JPS62111188A - Variable displacement rotary compressor - Google Patents

Variable displacement rotary compressor

Info

Publication number
JPS62111188A
JPS62111188A JP24924385A JP24924385A JPS62111188A JP S62111188 A JPS62111188 A JP S62111188A JP 24924385 A JP24924385 A JP 24924385A JP 24924385 A JP24924385 A JP 24924385A JP S62111188 A JPS62111188 A JP S62111188A
Authority
JP
Japan
Prior art keywords
suction
suction port
working chamber
passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24924385A
Other languages
Japanese (ja)
Other versions
JPH0754120B2 (en
Inventor
Toshio Matsuda
松田 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60249243A priority Critical patent/JPH0754120B2/en
Publication of JPS62111188A publication Critical patent/JPS62111188A/en
Publication of JPH0754120B2 publication Critical patent/JPH0754120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To control delivery volume with no decrease of compression efficiency, by returning refrigerant gas, given compression work, to an expansion stroke before a suction stroke. CONSTITUTION:Refrigerant gas, given compression work in an operative chamber 16, is returned to the second suction port 18, formed in a part with the operative chamber 16 serving for an expansion stroke, through a bypass passage 21. And while a vane 15 reaches the first suction port 17, being a main suction port of the operative chamber 16, the bypass flowing refrigerant gas acts on the vane 15 with the above obtained compression work serving as expansion work. In this way, the compression work, given to the refrigerant gas allowed to bypass flow for controlling delivery volume, can be effectively recovered as driving force, and the delivery volume can be controlled with no decrease of compression efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用空調装置等の冷媒圧縮機として使用す
るのに適した回転圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor suitable for use as a refrigerant compressor in automobile air conditioners and the like.

従来の技術 近年、冷房性能と圧縮機消費動力低減上を両立させるた
めに、吐出容量を可変とした圧縮機が提案されてきてい
る。
2. Description of the Related Art In recent years, compressors with variable discharge capacity have been proposed in order to achieve both cooling performance and reduction in compressor power consumption.

従来のこの種可変容量型回転圧縮機は第4図のような構
造になっていた。
A conventional variable displacement rotary compressor of this type has a structure as shown in FIG.

すなわちシリンダ1、ロータ2およびベーン3で区画形
成される作仰室4がその容積を減少していく圧縮行程途
中において作動室4と吸入通路5とを連通ずるバイパス
通路6を設け、このバイパス通路6を開閉する開閉弁7
を配設したもので、開閉弁7が閉状態では吸入口8がら
作動室4に吸入された冷媒は全量が圧縮されて吐出口9
がら吐出され、開状態では吸入口8から作動室4に吸入
された冷媒の一部はバイパス通路6を経て吸入通路5へ
戻るので、バイパス通路6の開閉によって圧縮機の吐出
容量を増減できるようになっている。
That is, a bypass passage 6 is provided that communicates the working chamber 4 with the suction passage 5 during the compression stroke in which the volume of the elevating chamber 4 defined by the cylinder 1, rotor 2, and vane 3 decreases. Opening/closing valve 7 that opens and closes 6
When the on-off valve 7 is closed, the entire amount of refrigerant sucked into the working chamber 4 through the suction port 8 is compressed and flows through the discharge port 9.
In the open state, a part of the refrigerant sucked into the working chamber 4 from the suction port 8 returns to the suction passage 5 via the bypass passage 6, so that the discharge capacity of the compressor can be increased or decreased by opening or closing the bypass passage 6. It has become.

(例えば、特開昭57−198387号公報)発明が解
決しようとする問題点 しかし、このような構造のものでは作動室4内に吸入さ
れた冷媒が多少とも圧縮されてバイパス通路6から吸入
通路Sへ流入するので、冷媒に与えられた圧縮仕事は損
失となって圧縮機の効率を悪化し、さらにこの損失分だ
け吸入通路S内の冷媒が加熱されることになりその結果
吐出冷媒の温度上昇をひきおこし圧縮機、冷凍機油およ
び冷媒配管ゴムホースなどの耐久性を悪くするという問
題があった。
(For example, Japanese Unexamined Patent Publication No. 57-198387) Problems to be Solved by the Invention However, with such a structure, the refrigerant sucked into the working chamber 4 is compressed to some extent and flows from the bypass passage 6 to the suction passage. As the refrigerant flows into the suction passage S, the compression work given to the refrigerant becomes a loss, which deteriorates the efficiency of the compressor.Furthermore, the refrigerant in the suction passage S is heated by this loss, and as a result, the temperature of the discharged refrigerant decreases. There is a problem in that this causes the compressor to rise and deteriorates the durability of the compressor, refrigerating machine oil, refrigerant piping rubber hose, etc.

