip. A fixed ball lens with a diameter of about 100 to 300 μm (for example, S, Horiuchi
, K., Ikeda, T., Tanaka and~
V, 5usaki, “A New LED
5structure with a Self
-Aligned 5phere-Lens for
Efficient Coupling to 0pti
cal Fibers, “IEEE Trans, E
electron.

Devices ED−24,p986〜990(19
77))や球面の一部を切り取ったレンズを固定したも
の、あるいは半導体チップの表面を球面状にカロエした
もの(例えば、O,Wada、 S、 Yamakos
hi 、 FIIL Abe。
Devices ED-24, p986-990 (19
77)), a fixed lens with a part of a spherical surface cut out, or a semiconductor chip whose surface is carved into a spherical shape (e.g. O, Wada, S, Yamakos)
hi, FIIL Abe.

Y、N15hitani、 and T、5akura
i、 ” High RadianceInGaAsP
/InP  Lensed LED’s  for O
pticalCommunication Syste
m at  1.2−1.3μm ″ I EEEJ、
Quantum Electron、 QE−17、p
 174〜178(1981))等が考案され用いられ
ている。
Y, N15hitani, and T, 5akura
i, ” High RadianceInGaAsP
/InP Lensed LED's for O
Physical Communication System
m at 1.2-1.3 μm ″ I EEEJ,
Quantum Electron, QE-17, p
174-178 (1981)) have been devised and used.

if、=複数のレンズを用いた系として屈折率1.8〜
2.0、直径400〜600μmの球レンズと屈折率1
.4〜1.6、曲率半径0.7〜0.8 mm程度の左
らレンズを用いたものが報告されている。(例えば、松
下電子工業製発光ダイオードLN193)(C)発明が
解決しようとする問題点 従来用いられていた発光ダイオードと光ファイバーとの
結合方法においては第3図に示すごとく半導体チップ1
に固定されたレンズ2の表面から光ファイバの端面4ま
での距離の最適値が50〜500μmと短いため、光フ
ァイバーの調芯作業を困難にしていた。調芯作業を容易
にするために光ファイバーを遠ざけると十分な結合効率
が得られなかった。
if, = refractive index 1.8 ~ as a system using multiple lenses
2.0, a ball lens with a diameter of 400-600 μm and a refractive index of 1
.. A lens using a left-handed lens with a radius of curvature of about 4 to 1.6 mm and a radius of curvature of about 0.7 to 0.8 mm has been reported. (For example, light emitting diode LN193 manufactured by Matsushita Electronics Co., Ltd.) (C) Problems to be solved by the invention In the conventional method of coupling a light emitting diode and an optical fiber, as shown in FIG.
Since the optimum distance from the surface of the lens 2 fixed to the lens 2 to the end face 4 of the optical fiber is as short as 50 to 500 μm, it has been difficult to align the optical fiber. If the optical fibers were moved away to facilitate alignment, sufficient coupling efficiency could not be obtained.

また、発光ダイオードの信頼性を高め、取り扱いを容易
にするために第4図に示すようなキャップ6を取り付け
る場合にもレンズ2から光ファイバ一端面4までの距離
が遠くなるために十分な結合効率を得ることは困難であ
り、例えば第5図に示すごとくキャップ6に装着された
スリーブ7にファイバ4を固定し、これをレンズ2が搭
載されたLEDチップ1に対して調芯するという複雑な
構造としなければならなかった。
Furthermore, even when attaching a cap 6 as shown in FIG. 4 in order to improve the reliability of the light emitting diode and make it easier to handle, the distance from the lens 2 to the end face 4 of the optical fiber is long, so that sufficient coupling is required. It is difficult to obtain efficiency, and for example, as shown in FIG. It had to have a good structure.

複数のレンズを用いて結合する場合には、設計のパラメ
ータが数多くなり、レンズ系全体を最適設計とすること
は極めて困難であった。前記の従来技術においてもレン
ズ系が最適化されていないために、結合効率は2〜3%
と単一レンズによる結合と比較して十分ではなく、レン
ズ表面と光フアイバ一端面の最適距離も300〜500
μmと短い等多くの点が問題となっていた。
When combining multiple lenses, the number of design parameters increases, making it extremely difficult to optimally design the entire lens system. Even in the conventional technology mentioned above, the coupling efficiency is 2-3% because the lens system is not optimized.
The optimum distance between the lens surface and one end of the optical fiber is 300 to 500.
There were many problems such as the short length of μm.

