JPS6211077B2 - - Google Patents

Info

Publication number
JPS6211077B2
JPS6211077B2 JP8351283A JP8351283A JPS6211077B2 JP S6211077 B2 JPS6211077 B2 JP S6211077B2 JP 8351283 A JP8351283 A JP 8351283A JP 8351283 A JP8351283 A JP 8351283A JP S6211077 B2 JPS6211077 B2 JP S6211077B2
Authority
JP
Japan
Prior art keywords
weight
furnace
paint
acid
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8351283A
Other languages
Japanese (ja)
Other versions
JPS59229495A (en
Inventor
Akiteru Sasaki
Hirobumi Hara
Ubee Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8351283A priority Critical patent/JPS59229495A/en
Publication of JPS59229495A publication Critical patent/JPS59229495A/en
Publication of JPS6211077B2 publication Critical patent/JPS6211077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炉中ろう付の如く無酸化雰囲気におい
て高熱処理された鋼材を炉冷し、急冷処理を施す
にあたり、鋼材表面に生じる酸化スケールを除
去、抑制すると共に、そのまま水洗することなく
直接下地処理としてのカチオン型電着塗装を施す
ことを可能とした塗装前処理剤及び塗装前処理方
法に関する。 通常鋼材表面に塗装を施す場合、鋼材表面にリ
ン酸亜鉛などの化成皮膜を下地として形成し、こ
の皮膜上に塗膜を形成するが、鋼材等からなる部
品を炉中ろう付等により接合し所望の部材を得る
ものについては、鋼材の機械的性質を向上させる
ため、特公昭56−25903号公報で知られるように
1100℃〜1150℃のろう付け加熱処理後鋼材を約
570℃〜720℃の変態点近傍まで炉冷し次いでこれ
を急冷するようにしている。 しかしこの場合鋼材表面に酸化鉄、酸化膜(酸
化スケール)が生成され、この酸化スケールを除
去しないで化成皮膜処理を施すと、化成被膜と鋼
材を密着性、化成被膜表面へ塗料の付着性、塗膜
の耐蝕性等が劣る。このためシヨツトブラスト等
の物理的手段、塩酸、硫酸などの無機酸、シユウ
酸などの有機酸による化学的手段を用いて酸化ス
ケール等を除去しているが、物理的手段において
は完全に除去することがむつかしく、又化学的手
段においては、水素脆弱による鋼材表面の劣化及
び水洗を完全にしないと、黄錆の発生による化成
皮膜の悪化があり、この場合、酸洗、水洗、中和
及び防錆等の各処理を行わなければならない。 又、以上の如く酸化スケールを除去して化成皮
膜を形成しても耐蝕性に限界があるため、最近で
は下地皮膜の耐久性を向上を図るべく更に電着塗
装を施し、或いは化成皮膜に代えて鋼材に直接電
着塗装を施すことが要求されてきている。しかし
酸化スケールを除去するような上記処理剤を用い
た場合、該処理剤は電着塗料と反応して凝集を起
こしたり、劣化させたり、また雑イオンによる電
着浴液の汚染も生じ、電着特性の変化をきたし凝
集物の表面付着による品質低下をまねくため、電
着塗装を施す場合には、浸漬水洗、スプレー水洗
又はそれ等の組合わせによる充分な洗浄処理をし
なければならず工程数及び工数を増大するのみな
らず、設備費及び多大なスペースも要しコスト的
にも高くなる。 これを更に詳述するに、電着塗料はその基本的
電着機構により、アニオン電着塗料とカチオン電
着塗料に大別されるもので、ここでカチオン電着
塗料に使用される樹脂はエポキシ樹脂、アクリル
樹脂などを骨格としたポリアミノ樹脂で通常有機
酸などの酸で中和し、水溶化(水分散化)され、
正に帯電しているため、塩基性物質が混入する
と、水溶化している塗料が再び不溶化してしま
う。そればかりでなく、Cl-,PO4 3-,SO4 2-など
の負イオンとも反応し、凝集してしまう。 又、アニオン電着塗料に使用される樹脂は、ポ
リエステル、エポキシエステル、ポリアクリル酸
エステルなどを骨格とするポリカルボン酸樹脂で
通常有機アミノ、カセイカリなどの塩基で中和、
水溶化(水分散化)され、負に帯電しているた
め、酸性物質が混入すると水溶化している塗料が
再び不溶化してしまい、カチオン電着塗料を用い
るカチオン型電着塗装及びアニオン電着塗料を用
いるアニオン型電着塗装の何れの場合にも上記の
洗浄処理が必要となるのである。そこで本発明
は、以上の点に鑑み、鋼材の急冷処理に際しての
酸化スケールの発生を抑制除去すると共に、カチ
オン電着塗料の不溶化や凝集を生じない塗装前処
理剤を提供することをその目的とするもので、ヒ
ドロキシカルボン酸とグリコールエーテル類とを