問題点を解決するための手段 本発明は上記問題点を解決するため、作動室の容積が増
大していく吸入行程の一部分を利用して戻り冷媒から圧
縮仕事を回収できる膨張機の作用をさせるよう構成した
もので、吸入室と連通し、吸入行程終了点で作動室に開
口する第1吸入口と、吸入通路により吸入室に連通しロ
ータとシリンダとの微小隙間の近傍で吸入側の作動室に
開口する第2吸入口と、一端を圧縮機の高圧側空間また
は圧縮行程途中の作動室に開口し他端を吸入通路に開口
するバイパス通路と、このバイパス通路と吸入通路との
連通部分に第2吸入口と吸入室またはバイパス通路とが
選択的に連通可能な通路切換手段とを備えたものである
Means for Solving the Problems In order to solve the above problems, the present invention utilizes a portion of the suction stroke in which the volume of the working chamber increases to act as an expander that can recover compression work from the returning refrigerant. The first suction port communicates with the suction chamber and opens into the working chamber at the end of the suction stroke, and the first suction port communicates with the suction chamber through a suction passage and operates near the small gap between the rotor and cylinder. A second suction port that opens into the chamber, a bypass passage that opens one end to the high-pressure side space of the compressor or the working chamber in the middle of the compression stroke, and the other end to the suction passage, and a communication portion between the bypass passage and the suction passage. The second suction port is provided with passage switching means that allows selective communication between the second suction port and the suction chamber or the bypass passage.

作  用 本発明は上記した構成により、バイパス通路を通って第
2吸入口から吸入行程初期にある作動室へ流入した戻り
冷媒はロータの回転に伴って作動室内で膨張して圧縮機
に対して仕事をするため、戻り冷媒の圧縮仕事は圧縮機
に再び回収される。
According to the above-described configuration, the return refrigerant that has flowed into the working chamber from the second suction port through the bypass passage into the working chamber at the beginning of the suction stroke expands in the working chamber as the rotor rotates, and is applied to the compressor. The compression work of the return refrigerant is recovered back into the compressor to do work.

そしてさらにロータが回転して作動室容積が増大して作
動室内の圧力が圧縮機吸入側圧力にまで低下した時点に
おいて、作動室は第1吸入口に連通して第1吸入口から
冷媒が作動室内へ流入するのである。
Then, when the rotor rotates further and the volume of the working chamber increases and the pressure within the working chamber drops to the pressure on the suction side of the compressor, the working chamber communicates with the first suction port and the refrigerant is activated from the first suction port. It flows into the room.

この結果、圧縮機吐出容量を減少でき、戻り冷媒による
損失もないので圧縮機効率も低下せず、損失のない分だ
け吐出温度も上昇しないのである。
As a result, the compressor discharge capacity can be reduced, and since there is no loss due to return refrigerant, the compressor efficiency does not decrease, and the discharge temperature does not rise by the amount of loss.

実施例 以下、本発明の一実施例を添付図面の第1図乃至第3図
にもとづいて説明する。
Embodiment Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.

同図において、11は筒状内壁を有するシリンダで、こ
のシリンダ11の両端に前部側板12と後部側板13と
が配設されている。
In the figure, reference numeral 11 denotes a cylinder having a cylindrical inner wall, and a front side plate 12 and a rear side plate 13 are disposed at both ends of the cylinder 11.

またシリンダ11内にはシリンダ11内壁と微小隙間A
を介して回転自在に軸支されたロータ14と、このロー
タ14に摺動自在に保持されたベーン15が配設され作
動室16を形成している。
In addition, there is a small gap A between the inner wall of the cylinder 11 and the inner wall of the cylinder 11.
A rotor 14 is rotatably supported via a rotor 14, and a vane 15 is slidably held on the rotor 14 to form an operating chamber 16.

ロータ14の回転によってその容積が増減する作動室1
6のうち容積増大側の作動室16には最大容積を形成す
る位置で第1吸入口17が開口し、微小隙間への近傍で
第2吸入口18が開口している。第1rgL人口17は
吸入室19と連通し、第2吸入口18は吸入通路20に
より吸入室19と連通している。
Working chamber 1 whose volume increases or decreases as the rotor 14 rotates
In the working chamber 16 on the volume increasing side of the working chamber 16, a first suction port 17 opens at a position where the maximum volume is formed, and a second suction port 18 opens near the minute gap. The first rgL port 17 communicates with the suction chamber 19 , and the second suction port 18 communicates with the suction chamber 19 via a suction passage 20 .