(d)発明の目的 本発明はこれらの欠点を除去するために、2個のレンズ
からなる複合レンズ系を採用し、その設計を最適化する
ことによってレンズ表面から光フアイバ一端面までの距
離を大きくしても十分大きな結合効率を得ることができ
るようにしたものである。
(d) Purpose of the Invention In order to eliminate these drawbacks, the present invention employs a compound lens system consisting of two lenses, and by optimizing its design, the distance from the lens surface to one end face of the optical fiber can be reduced. Even if the coupling efficiency is increased, a sufficiently large coupling efficiency can be obtained.

口0発明の構成 (e)問題点を解決するための手段 第1図は本発明の1つの実施例を示したものであって、
■は半導体チップ、2は第1のレンズ、3は半導体チッ
プを固定するためのヘッダー、・tは光フアイバ一端面
、5は第2のレンズ、6は第2のレンズを固定するため
の金属キャップである。
Structure of the invention (e) Means for solving the problems FIG. 1 shows one embodiment of the invention,
■ is a semiconductor chip, 2 is a first lens, 3 is a header for fixing the semiconductor chip, t is one end surface of an optical fiber, 5 is a second lens, 6 is a metal for fixing the second lens It's a cap.

第2図はレンズ部分の拡大図で発光領域9で生成された
光は10に示すごとく第1のレンズ2により方向を変え
られ、さらに第2のレンズ5で光フアイバ一端面4に集
光される。
FIG. 2 is an enlarged view of the lens part, and the light generated in the light emitting region 9 is changed in direction by the first lens 2 as shown in 10, and is further focused on the end face 4 of the optical fiber by the second lens 5. Ru.

この系において、各構成要素のパラメータを変化させ、
光線追跡法によるコンピユータ・シミュレーションと試
作実験を繰り返した結果、屈折率32、活性層から表面
までの厚さ50μm、発光領域の直径25μmの半導体
チップから発した光をコア径50μm1開口数02のグ
レーディッドインデックス型光ファイバーに結合する場
合に、第1のレンズ2の直径が150〜250μm1屈
折率が1.45〜1.55、第1のレンズ2と第2のレ
ンズ5との間隔を0.6〜0.9mm、第2のレンズ5
の入射面11及び出射面12の曲率半径13゜14をと
もに0.7〜0.9 mm、レンズの厚さ15を0、8
〜1 mm 、油接率を1.45〜1.55の範囲で選
んだ場合に最適となることが判明した。
In this system, by changing the parameters of each component,
As a result of repeated computer simulations and prototype experiments using the ray tracing method, it was found that light emitted from a semiconductor chip with a refractive index of 32, a thickness of 50 μm from the active layer to the surface, and a diameter of the light emitting region of 25 μm was converted into a gray light with a core diameter of 50 μm and a numerical aperture of 0.2. When coupled to a Did-index optical fiber, the diameter of the first lens 2 is 150 to 250 μm1, the refractive index is 1.45 to 1.55, and the distance between the first lens 2 and the second lens 5 is 0.6 ~0.9mm, second lens 5
The radius of curvature 13°14 of the entrance surface 11 and exit surface 12 is both 0.7 to 0.9 mm, and the thickness 15 of the lens is 0.8 mm.
~1 mm, and it was found that the optimum oil contact ratio was selected in the range of 1.45 to 1.55.

(f)作用 通常マルチモード光ファイバー通信に用いる面発光型発
光ダイオードの発光領域の直径は10〜30μm程度で
ある。この領域から放たれた光の大部分は半導体と大気
の界面で全反射され、光ファイバーとの結合に寄与しな
い。半導体チップとマルチモード光ファイバーを直接結
合した場合には、マルチモード光ファイバーのコアの直
径が50〜lOOμm と小さく、開口数も0.2〜0
.3程度であるために、チップ表面から出た光の99%
以上は光ファイバーに入射できない。
(f) Function The diameter of the light emitting region of a surface emitting type light emitting diode used for multimode optical fiber communication is usually about 10 to 30 μm. Most of the light emitted from this region is totally reflected at the interface between the semiconductor and the atmosphere, and does not contribute to coupling with the optical fiber. When a semiconductor chip and a multimode optical fiber are directly coupled, the core diameter of the multimode optical fiber is as small as 50 to 1OOμm, and the numerical aperture is 0.2 to 0.
.. 3, so 99% of the light emitted from the chip surface
This cannot be input into the optical fiber.