夫々1.0〜13.0重量%含有する水溶液から成る。 本発明の第2発明は、上記第1発明の処理剤を
用いた塗装前処理方法を提供することをその目的
とするもので、無酸化雰囲気中で高熱処理した鋼
材を炉冷し、次いでこれを第1発明の処理剤によ
つて急冷した後、水洗工程を経ずにカチオン型電
着塗装を施すようにしたことを特徴とする。 本発明処理剤に含有するヒドロキシカルボン酸
は、酸化鉄をキレート化して溶解する作用があつ
て酸化スケール除去剤として機能し、ヌグリコー
ルエーテル類は冷却剤及び蒸発促進剤として機能
するもので、この場合ビロキシカルボル酸はアニ
オン電着塗料とは直に反応して塗料の凝集を生ず
るが、カチオン電着塗料とはその中和剤と同系統
であるため悪影響を与えず、又グリコールエーテ
ル類は蒸発気化し易いため電着塗料浴に持ち込ま
れることは殆んどなく、持ち込まれたとしても非
電導性のため電着に影響はない。 ヒドロキシカルボン酸としては、リンゴ酸、酒
石酸、クエン酸等が用いられるが、その含有率が
1.0重量%未満であると、スケール除去剤として
の機能が低下して酸化スケールが残存してしま
い、電着塗装しても耐久性が低下し、又13.0重量
%を超えるとスケール除去は良好になるが、電着
塗料浴への持ち込みが多くなり浴のPHが低下して
液管理が困難になるため、その含有率は1.0〜
13.0重量%とする。 又、グリコールエーテル類としては、ジエチレ
ングリコールモノブチルエーテル、カルビトー
ル、トリエチレングリコールモノメチルエーテル
等が用いられるが、その含有率が1.0重量%未満
であると、冷却剤、蒸発促進剤としての機能が低
下して酸化スケールの残存や取出後の黄錆発生が
みられ、又13.0重量%を超えると、処理剤そのも
のの蒸発が活発になり処理剤の消費が増えるた
め、その含有率は1.0〜13.0重量%とする。 次にこの処理剤を用いて行う第2発明の塗装前
処理方法の1例を図示の処理装置に基いて説明す
る。 図面で1はトレイ2をプツシヤーにより矢示方
向に1タクトづつ間歇的に順次移行せしめるコン
ベア装置を示し、その前端部にはトレイ2を供給
側に上昇せしめる昇降装置1―aを備え、その後
端部にはトレイ2をプツシヤーにより押送される
もとの位置に下降せしめる昇降装置1―bを備
え、その上面には長さ方向に沿い長手の加熱炉3
を設けられ、その前部は予備加熱室5に構成され
て居り、夫々には電気抵抗ヒーターを内設してい
る。該加熱炉3は内部に分解アンモニア等の変性
ガス、窒素ガス、還元ガス等任意の無酸化性ガス
を導入されるガス導管4が接続されて居り、無酸
化性雰囲気下で被処理材の予備加熱及びろう付け
加熱がなされるようにした。該加熱炉3の後方に
はウオータージヤケツト式の炉冷室6が連設され
て居り、炉冷室6の後端と前記加熱炉3の前端に
はタクト送りと連動して開閉するシヤツター装置
7,7を有する。8,8はガス導出管を示す。か
くして被処理材の炉冷も無酸化性雰囲気下で行な
われるようにした。炉冷室6の後方にはこれに連
接して冷却室9を設け、その室9の下面に本発明
処理剤を入れた冷却槽10を設け、又その内部に
無酸化性ガスを導入するガス導入管11とこれを
排出するガス排出管8とを接続し、その下端には
タクト送りと連動し開閉するシヤツター装置12
を設ける。かくして被処理材は無酸化性ガス雰囲
気下で冷却処理が行なわれるようにした。13は
トレイ2をその上に受けてこれを昇降させトレイ
2内の被処理材を該冷却剤液に所定時間浸漬し、
これに急冷処理を与えるための昇降装置を示す。
14は該冷却槽10と接続するポンプ15を備え
た供給タンクで、槽10内の液を必要に応じ新し
い液と1部置換し常に液温を好ましくは5℃〜45
℃に維持するようにした。 以上の如き構成からなる装置において、各接合
部にろう材をセツトした鋼材をトレイ2上に載
せ、予備加熱室5に送り、ここで予熱した後、加
熱炉3に搬送し、この加熱炉3において例えば
1100℃〜1150℃まで加熱してろう付を行なう。 次いで鋼材を炉冷室6に、ここで後に急冷して
も熱による変形が小さい変態点以下の温度、即ち
570℃〜720℃程度まで冷却する。そして炉冷が終
つた鋼材を次の冷却室9に導き、この冷却室9の
下方に配した冷却槽10内の本発明処理剤に浸漬
して急冷する。この後、鋼材を冷却槽10から引
き上げ、冷却室9から取り出し、水洗工程を経ず
にカチオン型電着塗装を行い、焼付後上塗り塗装
して製品とする。 尚、被処理材がパイプ等の中空部や袋状部を有
するものでは、スプレー方式により表面のつきま
わり性の良い部分を化成皮膜処理し、内面等の皮
膜のつきまわり性の良くないところに電着塗装を
施すようにしても良く、この場合内面等に前記処
理剤が残存していても電着に影響しないため、品
質の良いものを得ることが出来る。又、被処理材
は無酸化雰囲気中で高熱処理されるため、防錆油
等の油分が完全に除去され、電着塗料への混入も
なく塗料の安定化塗膜品質の向上も図れる。 次に上記前処理方法の実施例及び比較実験例に
ついて説明する。 以下実施例について述べる。 (実施例 1) ヒドロキシカルボン酸(HA)としてリンゴ酸
1.5重量%グリコールエーテル類としてジエチレ
ングリコールモノブチルエーテル4.5重量%残
り、水からなる前処理剤をあらかじめ冷却槽に調
製しておいた。 SPCC鋼を2枚ならべ接合部に銅ろう材をセツ
トし分解プロパンガスからなる無酸化雰囲気の予
