JPS62110727A - Separating method for gas - Google Patents

Separating method for gas

Info

Publication number
JPS62110727A
JPS62110727A JP24982685A JP24982685A JPS62110727A JP S62110727 A JPS62110727 A JP S62110727A JP 24982685 A JP24982685 A JP 24982685A JP 24982685 A JP24982685 A JP 24982685A JP S62110727 A JPS62110727 A JP S62110727A
Authority
JP
Japan
Prior art keywords
liquid crystal
gas separation
gas
separation membrane
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24982685A
Other languages
Japanese (ja)
Inventor
Takao Endo
孝雄 遠藤
Kaneo Yamada
山田 包夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24982685A priority Critical patent/JPS62110727A/en
Publication of JPS62110727A publication Critical patent/JPS62110727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase gas separation efficiency and to improve economicity by rising gaseous raw material in temp. at liquid crystal critical point or above of liquid crystal contained in a liquid crystal-contg. type gas separation membrane and bringing it into contact with the liquid crystal-contg. type gas separation membrane. CONSTITUTION:Air raw material introduced into the inside of a heating chamber 12 by means of a blower 11 is directly heated with a petroleum burner 13 and risen in temp. at liquid crystal critical point or above of liquid crystal contained in a gas separation membrane and thereafter introduced into a gas feed chamber 14 arranged with a module M. Herein oxygen-enriched air is taken out from air and fed to a combustion furnace 16 via a blower 15 and made to an oxygen source of a combustion burner 13 or the like. In such a way, high combustion efficiency can be obtained in the combustion furnace 16. On this occasion, an aimed gas such as oxygen-enriched air can economically be obtained by increasing remarkably gas separation efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分l!1lllIによるガス分離方法に関し、
詳細には分離効率が高く経済的にガス分離を行なうこと
のできるガス分離方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention covers a wide range of applications. Regarding the gas separation method using 1llllI,
Specifically, the present invention relates to a gas separation method that has high separation efficiency and can perform gas separation economically.

[従来の技術] 混合ガス中から特定成分ガスをとり出すガス分離法には
色々の方法がある。例えば各種燃焼装置においては燃焼
用空気を供給する必要があるが、空気中には02の他、
N2やco2等の不燃性ガスが多く含まれている為装置
の燃焼効率が低くなり、また燃焼に伴なって不燃性ガス
も加熱され排ガスと共に排出されるので熱量の損失も大
きいという欠点がある。さらに不燃性ガス分だけ供給空
気量も増大するので送給ブロワに対する負担も大きくな
る。そこで燃焼の経済性を高める為に空気の代りに酸素
富化空気を利用して上記欠点を解消することが考えられ
、空気から酸素富化空気を得る為のガス分離技術が種々
提案されている。こうしたガス分離技術としては、深冷
分離法やゼオライトの選別吸着性を利用した圧力スイン
グ法等が一般的であるが、これらの方法では運転コスト
や設備償却コストがかさみ、経済的な燃焼を達成するこ
とができない。そこで経済的なガス分離技術が必要とさ
れる訳であるが、こうした要請に答える可能性を有する
ものとしてガス分離膜法が挙げられる。即ちガス分離膜
法とは、混合ガスを分離膜に接触させ、混合ガス成分夫
々の膜透過率の違いを利用して透過後の特定ガス濃度を
高め、あるいは低減することによって目的ガスを得る方
法であって前記2方法と比較すると原理的にも簡単で相
変化を伴なわないことから経済的なカス分離を達成する
ことができるとされている。しかるに従来から存在する
ガス分離膜は、1、ν定ガスを良く透過するか否かを示
す透過係数や混合カス中の2成分以上の透過後のガス温
度比を透過前のガス?51度比て除した値を示す分出1
1係数並ひに膜の耐久性が未だ不十分てあり、経済(1
+Jそれ程借れたものとはいえず改善の余地が残され°
〔いる。
[Prior Art] There are various gas separation methods for extracting a specific component gas from a mixed gas. For example, in various combustion devices, it is necessary to supply combustion air, but in addition to 02,
Since it contains a large amount of non-flammable gas such as N2 and CO2, the combustion efficiency of the device is low, and the non-flammable gas is also heated during combustion and is emitted along with the exhaust gas, so there is a disadvantage that there is a large loss of heat. . Furthermore, since the amount of air supplied increases by the amount of nonflammable gas, the load on the feed blower also increases. Therefore, in order to improve the economic efficiency of combustion, it has been considered to eliminate the above drawbacks by using oxygen-enriched air instead of air, and various gas separation technologies have been proposed to obtain oxygen-enriched air from air. . Common gas separation technologies include cryogenic separation and pressure swing methods that utilize the selective adsorption properties of zeolite, but these methods require high operating costs and equipment depreciation costs, making it difficult to achieve economical combustion. Can not do it. Therefore, an economical gas separation technology is needed, and the gas separation membrane method has the potential to meet this demand. In other words, the gas separation membrane method is a method of obtaining a target gas by bringing a mixed gas into contact with a separation membrane and utilizing the difference in membrane permeability of each mixed gas component to increase or decrease the concentration of a specific gas after permeation. Compared to the above two methods, this method is simple in principle and does not involve a phase change, so it is said that it is possible to achieve economical waste separation. However, conventionally existing gas separation membranes have a permeability coefficient that indicates whether 1, ν constant gas permeates well or not, or a gas temperature ratio after permeation of two or more components in the mixed waste, or a gas temperature ratio before permeation. Subtraction 1 showing the value divided by 51 degrees
1 coefficient and the durability of the membrane are still insufficient, and the economy (1
+J It can't be said that it was borrowed that much, and there is still room for improvement °
[There is.