本発明に示した構造を用いた場合、半導体チップ表面よ
り出た光は第1のレンズである球レンズにより集光され
、キャップ中央に固定された第2のレンズの入射面の位
置では、直径約0.5〜1、O1]Imのスポットとな
る。この時前記の曲率をもつレンズを第2のレンズとし
て用いると球面収差の影響を少なくでき、コア径50μ
m、開口数0.2のグレーディッド・インデックス型の
光ファイバーに対してチップ表面より出た光の4〜5%
を入射させることができる。また、この時、第2のレン
ズの出射面から1〜2印離れた位置にスポットができる
When using the structure shown in the present invention, the light emitted from the surface of the semiconductor chip is focused by the first lens, which is a ball lens, and at the position of the incident surface of the second lens fixed at the center of the cap, the light emitted from the surface of the semiconductor chip is It becomes a spot of about 0.5 to 1, O1]Im. At this time, if a lens with the above-mentioned curvature is used as the second lens, the influence of spherical aberration can be reduced, and the core diameter is 50 μm.
m, 4-5% of the light emitted from the chip surface for a graded index optical fiber with a numerical aperture of 0.2.
can be made incident. Also, at this time, a spot is formed at a position 1 to 2 marks away from the exit surface of the second lens.

(g)実施例 第1図において、半導体チップ1の活性層材料としてI
nGaAsP 、 クラッド層として50μm厚(i’
)InPを用い、第1のレンズとして屈折率1,5、球
径200 amのNa 20− CaO−S i02系
ガラス製球レンズ、第2のレンズとして入射面、出射面
の曲率半径がともに0.8 mm 、厚さ1[n111
1屈折率1.5のNa 2() CaO−S io2 
 系ガラス製産らレンズを0.8印の間隔を開けて固定
した場合に、コア径50μm、開口角0.2のグレーデ
ッド、インデックス型に対して入射した光パワーのLE
Dチップ表面から放出される全光パワーに対する割合と
、第2のレンズ出射面・光フアイバ一端面間距離との関
係を実験及ヒコンビューク・シミュレーションによす求
めた結果を第6図に示す。
(g) Embodiment In FIG. 1, the active layer material of the semiconductor chip 1 is I
nGaAsP, 50 μm thick (i'
) InP is used, the first lens is a Na 20-CaO-Si02 glass ball lens with a refractive index of 1.5 and a spherical diameter of 200 am, and the second lens is a spherical lens made of Na 20-CaO-Si02 glass with a radius of curvature of 0 for both the entrance and exit surfaces. .8 mm, thickness 1 [n111
1 refractive index 1.5 Na 2 () CaO-S io2
LE of the optical power incident on a graded index type with a core diameter of 50 μm and an aperture angle of 0.2 when lenses made of glass are fixed with an interval of 0.8 marks.
FIG. 6 shows the relationship between the ratio to the total optical power emitted from the D-chip surface and the distance between the second lens exit surface and one end surface of the optical fiber, obtained through experiments and Hikkonbuek simulations.

第6図曲線16は光線追跡法を用いてコンピュータ・シ
ミュレーションにより求めた値であり、黒丸17は実際
に試作したLEDについて測定した値である。また、曲
線18は、従来用いられていた半導体チップ上に固定さ
れた球径200μm1屈折率1.9の球レンズにより光
フアイバ一端面に集光する方式のシミュレーション結果
であり白丸19は同じ構造のLEDを試作し、実測した
時の値である。
Curve 16 in FIG. 6 is a value obtained by computer simulation using the ray tracing method, and black circle 17 is a value measured for an actually prototype LED. Curve 18 is a simulation result of a conventional method in which light is focused on one end face of an optical fiber using a ball lens with a diameter of 200 μm and a refractive index of 1.9 fixed on a semiconductor chip. This is the value obtained when an LED was prototyped and measured.