備加熱室にて200℃付近まで予備加熱し、次いで
徐々に加熱炉に移行し1150℃まで加熱しろう材を
融解させ接合部に流入させ3分間保持した。次い
で700℃まで炉冷後、25℃に保つた処理剤中に浸
漬急冷した。1分後取り出したところ表面外観は
スケールの発生は認められず光沢のあるテストピ
ースが得られた。更に1分後300V、1.5分の条件
でカチオン電着塗装(日本ペイント社製パワトツ
プ―U)した。さらに180℃、15分で焼付したと
ころ表面外観は良好で、上塗り塗装(溶剤アクリ
ル型)後の耐食性試験でも優秀な成積であつた。 (実施例 2) 実施例1と同一の処理剤を用い同一の方法にて
炉中ろう付後急冷し、更に1分後取り出したの
ち、カチオン電着塗装し(神東塗料製エスビア―
CED)、200℃、15分で焼付したところ表面外観
は、良好で上塗り後の耐食性試験も好結果であつ
た。 (実施例 3) 冷却槽に酒石酸2重量%カルビトール5重量%
残り、水からなり処理剤をあらかじめ調製してお
き、実施例1と同様の方法にて炉中ろう付し、
680℃まで炉却後、上記処理剤中に浸漬急冷した
ところ、酸化スケールの発生はみられず光沢のあ
るテストピースが得られた。更に1分後実施例1
と同一の方法でカチオン電着塗装し、焼付後上塗
りし耐食性試験も良好であつた。 (実施例 4) 酒石酸2重量%カルビトール5重量%残り水か
らなる処理剤を用い実施例2と同一方法にて急冷
し、さらにカチオン電着塗装後焼付したところ表
面外観は良好で、上塗り後の耐食性試験も好結果
であつた。 (実施例 5) 実施例1と同様にクエン酸3重量%トリエチレ
ングリコールモノメチルエーテル5重量%残り、
水からなる処理剤を用い、急冷後カチオン電着塗
装上塗り塗装まで行なつたところ同様の結果が得
られた。 (比較実験例 1) 縮合リン酸ソーダ6重量%残り水からなる水溶
液中に実施例1と同一方法にて炉中ろう付後炉冷
し700℃で急冷したところ一部スケールの発生が
みられた。1分後取り出し300V、1.5分の条件で
カチオン電着塗装したところ、塗料の凝集物がテ
ストピース表面に付着したばかりでなく、塗膜の
破壊現象もみられた。 (比較実験例 2) 実施例1と同様にリンゴ酸1.5重量%、ジエチ
レングリコールモノブチルエーテル4.5重量%残
り水からなる処理液にて急冷処理し、そのままア
ニオン電着塗装(日本ペイント社製パワーコート
9000)したところ、一部塗膜の破壊とテストピー
ス表面に凝集物が付着がみられ、良い結果は得ら
れなかつた。 下表は、上記実施例と批較実験例の結果をまと
めたものである。
The present invention removes and suppresses the oxidation scale that forms on the surface of the steel material when it is furnace-cooled and rapidly cooled steel material that has been subjected to high heat treatment in a non-oxidizing atmosphere, such as during furnace brazing. The present invention relates to a painting pretreatment agent and a painting pretreatment method that make it possible to apply cationic electrodeposition coating. Normally, when painting the surface of a steel material, a chemical conversion film such as zinc phosphate is formed on the surface of the steel material as a base, and a coating film is formed on this film. However, parts made of steel materials are joined by furnace brazing etc. In order to obtain desired parts, in order to improve the mechanical properties of steel materials, as known from Japanese Patent Publication No. 56-25903,
Steel material after brazing heat treatment at 1100℃~1150℃