[発明が解決しJ:つとする問題点] 本発明はこうした事情に着1−1シてなされたものであ
って、ガス分離膜法におりるカス分離効率を改善し、ガ
ス分離膜法の長所である経済性の一層の向」二をはかろ
うとするものてN〉る。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and improves the efficiency of waste separation in the gas separation membrane method, and improves the efficiency of the gas separation membrane method. There are also attempts to further improve economic efficiency, which is one of its strengths.

[問題点を解決する為の手段] しかして上記目的を達成した未発明方法とは、液晶含有
型ガス分離膜を使用してガス分離を行なうに当たり、原
料ガスを該分離膜に含まれた液晶の液晶限界点以−にに
A、温させ゛〔液晶含有型ガス分11[1]uに接触さ
せることを特徴とする点に要旨か存在する。
[Means for Solving the Problems] However, the uninvented method that achieves the above purpose is that when gas separation is performed using a liquid crystal-containing gas separation membrane, the source gas is separated from the liquid crystal contained in the separation membrane. The gist lies in that A is heated above the liquid crystal limit point and brought into contact with a liquid crystal-containing gas component 11[1]u.

[作用] 木発明においてはガス分離膜として比較的高いガス分離
能を有する液晶含有型ガス分離膜を採用する。該分離膜
としては種々のものがあるか、代表的なものとして高分
子と液晶物質の混合溶液から溶媒蒸発法により調製した
高分子−液晶膜とか高分子と液晶物質の混合溶液に例え
ばフッ化炭素(フルオロカーボンモノマー)を少量分散
させた高分子−液晶膜フッ化炭素三元複合膜なとがある
が、一般に高分子としては塩化ビニル、液晶としては4
−エトキシベンジリデン−4−ブヂルアニリン(以下E
BBA)や4−シアノ−4−ペンデルビフェニルなどが
あげられるか、素材については特段の制限かある訳では
ない。
[Function] In the present invention, a liquid crystal-containing gas separation membrane having a relatively high gas separation ability is employed as the gas separation membrane. There are various types of separation membranes. Typical examples include a polymer-liquid crystal membrane prepared by a solvent evaporation method from a mixed solution of a polymer and a liquid crystal material, and a polymer-liquid crystal film prepared by adding fluoride to a mixed solution of a polymer and a liquid crystal material. There is a polymer-liquid crystal film in which a small amount of carbon (fluorocarbon monomer) is dispersed.There is a fluorocarbon ternary composite film, but generally the polymer is vinyl chloride and the liquid crystal is polyvinyl chloride.
-Ethoxybenzylidene-4-butylaniline (hereinafter E
Examples include BBA) and 4-cyano-4-penderbiphenyl, but there are no particular restrictions on the materials.