従来の方式では球レンズと光フアイバ一端面との距離が
約400μmの時に最大の相対結合効率約4.3%が得
られたのに対し、本発明による実施例では、LEDチッ
プを覆ったキャップの表面から約1.5 mm離れた位
置で従来と同等の約7シ2%の相対結合効率が得られた
In the conventional method, the maximum relative coupling efficiency of about 4.3% was obtained when the distance between the ball lens and one end face of the optical fiber was about 400 μm, whereas in the embodiment according to the present invention, a cap covering the LED chip was used. A relative coupling efficiency of about 7.2%, which is equivalent to that of the conventional method, was obtained at a position about 1.5 mm away from the surface.

ハ1発明の効果 (l〕)発明の詳細 な説明したように、本発明で示した構造を採用すること
により、半導体チップ中で発生した光を効率よく光ファ
イバーへ入射させることができる。また、結合効率を低
下させることなく簡単な構造でキャップ付の発光ダイオ
ードを実現することができ、信頼性、取り扱い易さの点
で有利である。さらに、キャップ中央に固定した、石う
レンズの表面から従来の製品よりも離れたところに最大
結合位置があるために、光ファイバー〇調芯作柴等が容
易となる。このように本発明は光フアイバー通信の光源
用発光ダイオードとして適した構造を提供する。
C1 Effects of the invention (l) As described in detail of the invention, by employing the structure shown in the invention, light generated in a semiconductor chip can be efficiently input into an optical fiber. Furthermore, a light emitting diode with a cap can be realized with a simple structure without reducing coupling efficiency, which is advantageous in terms of reliability and ease of handling. Furthermore, since the maximum coupling position is located further away from the surface of the stone lens fixed at the center of the cap than in conventional products, it is easier to align the optical fiber. As described above, the present invention provides a structure suitable as a light emitting diode for a light source in optical fiber communication.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例の断面図、第2図は本発
明装置の集光の様子を表す模式図、第3図は従来の単−
球レンズによる結合でキャップを付加しない装置の断面
図、第11図は従来の平窓付ヤヤツプを付加した装置の
断面図、第5図は従来の光フアイバー固定用スリーブ付
キャップを付加した装置の断面図、第6図はレンズ表面
・光フアイバー間距離と結合効率との関係を従来例と本
発明実施例とについて比1咬した図である。 図中、lは発光ダイオードの半導体チップ部分、2は第
1のレンズ、3はチップ固定用ヘッダー、4は光ファイ
バ一端面、5は第2のレンズ、6は金属製キャップ、7
は光フアイバー固定用スリーブ、8は平窓、9は発光ダ
イオードの発光領域、10は発光領域から出た光線のう
ちの1本、11は第2のレンズの入射面、12は出射面
、13は入射面の曲率半径、14は出射面の曲率半径、
15はレンズの厚みを表す。
FIG. 1 is a cross-sectional view of one embodiment of the device of the present invention, FIG. 2 is a schematic diagram showing how light is collected by the device of the present invention, and FIG. 3 is a schematic diagram of a conventional unit.
Fig. 11 is a cross-sectional view of a device with a conventional cap with a flat window, and Fig. 5 is a cross-sectional view of a device with a conventional cap with a sleeve for fixing optical fibers. The cross-sectional view, FIG. 6, is a diagram comparing the relationship between the distance between the lens surface and the optical fiber and the coupling efficiency between the conventional example and the example of the present invention. In the figure, l is the semiconductor chip part of the light emitting diode, 2 is the first lens, 3 is the chip fixing header, 4 is one end surface of the optical fiber, 5 is the second lens, 6 is the metal cap, 7
1 is a sleeve for fixing an optical fiber, 8 is a flat window, 9 is a light emitting region of a light emitting diode, 10 is one of the light rays emitted from the light emitting region, 11 is an entrance surface of the second lens, 12 is an exit surface, 13 is the radius of curvature of the entrance surface, 14 is the radius of curvature of the exit surface,
15 represents the thickness of the lens.