The furnace is cooled to near the transformation point of 570°C to 720°C, and then rapidly cooled. However, in this case, iron oxide and an oxide film (oxide scale) are generated on the surface of the steel material, and if chemical conversion coating treatment is applied without removing this oxide scale, the adhesion between the chemical conversion coating and the steel material, the adhesion of paint to the surface of the chemical conversion coating, etc. The corrosion resistance of the paint film is poor. For this reason, oxidized scale is removed using physical means such as shot blasting, and chemical means using inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid, but physical means do not completely remove it. Moreover, chemical means can cause deterioration of the steel surface due to hydrogen brittleness and deterioration of the chemical conversion film due to the generation of yellow rust if water washing is not completed. In this case, pickling, water washing, neutralization and Various treatments such as rust prevention must be carried out. In addition, even if a chemical conversion film is formed by removing oxide scale as described above, there is a limit to its corrosion resistance.Recently, in order to improve the durability of the base film, electrodeposition coating is applied, or alternatively, a chemical conversion film is used. There is a growing demand for applying electrodeposition coating directly to steel materials. However, when the above-mentioned treatment agent that removes oxidized scale is used, the treatment agent reacts with the electrocoating paint to cause aggregation and deterioration, and also causes contamination of the electrocoat bath liquid with miscellaneous ions. In order to avoid changes in adhesion properties and deterioration of quality due to surface adhesion of agglomerates, when electrodeposition coating is applied, sufficient cleaning treatment using immersion water washing, spray washing, or a combination of these must be carried out during the process. This not only increases the number of steps and man-hours, but also requires equipment costs and a large amount of space, resulting in high costs. To explain this in more detail, electrodeposition paints are roughly divided into anionic electrodeposition paints and cationic electrodeposition paints, depending on their basic electrodeposition mechanism, and the resin used in cationic electrodeposition paints is epoxy. A polyamino resin with a backbone of resin, acrylic resin, etc., which is usually neutralized with an acid such as an organic acid and made water-soluble (water-dispersed).