しかるに」二記液晶含有型ガス分離膜のガス分離能は格
別卓越したものとは言えず、これだけては木発明の目標
とするガス分離性能を備えたことにはならず、より優れ
たガス分剤1性能への改質が求められる。
However, the gas separation performance of the liquid crystal-containing gas separation membrane described in Section 2 cannot be said to be particularly outstanding, and this alone does not mean that it has the gas separation performance that was the goal of the wood invention. Improvements to agent 1 performance are required.

本発明はこうした要請に答えたものであって、液晶含有
型ガス分離膜のカス分離性能が温度依存型であることを
見出し、この性質を利用してガス分離性能の一層の改善
を達成したものである。
The present invention has been made in response to these demands by discovering that the gas separation performance of a liquid crystal-containing gas separation membrane is temperature-dependent, and utilizing this property to further improve the gas separation performance. It is.

即ち液晶含有型ガス分離膜の一例として、塩化ビニルの
網目状組織の間隙にEBBAを包含させたガス分離膜[
塩化ビニル: EBBA=40 :60(重量比)]に
、N2.He、CH4゜C3HB 、イソブタン、n−
ブタンの各ガスを接触させ、夫々の透過係数曲線を調べ
ると第1図に示す結果が得られた。尚Tmは融点、Tc
は液晶限界点を意味し、液晶はTm以下で結晶になり、
Tm以上で且つTc以下の温度範囲で液晶(流動可能結
晶)となり、Tc以上で純液体となる。
That is, as an example of a liquid crystal-containing gas separation membrane, a gas separation membrane in which EBBA is included in the gaps of a network structure of vinyl chloride [
Vinyl chloride: EBBA=40:60 (weight ratio)], N2. He, CH4゜C3HB, isobutane, n-
When butane and other gases were brought into contact with each other and their permeability coefficient curves were examined, the results shown in FIG. 1 were obtained. Note that Tm is the melting point, Tc
means the liquid crystal limit point, the liquid crystal becomes a crystal below Tm,
It becomes a liquid crystal (flowable crystal) in a temperature range of Tm or more and Tc or less, and becomes a pure liquid in a temperature range of Tc or more.

第1図に示す様にTm以下の温度域における透過係数曲
線とTc以上の温度域における透過係数曲線との間には
際立った差があり、Tc以上の温度域になると卓越した
透過係数を得ることがでとる。即ち前記液晶含有型ガス
分離膜の使用温度域を液晶のTc点以−にとすれば高い
透過係数を得ることができる。
As shown in Figure 1, there is a marked difference between the permeability coefficient curve in the temperature range below Tm and the permeability coefficient curve in the temperature range above Tc, and an outstanding permeability coefficient is obtained in the temperature range above Tc. I'll figure it out. That is, if the operating temperature range of the liquid crystal-containing gas separation membrane is set to be above the Tc point of the liquid crystal, a high transmission coefficient can be obtained.

ところでガス分離膜自体の温度域をTc点以上にする手
段としては種々のものが考えられるか、どの様な手段を
採るにせよガス分離膜には分離対象である原料ガスを接
触させるので原料ガス温度が低いと長時間の使用により
ガス分離膜温度は原料ガス温度と同等になる。こうした
理由から本発明では原料ガス温度をTc点以上に昇温さ
せ、これをガス分離膜に接触させる。これによってガス
分離膜温度もTc点以上に昇温され且つこの温度に維持
されるので、優れた透過係数を得ることができる。尚原
料ガスを昇温させる手段としては特に制限はなく、例え
ば石油バーナ、ガスバーナ。
By the way, various methods can be considered to increase the temperature range of the gas separation membrane itself to the Tc point or higher.Whatever method is used, the gas separation membrane is brought into contact with the raw material gas to be separated, so the raw material gas If the temperature is low, the gas separation membrane temperature will become equal to the raw material gas temperature after long-term use. For these reasons, in the present invention, the temperature of the raw material gas is raised above the Tc point and brought into contact with the gas separation membrane. As a result, the gas separation membrane temperature is also raised above the Tc point and maintained at this temperature, so that an excellent permeability coefficient can be obtained. There are no particular restrictions on the means for raising the temperature of the raw material gas, such as an oil burner or a gas burner.