Claims (3)

【特許請求の範囲】[Claims] (1)所望の波長に対する屈折率が3.0〜3.4であ
るような半導体材料で作製され、発光領域から表面まで
の厚みが50〜70μmであるような発光ダイオード半
導体チップとチップ上に固定された屈折率1.45〜1
.55、直径150〜250μmの球形の第1のレンズ
及び第1のレンズ表面から0.6〜0.9mmの空間を
隔てて金属キャップ中央部に固定された上面・下面それ
ぞれが曲率半径0.7〜0.9mmの凸面から成り、厚
さ0.8〜1.0mm、屈折率1.45〜1.55であ
るような第2のレンズとから構成されることを特徴とす
る発光ダイオード
(1) A light emitting diode semiconductor chip made of a semiconductor material with a refractive index of 3.0 to 3.4 for a desired wavelength and a thickness of 50 to 70 μm from the light emitting region to the surface, and on the chip. Fixed refractive index 1.45~1
.. 55, a spherical first lens with a diameter of 150 to 250 μm, and a top and bottom surface fixed to the center of the metal cap with a space of 0.6 to 0.9 mm from the first lens surface, each with a radius of curvature of 0.7 A light emitting diode comprising a second lens having a convex surface of ~0.9 mm, a thickness of 0.8 to 1.0 mm, and a refractive index of 1.45 to 1.55.
(2)発光ダイオード半導体チップがInGaAsPの
発光層とInPのクラッド層とから成る特許請求の範囲
第1項記載の発光ダイオード
(2) The light emitting diode according to claim 1, wherein the light emitting diode semiconductor chip comprises an InGaAsP light emitting layer and an InP cladding layer.
(3)第1のレンズ及び第2のレンズがNa_2O−C
aO−SiO_2系ガラスから成ることを特徴とする特
許請求の範囲第1項若しくは第2項記載の発光ダイオー
(3) The first lens and the second lens are Na_2O-C
The light emitting diode according to claim 1 or 2, characterized in that it is made of aO-SiO_2 glass.
JP25119985A 1985-11-08 1985-11-08 Light emitting diode Expired - Lifetime JPH0750796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25119985A JPH0750796B2 (en) 1985-11-08 1985-11-08 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25119985A JPH0750796B2 (en) 1985-11-08 1985-11-08 Light emitting diode

Publications (2)

Publication Number Publication Date
JPS62111481A true JPS62111481A (en) 1987-05-22
JPH0750796B2 JPH0750796B2 (en) 1995-05-31

Family

ID=17219157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25119985A Expired - Lifetime JPH0750796B2 (en) 1985-11-08 1985-11-08 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH0750796B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172811U (en) * 1980-05-21 1981-12-21
JPS5873170A (en) * 1981-10-27 1983-05-02 Fujitsu Ltd Light emitting semiconductor device
JPS61253872A (en) * 1985-05-02 1986-11-11 Matsushita Electric Ind Co Ltd Light-emitting semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172811U (en) * 1980-05-21 1981-12-21
JPS5873170A (en) * 1981-10-27 1983-05-02 Fujitsu Ltd Light emitting semiconductor device
JPS61253872A (en) * 1985-05-02 1986-11-11 Matsushita Electric Ind Co Ltd Light-emitting semiconductor device

Also Published As

Publication number Publication date
JPH0750796B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US3950075A (en) Light source for optical waveguide bundle
JPH11218641A (en) Optical fiber with lens and laser module
GB1600965A (en) Gaa1as graded index waveguide
Shiraishi et al. A lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip
US4721353A (en) Optical transmission system comprising a monomode optical transmission fibre having a tapered end portion
US3196366A (en) Double end pumped optical maser structure using immersion optics
CN112904499A (en) Semiconductor laser and planar optical waveguide coupling structure, optical path system and manufacturing method
JPS62111481A (en) Light emitting diode
JP3224106B2 (en) Optical fiber for laser input
GB1564379A (en) Optical fibre connector
CN210576996U (en) Return light processing apparatus and high-power fiber laser
CN114518625A (en) LED coupling optical fiber system and preparation method thereof
JPH10104474A (en) Optical transmission device
CN210326479U (en) High-power intermediate infrared quantum cascade laser based on all-fiber incoherent beam combination
JPS6029085B2 (en) Light source coupler and its manufacturing method
CN212933059U (en) Novel parallel light BOSA subassembly
CN212623220U (en) BOSA optical device
CN212933058U (en) Parallel light BOSA subassembly
CN218630268U (en) Optical fiber-optical chip coupling optical system
CN203849464U (en) Active optical-cable optical-coupling device with high coupling efficiency
JP3333583B2 (en) Focusing lens and focusing lens array
JPS6439576A (en) Radiation position detector
US11921332B2 (en) Optical receptacle and optical module
JP2593649B2 (en) Surface emitting semiconductor device
JPS62191803A (en) Asymmetrical spherical working focusing rod lens