Since it is positively charged, if a basic substance is mixed in, the water-soluble paint will become insolubilized again. Not only that, but it also reacts with negative ions such as Cl - , PO 4 3- , and SO 4 2- , resulting in aggregation. In addition, the resin used in anionic electrodeposition paints is a polycarboxylic acid resin with a backbone of polyester, epoxy ester, polyacrylic acid ester, etc., and is usually neutralized with a base such as organic amino or caustic potash.
Since the paint is water-solubilized (water-dispersed) and negatively charged, if an acidic substance is mixed in, the water-soluble paint becomes insolubilized again. The above cleaning treatment is required in any case of anionic electrodeposition coating using . Therefore, in view of the above points, an object of the present invention is to provide a coating pretreatment agent that suppresses and removes the generation of oxidized scale during the rapid cooling treatment of steel materials, and which does not cause insolubilization or aggregation of cationic electrodeposition paints. It consists of an aqueous solution containing 1.0 to 13.0% by weight of hydroxycarboxylic acid and glycol ethers, respectively. The second invention of the present invention aims to provide a painting pretreatment method using the treatment agent of the first invention, in which a steel material that has been subjected to high heat treatment in a non-oxidizing atmosphere is cooled in a furnace, and then the steel material is cooled in a furnace. is characterized in that after it is rapidly cooled with the treatment agent of the first invention, cationic electrodeposition coating is applied without a water washing step. The hydroxycarboxylic acid contained in the treatment agent of the present invention has the effect of chelating and dissolving iron oxide and functions as an oxidation scale remover, and the glycol ethers function as a cooling agent and evaporation accelerator. In this case, biloxycarboxylic acid reacts directly with anionic electrodeposition paints and causes paint agglomeration, but cationic electrodeposition paints do not have any adverse effects because they are of the same type as the neutralizing agent, and glycol ethers do not cause evaporation. Because it is easy to oxidize, it is almost never brought into the electrodeposition paint bath, and even if it is brought in, it has no effect on electrodeposition because it is non-conductive. Malic acid, tartaric acid, citric acid, etc. are used as hydroxycarboxylic acids, but their content
If it is less than 1.0% by weight, the function as a scale remover will be reduced and oxidized scale will remain, resulting in decreased durability even after electrodeposition coating, and if it exceeds 13.0% by weight, scale removal will be poor. However, the content is limited to 1.0 or more, as the amount of paint brought into the electrodeposition paint bath decreases and the pH of the bath decreases, making liquid management difficult.
13.0% by weight. In addition, diethylene glycol monobutyl ether, carbitol, triethylene glycol monomethyl ether, etc. are used as glycol ethers, but if the content thereof is less than 1.0% by weight, the function as a coolant and evaporation accelerator will decrease. If the content exceeds 13.0% by weight, evaporation of the processing agent itself becomes active and consumption of the processing agent increases, so the content should be 1.0 to 13.0% by weight. shall be. Next, an example of the pre-painting treatment method of the second invention using this treatment agent will be explained based on the illustrated treatment apparatus. In the drawings, reference numeral 1 denotes a conveyor device that sequentially moves the trays 2 in the direction of the arrow intermittently in one takt by a pusher.The front end of the conveyor device 1 is equipped with a lifting device 1-a that raises the trays 2 toward the supply side. The section is equipped with a lifting device 1-b for lowering the tray 2 to the original position where it is pushed by a pusher, and a heating furnace 3 extending along the length is provided on the upper surface of the lifting device 1-b.