電気ヒータ、高温蒸気による加熱や断熱圧縮による昇温
等の手段を利用することができる。
Means such as an electric heater, heating with high-temperature steam, and temperature raising by adiabatic compression can be used.

[実施例] 第2図は、巻込型分離膜ユニットを収納したモジュール
を示す斜視図、第3図は巻込型分11に膜ユニットの構
造を示す一部破断説明図で、1は巻込型分離膜ユニット
、2は鋼管製ハウジング、3は空気供給口、4は残渣ガ
ス排出口、5は酸素富化空気取出管、6は盲板、7はポ
リマー膜、8は液晶含有型ガス分離膜(以下ratにガ
ス分離膜という)、9は粗膜を夫々示す。
[Example] Fig. 2 is a perspective view showing a module containing a rolled-up separation membrane unit, and Fig. 3 is a partially cutaway explanatory view showing the structure of the membrane unit in the rolled-up type portion 11. Separation membrane unit, 2 is a steel pipe housing, 3 is an air supply port, 4 is a residual gas discharge port, 5 is an oxygen-enriched air outlet pipe, 6 is a blind plate, 7 is a polymer membrane, 8 is a liquid crystal-containing gas Separation membrane (hereinafter referred to as rat) and 9 indicate a crude membrane, respectively.

分離膜ユニット1は、透過ガス通路用粗膜9の両面にガ
ス分1tllfllua、aを積層し、さらにその両側
に夫々供給ガス通路用ポリマー膜7.7を積層してなる
帯状の薄膜積層体を、1f!部の一部にガス通過孔10
を穿設した酸素富化空気取出管50周りに敬重に巻回し
てなり、酸素富化空気取出管5の一端は盲板6によって
封鎖すると共に他端は燃焼装置(図示せず)に接続して
いる。また粗膜9及びガス分離膜8の軸方向両端面及び
外心側端面は適当なシール材で封鎖し、且つポリマー膜
7の内心側端面及び外心側端面もシール材で封鎖してい
る。モジュールMはこの様な分離膜ユニッ)・1を一端
が封鎖された鋼管製ハウジング2内に収納してなり、鋼
管製ハウジング2の開放側はフランジFによって密閉さ
れている。また鋼管製ハウジング2のフランジ側空間に
は空気供給口3が開口され、奥部側空間には残漬ガス排
出口4が開口されている。
The separation membrane unit 1 is a strip-shaped thin film laminate formed by laminating a gas component 1tllfllua,a on both sides of a coarse membrane 9 for permeated gas passages, and further laminating polymer membranes 7 and 7 for supply gas passages on both sides thereof. , 1f! Gas passage hole 10 in a part of the part
One end of the oxygen-enriched air take-off pipe 5 is sealed with a blind plate 6, and the other end is connected to a combustion device (not shown). ing. Further, both axial end faces and the outer center end face of the rough membrane 9 and the gas separation membrane 8 are sealed with a suitable sealing material, and the inner center end face and the outer center end face of the polymer membrane 7 are also sealed with a sealing material. The module M houses such a separation membrane unit 1 in a steel pipe housing 2 whose one end is closed, and the open side of the steel pipe housing 2 is sealed by a flange F. Further, an air supply port 3 is opened in the flange side space of the steel pipe housing 2, and a residual gas discharge port 4 is opened in the inner space.

