JPS6211039B2 - - Google Patents

Info

Publication number
JPS6211039B2
JPS6211039B2 JP11774075A JP11774075A JPS6211039B2 JP S6211039 B2 JPS6211039 B2 JP S6211039B2 JP 11774075 A JP11774075 A JP 11774075A JP 11774075 A JP11774075 A JP 11774075A JP S6211039 B2 JPS6211039 B2 JP S6211039B2
Authority
JP
Japan
Prior art keywords
oil
weight
water
present
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11774075A
Other languages
Japanese (ja)
Other versions
JPS5242485A (en
Inventor
Katsunori Ooshima
Takeji Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11774075A priority Critical patent/JPS5242485A/en
Publication of JPS5242485A publication Critical patent/JPS5242485A/en
Publication of JPS6211039B2 publication Critical patent/JPS6211039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、操作が簡単な油水分離性能の高い吸
油材に関するものである。 〔従来の技術〕 工業化の進展にともない人間生活に有効な各種
石油化学材料が開発され、文化的な活動が行なわ
れるようになつてきている。その反面、その石油
化学材料の開発、製造の過程では原料、補助剤、
副生物、製品あるいは廃物の一部などが、何らか
のかたちで外部に漏洩し、それが環境を汚染し、
本来人類の文化生活の向上に役立つべき目的が、
逆に人類の生存すらおびやかす状態にすらなつて
きている。 極論すれば、安価に大量の製品を得るために、
不必要なものをいわゆる「水に流す」方式で処理
することが簡単であり、単にメーカーのみならず
個人の生活においてすらその処理が行なわれたこ
とが今日の環境汚染の大きな原因と解さなければ
なるまい。現代生活は石油と切りはなして考える
ことができないが、石油を用いた製品の製造の過
程での廃棄物、それらの製品を利用した後の廃棄
物の中には多かれ少なかれ必ずといつてよい程、
いわゆる廃油が混入する。そればかりか、単なる
廃水と考えているものにすら廃油が混入している
例が多い。特に工業排水、港湾における船舶の出
入数は増加の一途をたどる昨今においては、河
川、海水の廃油による汚濁が増して水資源、海洋
資源に対する悪影響、火災などの問題が重大化し
てきた。これから廃棄しようとする廃棄物はもと
より、望ましくはすでに廃油により汚濁されてい
る部分においても油水を分離しないかぎり、安全
な生活が営めない。このため多くの油水分離材
(剤)や油水分離装置が開発されてきている。と
ころが現在までに開発されてきている油水分離材
は有機系の高分子を用いた繊維や多孔質体が多
く、製造方法が煩雑でありまたコストが高かつ
た。一般に「廃棄に高額な金をかけることは経済
的でない」という観念がまだ根強く、この種の高
価格な油水分離材は、十分に使いきれていないの
が実情である。 一方、シリコーン類の製造過程において、RSi
Cl3、(RはCH3、C2H5、C3H7、C2H3または
C6H5)が多量に副生し、これを水の中に添加する
とシルセスキオキサン(RSi O3/2oが形成さ
れ、従来はこの処理に因り、これまた産業廃棄物
として廃棄されていた。ところがその廃棄自体問
題となつている昨今においては各シリコーン類の
メーカともその処置に苦慮していた。ところでこ
のシリセスキオキサン(RSi O3/2o自体に吸油
性はあることや産業廃棄物であるため安価である
ことは自明であつたが一般にはこのものはガラス
状のブロツクであつたり、あるいは粉体であるた
め、ガラス状では表面のみ吸油したとしてもたか
が知れているし、粉体では吸油量は多いものの取
り扱いが煩雑であり、実質的に十分な利用がなさ
れていないのが実状であつた。 〔発明が解決しようとする問題点〕 本発明者らは、かかる状況に鑑み、上記産業廃
棄物であるシルセスキオキサン(RSi O3/2o
用い、安価で吸油量が多くしかも取り扱いが簡単
な吸油材をつくるべく鋭意研究し、本発明に到達
した。すなわち、本発明の目的は、安価で取り扱
いが簡単な吸油材を与えることにある。 〔問題点を解決するための手段〕 上記目的を達成するため、本発明は下記の構成
からなる。 「 次式〔〕で示されるケイ酸アルカリ成分
3〜80重量部と、次式〔〕で示されるシルセス
キオキサン成分97〜20重量部とからなる組成物で
あつて、かつ該組成物は発泡体構造を有すること
を特徴とする吸油材。 x・A2O・y・Si o2 ……〔〕 (ただしAはNaまたはKを示し、y/xのモ
ル比は2〜25の範囲である。) (RSi O3/2o ……〔〕 (ただしRは−CH3、−C2H5、−C3H7、−
C2H3、または−C6H5(フエニル基)を示し、n