are provided, the front part of which is configured as a preheating chamber 5, each of which is equipped with an electric resistance heater. The heating furnace 3 is connected to a gas conduit 4 into which any non-oxidizing gas such as decomposed ammonia, nitrogen gas, reducing gas, etc. is introduced, and the material to be processed is prepared in a non-oxidizing atmosphere. Heating and brazing heating were performed. A water jacket-type furnace cold chamber 6 is connected to the rear of the heating furnace 3, and a shutter device is provided at the rear end of the furnace cold chamber 6 and the front end of the heating furnace 3 to open and close in conjunction with tact feeding. It has 7,7. Reference numerals 8 and 8 indicate gas outlet pipes. In this way, the furnace cooling of the treated material was also carried out in a non-oxidizing atmosphere. A cooling chamber 9 is provided at the rear of the furnace cooling chamber 6 and connected thereto, and a cooling tank 10 containing the treatment agent of the present invention is provided on the lower surface of the chamber 9, and a gas for introducing non-oxidizing gas into the interior thereof is provided. The introduction pipe 11 and the gas discharge pipe 8 for discharging the gas are connected, and a shutter device 12 is provided at the lower end of the pipe to open and close in conjunction with tact feeding.
will be established. In this way, the material to be treated was cooled in an atmosphere of non-oxidizing gas. 13 receives the tray 2 thereon and raises and lowers it to immerse the material to be treated in the tray 2 in the coolant liquid for a predetermined time;
A lifting device is shown to provide rapid cooling to this material.
Reference numeral 14 denotes a supply tank equipped with a pump 15 connected to the cooling tank 10, which partially replaces the liquid in the tank 10 with new liquid as necessary, and constantly maintains the liquid temperature preferably from 5°C to 45°C.
It was maintained at ℃. In the apparatus configured as described above, the steel material with brazing filler metal set at each joint is placed on the tray 2, sent to the preheating chamber 5, preheated there, and then transported to the heating furnace 3. For example in
Brazing is performed by heating to 1100℃ to 1150℃. Next, the steel material is placed in the furnace cooling chamber 6, where it is kept at a temperature below the transformation point where deformation due to heat is small even if it is later rapidly cooled, i.e.
Cool to about 570℃~720℃. After the furnace cooling, the steel material is led to the next cooling chamber 9, and immersed in the treatment agent of the present invention in a cooling tank 10 disposed below this cooling chamber 9 to be rapidly cooled. Thereafter, the steel material is pulled up from the cooling tank 10, taken out from the cooling chamber 9, and subjected to cationic electrodeposition coating without going through a water washing process, and then subjected to a top coat after baking to produce a product. In addition, if the material to be treated has a hollow or bag-shaped part such as a pipe, use a spray method to apply a chemical conversion coating to the parts of the surface with good throwing power, and apply the chemical conversion coating to areas where the coating has poor throwing power, such as the inner surface. Electrodeposition coating may also be applied, and in this case, even if the treatment agent remains on the inner surface, it does not affect the electrodeposition, so that a product of good quality can be obtained. Furthermore, since the material to be treated is subjected to high heat treatment in a non-oxidizing atmosphere, oil such as anti-corrosion oil is completely removed, and the quality of the stabilized coating film can be improved without being mixed into the electrodeposition coating. Next, examples and comparative experimental examples of the above pretreatment method will be described. Examples will be described below. (Example 1) Malic acid as hydroxycarboxylic acid (HA)
A pretreatment agent consisting of water and 4.5% by weight of diethylene glycol monobutyl ether remaining as 1.5% by weight glycol ethers was prepared in advance in a cooling tank. Two pieces of SPCC steel are lined up, copper brazing material is set at the joint, and preheated to around 200℃ in a preheating chamber with a non-oxidizing atmosphere made of decomposed propane gas, then gradually transferred to a heating furnace and heated to 1150℃. The brazing filler metal was melted and flowed into the joint and held for 3 minutes. After cooling in a furnace to 700°C, it was quenched by immersion in a treatment agent kept at 25°C. When taken out after 1 minute, no scale was observed on the surface and a shiny test piece was obtained. After a further 1 minute, cationic electrodeposition coating (Power Top U manufactured by Nippon Paint Co., Ltd.) was applied at 300 V for 1.5 minutes. Furthermore, when baked at 180°C for 15 minutes, the surface appearance was good, and the corrosion resistance test after topcoating (solvent acrylic type) showed excellent results. (Example 2) Using the same treatment agent and the same method as Example 1, it was brazed in a furnace, then rapidly cooled, and after 1 minute, it was taken out, and then cationic electrodeposition was applied (Shinto Paint Co., Ltd.'s S-bia).