上記構成のガス分離膜モジュールMに空気供給口3から
原料空気を吹込むと、空気はガス分離膜ユニット1のポ
リマー膜7側面からユニット内に入り、次いで空気の中
でガス分離膜に対する透過性の高い酸素が選択的にガス
分離膜8を透過して粗膜9へ至り、粗1lU9中を内心
方向へ流れて取出管5の孔10から取出管5内へ流入し
、集められて燃焼装置へ供給される。一方ガス分離膜8
を透過しない残渣ガスはポリマー膜7内を通過して鋼製
ハウジング2の奥部空間へ至り残漬ガス取出口4から系
外へ放出される。
When raw air is blown into the gas separation membrane module M having the above configuration from the air supply port 3, the air enters the unit from the side of the polymer membrane 7 of the gas separation membrane unit 1, and then the permeability of the gas separation membrane in the air increases. High oxygen selectively permeates the gas separation membrane 8 and reaches the crude membrane 9, flows inward through the crude 11U9, flows into the extraction pipe 5 through the hole 10 of the extraction pipe 5, and is collected and sent to the combustion device. supplied to On the other hand, gas separation membrane 8
The residual gas that does not pass through the polymer membrane 7 reaches the inner space of the steel housing 2 and is discharged from the residual gas outlet 4 to the outside of the system.

第4図はこの様なガス分離膜モジュールを組み込んだ本
発明方法実施の為の具体例装置(燃焼システム)を示す
模式図で、ブロワ11によって加熱室12内に導入され
た原料空気は、石油バーナ13の加熱により直接加熱さ
れてガス分離膜に含有される液晶の液晶限界点10以上
に昇温した後、モジュールMを配置した供給ガス室14
へ導入する。ここで空気中から酸素富化空気が取出され
、該酸素富化空気はブロワ15を介して燃焼炉16へ供
給され燃焼バーナ等の酸素源となる。かくして燃焼炉1
6において高い燃焼効率を得ることができる。尚17は
燃料タンク、16は煙突。
FIG. 4 is a schematic diagram showing a specific example device (combustion system) for carrying out the method of the present invention incorporating such a gas separation membrane module. The supply gas chamber 14 in which the module M is placed is heated directly by the burner 13 to raise the temperature to the liquid crystal limit point 10 of the liquid crystal contained in the gas separation membrane or higher.
to be introduced. Here, oxygen-enriched air is taken out from the air, and the oxygen-enriched air is supplied to a combustion furnace 16 via a blower 15 and serves as an oxygen source for a combustion burner or the like. Thus combustion furnace 1
6, high combustion efficiency can be obtained. 17 is the fuel tank, and 16 is the chimney.

19は希釈用空気導入口を夫々示す。Reference numeral 19 indicates a dilution air inlet.

上記実施例方法において、モジュールへはTc点以上の
原料空気が送給されるので液晶含有型ガス分離膜の高い
分離機能が発揮されて酸素富化空気を効率良く得ること
がで計る。
In the method of the above embodiment, since the raw material air above the Tc point is fed to the module, the high separation function of the liquid crystal-containing gas separation membrane is exhibited, and oxygen-enriched air can be efficiently obtained.

尚上記では巻込型のガス分l1ll[膜ユニットを使用
したが、平板型ユニット、中空糸型ユニット等の任意の
形状のユニットを使用することができる。
In the above, an entrained gas membrane unit was used, but a unit of any shape such as a flat plate unit or a hollow fiber unit may be used.

また原料空気を昇温させる手段についても特に制限はな
く、ガスバーナ、電気ヒータ、高温蒸気あるいは燃焼炉
排熱等を利用して加熱する他、断熱圧縮により昇温させ
てもよい。さらに本発明ガス分離方法によって得る目的
ガスは酸素富化空気に限定される訳ではなく、逆に窒素
富化空気を利用したり、第1図の説明で取り上げた様な
各種のガスを分離・利用する場合であってもよい。
Further, there is no particular restriction on the means for raising the temperature of the raw material air, and in addition to heating using a gas burner, electric heater, high-temperature steam, or combustion furnace exhaust heat, the temperature may be raised by adiabatic compression. Furthermore, the target gas obtained by the gas separation method of the present invention is not limited to oxygen-enriched air; on the contrary, nitrogen-enriched air may be used, or various gases such as those mentioned in the explanation of FIG. It may be used.