一方容積減少側の作動室16にはバイパス通路21がそ
の一端を開口し、微小隙間A近傍では吐出口23が開口
している。バイパス通路21の他端は吸入通路20に開
口している。バイパス通路21と吸入通路20との連通
部分には通路切換弁22が配設され、その作動によって
第2吸入口18と吸入室19とを連通ずるかあるいは第
2吸入口18とバイパス通路21とを連通ずるように構
成されている。
On the other hand, a bypass passage 21 opens at one end of the working chamber 16 on the volume decreasing side, and a discharge port 23 opens near the minute gap A. The other end of the bypass passage 21 opens into the suction passage 20. A passage switching valve 22 is disposed in a communication portion between the bypass passage 21 and the suction passage 20, and its operation allows communication between the second suction port 18 and the suction chamber 19 or between the second suction port 18 and the bypass passage 21. It is configured to communicate with each other.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

先ず圧縮機が低速回転で運転されている場合等圧縮機の
冷凍能力が相対的に小さい場合について説明する。
First, a case where the refrigerating capacity of the compressor is relatively small, such as when the compressor is operated at low speed, will be described.

この場合には図示しないエンジン回転数検出センサーお
よび冷凍サイクルの高低圧信号等でその状態を検出して
通路切換弁22I′i第1図に示す如く吸入室19と第
2吸入口18とを連通しており、図示しない冷凍サイク
ルから吸入室19内に流入した冷媒は第1吸入口17お
よび第2吸入口18から作動室16因に吸入されて、そ
の分量が圧縮されて吐出口23から吐出されるのである
In this case, the state is detected by an engine speed detection sensor (not shown) and high/low pressure signals of the refrigeration cycle, and the passage switching valve 22I'i communicates the suction chamber 19 with the second suction port 18 as shown in FIG. The refrigerant that has flowed into the suction chamber 19 from the refrigeration cycle (not shown) is sucked into the working chamber 16 through the first suction port 17 and the second suction port 18, and the amount thereof is compressed and discharged from the discharge port 23. It will be done.

次に圧縮機が高速回転で運転されている場合等圧縮機の
冷凍能力が相対的に大きく、したがって吐出容量を減少
させて圧縮機消費動力を低減させる場合について説明す
る。
Next, a case will be described in which the refrigerating capacity of the compressor is relatively large, such as when the compressor is operated at high speed, and therefore the discharge capacity is reduced to reduce the power consumption of the compressor.

この場合通路切換弁22は第3図に示す如<ノクイパス
通路21と第2吸入口18とを連通しており、したがっ
て圧縮行程途中の冷媒の一部は作動室16よりバイパス
通路21、吸入通路20.第2吸入口18を経て吸入行
程にある作動室16へ戻るのである。ロータ14の回転
によってベーン15が第2吸入口18を通過してベーン
15の遅れ側に作動室16を形成していく時、この作動
室16には戻り冷媒による圧力上昇と作動室16の容積
増大による圧力低下という二つの要因が同時に存在する
が、戻り冷媒量を適当に選択することにより当該作動室
16が第1吸入口17に連通ずる直前に戻り冷媒の再膨
張を完了して作動室16内圧力を吸入室19内圧力まで
低下させることができる。さらにロータ14が回転して
当該作動室16が′:1IJ1吸入ロ17に連通ずると
吸入室19内の冷媒は作動室16内に吸入されるのであ
る。
In this case, the passage switching valve 22 communicates the passage passage 21 with the second suction port 18 as shown in FIG. 20. It returns to the working chamber 16 which is in the suction stroke via the second suction port 18. When the vane 15 passes through the second suction port 18 due to the rotation of the rotor 14 and forms the working chamber 16 on the delayed side of the vane 15, the pressure rise due to the returning refrigerant and the volume of the working chamber 16 increase. The two factors of pressure drop due to increase exist at the same time, but by appropriately selecting the amount of return refrigerant, the re-expansion of the return refrigerant can be completed just before the working chamber 16 communicates with the first suction port 17, and the working chamber can be completely re-expanded. 16 internal pressure can be reduced to the suction chamber 19 internal pressure. When the rotor 14 further rotates and the working chamber 16 communicates with the ':1IJ1 suction hole 17, the refrigerant in the suction chamber 19 is sucked into the working chamber 16.

したがって戻り冷媒は吸入室19内圧力すなわち圧縮機
吸入圧力まで膨張させられるのでその分だけ圧縮機に仕
事をすることになり、圧縮機効率を低下させずに吐出容
量を減少させることができかつ損失のない分だけ吐出温
度も上昇しないのである。
Therefore, the return refrigerant is expanded to the internal pressure of the suction chamber 19, that is, the compressor suction pressure, and the compressor does work by that amount, which makes it possible to reduce the discharge capacity without reducing the compressor efficiency and reduce the loss. The discharge temperature does not rise to the extent that there is no .