CED), baked at 200℃ for 15 minutes, the surface appearance was good, and the corrosion resistance test after topcoating also showed good results. (Example 3) Tartaric acid 2% by weight Carbitol 5% by weight in the cooling tank
The remaining water was prepared in advance as a treatment agent, and brazed in a furnace in the same manner as in Example 1.
After being incinerated to 680°C, it was rapidly cooled by immersion in the above treatment agent, and a glossy test piece was obtained with no oxidized scale. After another minute Example 1
Cationic electrodeposition coating was performed using the same method as above, and after baking, a top coat was applied, and the corrosion resistance test was also good. (Example 4) Using a treatment agent consisting of 2% by weight of tartaric acid and 5% by weight of carbitol and remaining water, the surface was rapidly cooled in the same manner as in Example 2, and further baked after cationic electrodeposition, and the surface appearance was good. The results of the corrosion resistance test were also good. (Example 5) Same as Example 1, citric acid 3% by weight, triethylene glycol monomethyl ether 5% by weight remaining,
Similar results were obtained when a treatment agent consisting of water was used, and after quenching, cationic electrodeposition was applied as a top coat. (Comparative Experiment Example 1) When an aqueous solution consisting of 6% by weight of condensed sodium phosphate and water remaining was brazed in a furnace in the same manner as in Example 1, and then cooled in a furnace and rapidly cooled at 700°C, some scale was observed. Ta. When the test piece was removed after 1 minute and subjected to cationic electrodeposition at 300V for 1.5 minutes, not only paint aggregates adhered to the surface of the test piece, but also destruction of the paint film was observed. (Comparative Experiment Example 2) In the same manner as in Example 1, quenching was performed using a treatment solution consisting of 1.5% by weight of malic acid and 4.5% by weight of diethylene glycol monobutyl ether, remaining water, followed by anionic electrodeposition coating (Power Coat manufactured by Nippon Paint Co., Ltd.).
9000), some paint film destruction and agglomerates adhering to the surface of the test piece were observed, and good results could not be obtained. The table below summarizes the results of the above examples and comparative experiments.

【表】【table】

【表】 この様に本発明によるときは、塗装前処理剤と
してヒドロキシカルボン酸とグリコールエーテル
類とを夫々1.0〜13.0重量%含有する水溶液を用
いるもので、ヒドロキシカルボン酸が酸化スケー
ル除去剤として、又グリコールエーテル類が冷却
剤及び蒸発促進剤として機能して、鋼材の急冷処
理に際しての酸化スケールの発生が抑制され、且
つ該処理剤はカチオン電着塗料浴に持ち込まれて
も塗料の凝集を生ずることが無く、急冷処理後水
洗工程を経ずにカチオン型電着塗装を施しても、
塗料の凝集や塗膜のはじきの無い耐食性の良好な
電着塗膜を形成出来、工程数を削減して設備費の
低廉化と生産性の向上とを図ることが出来る効果
を有する。
[Table] As described above, according to the present invention, an aqueous solution containing 1.0 to 13.0% by weight of hydroxycarboxylic acid and glycol ethers is used as a pre-painting treatment agent, and hydroxycarboxylic acid is used as an oxidation scale remover. In addition, glycol ethers function as coolants and evaporation accelerators, suppressing the generation of oxidized scale during the rapid cooling treatment of steel materials, and even when the treatment agent is brought into the cationic electrodeposition paint bath, it does not cause agglomeration of the paint. Even if cationic electrodeposition coating is applied without rinsing after quenching,
It is possible to form an electrodeposited coating film with good corrosion resistance without paint agglomeration or coating repellency, and has the effect of reducing the number of steps, reducing equipment costs and improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施に用いる装置の1例の
側面線図である。
The drawing is a side view of an example of an apparatus used to carry out the method of the present invention.