[発明の効果] 本発明は以上の様に構成されており、ガス分離効率を飛
躍的に高めたことにより酸素富化空気等の目的ガスを経
済的に得ることに成功した。
[Effects of the Invention] The present invention is configured as described above, and by dramatically increasing gas separation efficiency, it has succeeded in economically obtaining a target gas such as oxygen-enriched air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種ガスの温度を横軸とする透過係数曲線を
示すグラフ、第2図はガス分1i11膜モジュールを示
す一部破断斜視図、第3図はガス分離膜ユニットの構造
を示す一部破断斜視図、第4図は本発明実施例装置を示
す模式図である。 第1邑
Fig. 1 is a graph showing permeability coefficient curves with the horizontal axis representing the temperature of various gases, Fig. 2 is a partially cutaway perspective view showing a gas component 1i11 membrane module, and Fig. 3 shows the structure of the gas separation membrane unit. FIG. 4, a partially cutaway perspective view, is a schematic diagram showing an apparatus according to an embodiment of the present invention. 1st eup

Claims (1)

【特許請求の範囲】[Claims] 液晶含有型ガス分離膜を使用してガス分離を行なうに当
たり、原料ガスを該分離膜に含まれた液晶の液晶限界点
以上に昇温させて液晶含有型ガス分離膜に接触させるこ
とを特徴とするガス分離方法。
When performing gas separation using a liquid crystal-containing gas separation membrane, the raw material gas is heated to a temperature higher than the liquid crystal limit point of the liquid crystal contained in the separation membrane and brought into contact with the liquid crystal-containing gas separation membrane. gas separation method.
JP24982685A 1985-11-07 1985-11-07 Separating method for gas Pending JPS62110727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24982685A JPS62110727A (en) 1985-11-07 1985-11-07 Separating method for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24982685A JPS62110727A (en) 1985-11-07 1985-11-07 Separating method for gas

Publications (1)

Publication Number Publication Date
JPS62110727A true JPS62110727A (en) 1987-05-21

Family

ID=17198758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24982685A Pending JPS62110727A (en) 1985-11-07 1985-11-07 Separating method for gas

Country Status (1)

Country Link
JP (1) JPS62110727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755898B2 (en) * 2002-07-26 2004-06-29 Daewoo Electronics Corporation Oxygen-enriched air supplying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755898B2 (en) * 2002-07-26 2004-06-29 Daewoo Electronics Corporation Oxygen-enriched air supplying apparatus

Similar Documents

Publication Publication Date Title
US7166148B2 (en) Gas separation membranes
Stern et al. Helium recovery by permeation
EP1261992B1 (en) Membrane exchange humidifier
US6630012B2 (en) Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US6864005B2 (en) Membrane exchange humidifier for a fuel cell
US3930813A (en) Process for producing nitrogen dioxide-free oxygen-enriched gas
DE69501585T2 (en) High temperature oxygen production with steam and energy generation
CA1305074C (en) Process for separating co -from other gases
EP0054941A2 (en) Oxygen enriched gas supply arrangement for combustion
RU2205227C2 (en) Method for oxygen enrichment of in-going gas
JPS5838362B2 (en) Thailand
US5922178A (en) High temperature gas separation apparatus
NO174329B (en) Microporoes polyfluorocarbon membrane and process for its preparation
GB2214103A (en) Process for selectively separating water vapour from a gaseous mixture
CN1200950A (en) Solid electrolyte system for producing purity-controlled oxygen
JPH04227036A (en) Air take-in system for furnace of residence
Chen et al. Physical properties measurement and performance comparison of membranes for planar membrane humidifiers
JPS62110727A (en) Separating method for gas
KR20170040369A (en) Method for driving internal combustion engine, and air supply device
JPS6356431B2 (en)
Liu et al. Elastic polybenzimidazole nanofiber aerogel for thermal insulation and high-temperature oil adsorption
TWM631510U (en) Water treatment device based on heat pump system
Feng et al. Development of hollow fiber membrane systems for nitrogen generation from combustion exhaust gas: Part I. Effects of module configurations
TWI819585B (en) Water treatment equipment based on heat pump system
JPS609064A (en) Gas separator of fused carbonate type fuel cell