なお、本実施例ではバイパス通、路21の一端開口を圧
縮行程途中の作動室16に設けたが圧縮機を含む冷凍サ
イクルの高圧側に設けても同様の効果が得られる。
In this embodiment, the opening at one end of the bypass passage 21 is provided in the working chamber 16 in the middle of the compression stroke, but the same effect can be obtained even if it is provided on the high-pressure side of the refrigeration cycle including the compressor.

また本実施例では第21人口18と吸入室19もしくは
バイパス通路21との連通を通路切換弁22によって行
なったが、バイパス通路21の他端開口を吸入通路20
と独立に微小隙間A近傍の吸入側作動室16に開口させ
、夫々独立に通路を連通遮断する通路開閉弁を設けても
よいし、あるいはバイパス通路に通路開閉弁を、第2吸
入口18に作動室16からの逆流を防止する逆止弁を設
けてもよい。
Further, in this embodiment, communication between the 21st population 18 and the suction chamber 19 or the bypass passage 21 is performed by the passage switching valve 22, but the other end opening of the bypass passage 21 is
Alternatively, a passage opening/closing valve may be provided in the bypass passage and a passage opening/closing valve in the second suction port 18, which opens in the suction side working chamber 16 near the minute gap A and independently blocks communication between the passages. A check valve may be provided to prevent backflow from the working chamber 16.

さらに本実施例ではいわゆる真円式のベーン回転式圧縮
機を示したが、吸入行程が膨張機として利用できる回転
式圧縮機であればよく、本発明は上記実施例に限定され
るものではない。
Furthermore, although a so-called perfect circular vane rotary compressor is shown in this embodiment, any rotary compressor whose suction stroke can be used as an expander may be used, and the present invention is not limited to the above embodiment. .

発明の効果 本発明は、回転式圧縮機の吸入行程の一部分において、
圧縮仕事を与えられた冷媒を通路切換弁によってバイパ
ス通路から第2吸入口を経て作動室に戻しかつ当該作動
室が第[吸入口に連通ずるまでに戻り冷媒から有効な膨
張仕事をとり出すものであるので、戻り冷媒による損失
がないため圧縮機効率を低下させずに圧縮機吐出容量を
減少でき吐出温度の上昇も抑えることができるのである
Effects of the Invention The present invention provides the following advantages:
The refrigerant that has been given compression work is returned from the bypass passage to the working chamber via the second suction port by the passage switching valve, and effective expansion work is extracted from the returned refrigerant before the working chamber communicates with the second suction port. Therefore, since there is no loss due to return refrigerant, the compressor discharge capacity can be reduced without reducing compressor efficiency, and the rise in discharge temperature can also be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例ておける可変容量型回転式圧
縮機の軸方向断面図、第2図は第1図のる。 11・・・・・・シリング、12・・・・・・前部側板
、13・・・・・・後部側板、14・・・・・・ロータ
、15・・・・・・ベーン、16・・・・・・作動室、
17・・・・・・第1吸入口、18・・・・・・第2吸
入口、19・・・・・・吸入室、20・・・・・・吸入
通路、21・・・・・・バイパス通路、22・・・・・
・通路切換弁。 代理人の氏名 弁理士 中 尾 赦 男 ほか1名/1
−−−シリン7゛ /2−−−fi4陣J# 13−−一種都例駁 /4−一一口−7 /2−−−イ乍動寛 2θ−1ベリト 21−−−パイパ九■ト 11−一一シリンフ。 14−−一口−7 15−−−ベーン 16−−−イ乍動J( 17−−−竿1ロ皮ン\、口 2)−m−バイ/V銚
FIG. 1 is an axial cross-sectional view of a variable capacity rotary compressor according to an embodiment of the present invention, and FIG. 2 is a view similar to FIG. 1. 11... Schilling, 12... Front side plate, 13... Rear side plate, 14... Rotor, 15... Vane, 16...・・・・・・Working chamber,
17...First suction port, 18...Second suction port, 19...Suction chamber, 20...Suction passage, 21...・Bypass passage, 22...
・Passage switching valve. Name of agent: Patent attorney Masao Nakao and 1 other person
---Shirin 7゛/2---fi4 group J# 13--One type capital example/4-One hitch-7/2---I 乍过 2θ-1 Berito 21---Paipa 9■ 11-11 cylinder. 14--Bit-7 15---Bane 16--I 乍过J (17---Rod 1 Rokin\, Mouth 2)-M-Bye/V Cho