Claims (1)

【特許請求の範囲】 1 ヒドロキシカルボン酸とグリコールエーテル
類とを夫々1.0〜13.0重量%含有する水溶液から
成る鋼材の塗装前処理剤。 2 無酸化雰囲気中で高熱処理した鋼材を炉冷
し、次いでこれをヒドロキシカルボン酸とグリコ
ールエーテル類とを夫々1.0〜13.0重量%含有す
る水溶液から成る処理剤によつて急冷した後、水
洗工程を経ずにカチオン型電着塗装を施すように
したことを特徴とする鋼材の塗装前処理方法。
[Scope of Claims] 1. A pre-painting agent for steel comprising an aqueous solution containing 1.0 to 13.0% by weight of each of a hydroxycarboxylic acid and a glycol ether. 2. Steel materials subjected to high heat treatment in a non-oxidizing atmosphere are cooled in a furnace, and then quenched with a treatment agent consisting of an aqueous solution containing 1.0 to 13.0% by weight of hydroxycarboxylic acid and glycol ethers, followed by a water washing step. A method for pre-painting steel materials, characterized in that a cationic electrodeposition coating is applied without any pretreatment.
JP8351283A 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material Granted JPS59229495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8351283A JPS59229495A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8351283A JPS59229495A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Publications (2)

Publication Number Publication Date
JPS59229495A JPS59229495A (en) 1984-12-22
JPS6211077B2 true JPS6211077B2 (en) 1987-03-10

Family

ID=13804534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8351283A Granted JPS59229495A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Country Status (1)

Country Link
JP (1) JPS59229495A (en)

Also Published As

Publication number Publication date
JPS59229495A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US2738294A (en) Salt bath system and method for treating metals
CN108265252B (en) Environment-friendly hot-dip coating method
JPS5837391B2 (en) Method for manufacturing cold-rolled steel sheet with excellent phosphate treatment properties
CN111434403B (en) Method and device for manufacturing corrosion-resistant hot stamping part
US2331196A (en) Protective phosphate coating
JPS6211078B2 (en)
US3493440A (en) Method for phosphate coating ferrous metal surfaces and finishing treatment thereof
JPS6211077B2 (en)
US20200378009A1 (en) Method for the surface modification of at least one component and reactor device for carrying out the method
JPH0121240B2 (en)
US11118271B2 (en) Conveyor frame treatment for suppressing phosphate dragging resulting from the plant design in a dip coating process sequence
KR101748975B1 (en) Thermal treatment process of a steel sheet and device for its implementation
JPS6233785A (en) Pretreatment for painting of steel product
CN111235584A (en) Metal plate welding and pickling process
JPS5848678A (en) Pretreating agent for coating steel products and pretreatment for coating
JPS6025503B2 (en) Pre-painting treatment agent and method for steel materials
EP0106166A1 (en) Method and apparatus for the continuous annealing of steel strips
JP2016128175A (en) Forging method
JPS59197572A (en) In-furnace soldering and coating pretreatment of soft steel or alloyed steel
JP2003301298A (en) Electrodeposition coating method
JP3263527B2 (en) Pre-coating treatment for metal surfaces
EP1836329A1 (en) Method and device for treating objects
JPH0949092A (en) High efficient pickling process of austenitic stainless steel plate
JPS5810973B2 (en) Manufacturing method of plated steel wire
KR100784819B1 (en) Surface treatment composition for aluminum and aluminum alloy