Claims (1)

【特許請求の範囲】[Claims] 筒状内壁を有するシリンダと、このシリンダの両端を閉
塞する側板と、前記シリンダ内壁と微小隙間を形成して
シリンダ内に回転自在に配設されたロータと、このロー
タまたは前記シリンダに摺動自在に保持されたベーンと
、前記シリンダ、側板、ロータおよびベーンによって区
画形成されかつロータの回転によって容積変化を生ずる
作動室が最大容積を形成する位置において作動室に開口
する第1吸入口と、前記微小隙間の近傍で容積増大側の
作動室に開口する第2吸入口と、前記第1吸入口と連通
する吸入室と、この吸入室と前記第2吸入口とを連通す
る吸入通路と、圧縮機の高圧側空間または容積減少途中
にある前記作動室にその一端を開口し他端を前記吸入通
路に開口するバイパス通路と、このバイパス通路と前記
吸入通路との連通部分に配設され前記第2吸入口と吸入
室またはバイパス通路とが選択的に連通可能な通路切換
手段とを備えた可変容量型回転圧縮機。
A cylinder having a cylindrical inner wall, a side plate closing both ends of the cylinder, a rotor rotatably disposed within the cylinder and forming a minute gap with the inner wall of the cylinder, and a rotor capable of sliding on the rotor or the cylinder. a first suction port that opens into the working chamber at a position where the working chamber, which is defined by the cylinder, the side plate, the rotor, and the vane and whose volume changes with rotation of the rotor, has a maximum volume; a second suction port that opens into the working chamber on the volume increasing side near the minute gap; a suction chamber that communicates with the first suction port; a suction passage that communicates this suction chamber with the second suction port; a bypass passage that opens one end to the high-pressure side space of the machine or the working chamber in the middle of volume reduction and the other end to the suction passage; A variable capacity rotary compressor equipped with a passage switching means that allows two suction ports to communicate selectively with a suction chamber or a bypass passage.
JP60249243A 1985-11-07 1985-11-07 Variable displacement rotary compressor Expired - Lifetime JPH0754120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60249243A JPH0754120B2 (en) 1985-11-07 1985-11-07 Variable displacement rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249243A JPH0754120B2 (en) 1985-11-07 1985-11-07 Variable displacement rotary compressor

Publications (2)

Publication Number Publication Date
JPS62111188A true JPS62111188A (en) 1987-05-22
JPH0754120B2 JPH0754120B2 (en) 1995-06-07

Family

ID=17190052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249243A Expired - Lifetime JPH0754120B2 (en) 1985-11-07 1985-11-07 Variable displacement rotary compressor

Country Status (1)

Country Link
JP (1) JPH0754120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183499A (en) * 2004-12-27 2006-07-13 Hitachi Ltd Displacement compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853691A (en) * 1981-09-26 1983-03-30 Toyoda Autom Loom Works Ltd Vane compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853691A (en) * 1981-09-26 1983-03-30 Toyoda Autom Loom Works Ltd Vane compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183499A (en) * 2004-12-27 2006-07-13 Hitachi Ltd Displacement compressor
US8241021B2 (en) 2004-12-27 2012-08-14 Hitachi Appliances, Inc. Displacement type compressor having a self-start synchronous motor and start load reducing means

Also Published As

Publication number Publication date
JPH0754120B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP3080279B2 (en) Reciprocating compressor
JPH0329994B2 (en)
JP2963888B2 (en) Rotary compressor with discharge chamber pressure relief groove
JPS62111188A (en) Variable displacement rotary compressor
JPH1114166A (en) Freezer device
JP2001207983A (en) Gas compressor
KR100716256B1 (en) Rotary compressor and refrigerant cycle system
JPS62111190A (en) Variable displacement type rotary compressor
JPS62111189A (en) Variable displacement rotary compressor
JP2001165081A (en) Compressor and refrigerating or cooling device having refrigerating cycle with the compressor
JPH09287562A (en) Swash plate type compressor
JP4015776B2 (en) Gas compressor
KR100677527B1 (en) Rotary compressor
JP2791893B2 (en) Vane type compressor
JPS61129495A (en) Rotary compressor
JPS6245109Y2 (en)
JPS59585A (en) Rotary compressor
JPS62142887A (en) Rotary compressor
JPS61101693A (en) Oil free displacement type hydraulic machine
JP3383602B2 (en) Gas compressor
JPH0437277Y2 (en)
JPH07332236A (en) Swash plate type compressor
JPH11117859A (en) Swash plate compressor
JPS6229789A (en) Rotary compressor
JP3123178B2 (en) Rolling piston type compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term