は重合度を示す。)」 本発明の1成分であるシルセスキオキサン
(RSi O3/2oは極性が低く、撥水性の強いもの
であるのに対して、ケイ酸アルカリ(あるいはそ
の生成原料)は極性が高く、親水性のものであつ
て極性的には本来相入れないものであるが、
(RSi O3/2oの分子末端が―Si―OHと考えら
れ、これがケイ酸アルカリ(あるいはその生成原
料)と化学的に結合(一種のブロツク共重合)す
るためか、両者はよく合体する。同時にケイ酸ア
ルカリあるいはその生成原料は水の存在下で加熱
すると発泡する性質がある。このため本発明によ
れば扱いが繁雑な粉末として(RSi O3/2oを使
用してもこれがケイ酸アルカリと合体するため、
種々の形状に形成できるとともに、そのケイ酸ア
ルカリ自体が発泡するので、形状が自由でしかも
表面積としては大きな吸油材が形成できる。 本発明における式〔〕で示されるケイ酸アル
カリ成分とは、ケイ酸アルカリそのものでもよ
く、またケイ酸アルカリを生成する原料から出発
させてもよい。かかる原料としては、Si O2を50
重量%以上含むケイ酸質原料と、NaまたはKを
含むアルカリ原料の混合物からなるもので、少な
くとも水の存在下で発泡する程度の温度に加熱さ
れた場合に、一部もしくは全部がケイ酸アルカリ
になるものをいう。この目的に使用できるケイ酸
質原料には、ケイソウ土、ケイカ石、ケイ石、ケ
イ砂、ケイ酸白土などの天然物、金属シリコンや
シリコン合金の製造の過程で副生するポゾラン
類、各種金属精練時の鉱滓類あるいはフライアツ
シユなどがある。またアルカリ原料としては、水
酸化ナトリウム、水酸化カリウム、酸化ナトリウ
ム、酸化カリウムなど多くのものがある。 本発明において、ケイ酸アルカリとは完全にケ
イ酸アルカリになつているもの、それぞれケイ酸
質原料とアルカリ原料の混合物、あるいはその中
間的ものや両者が混合されているものいずれであ
つてもよい。 本発明においてSi O2/A2Oのモル比率は2〜
25の範囲が必要であり、特に好ましくは2.5〜15
の範囲である。このモル比率が上記範囲よりも低
くてしかも(RSi O3/2oの添加割合が少ないと
耐水性が悪く製品の耐久性が悪く好ましくない。
逆にこのモル比率が高いと、発泡性が悪くなり、
製品の表面積が少なく吸油性能が低下するので好
ましくない。 本発明においてケイ酸アルカリ成分(Sと省
略)と、シルセスキオキサン(Cと省略)との混
合比率は、重量比で3〜80:97〜20(ただしS:
C)の範囲がよく、特に好ましくは30〜80:70〜
20(ただしS:C)の範囲がよい。 上記範囲よりも(RSi O3/2oの割合が少ない
と十分な吸油性効果を示さないし、逆に上記範囲
よりも多くなると表面積が小さくなるためか吸油
性が低下するうえ、取り扱いに便利な形状を自由
に形成できにくい面があり好ましくない。 また本発明においては全原料中のSi/Na2換算
比率は3.5以上好ましくは5以上である。この理
由は、通常のガラスあるいはその他陶磁器の範疇
に入るものになり焼却などの処理後には完全に人
畜無害のものになるからである。この比率は3.5
未満であると吸油後に焼却などの処理をしても残
渣のアルカリ分が強すぎて逆に問題になる。 次に式〔〕化合物であるシルセスキオキサン
(RSi O3/2o中のRは−CH3、 −C2H5、−C3H7、−C2H3、 −C6H5(フエニル基)から選ばれる1種以上
の残基である。その理由は、一般のシリコーン工
場で副生物として排出される化合物の大部分はこ
の構造にかかるからである。そしてこれこれを用
いれば原料コストが安いので、コストの安い吸油
材とすることができる。 また式〔〕化合物におけるnは、単に重合体
であることを示し、本発明には特に制限なく利用
することができる。すなわち一般に無機化合物に
おいては重合度nを求めることは困難で、例えば
石英ガラスにおいてはSiO2の重合体であるので
厳密には、
[Industrial Application Field] The present invention relates to an oil-absorbing material that is easy to operate and has high oil-water separation performance. [Prior Art] With the progress of industrialization, various petrochemical materials useful in human life have been developed, and cultural activities have begun to take place. On the other hand, in the process of developing and manufacturing petrochemical materials, raw materials, auxiliary agents,
By-products, products, or parts of waste may leak outside in some way, contaminating the environment,
The purpose of originally serving to improve the cultural life of humankind is
On the contrary, it has reached a state where even the survival of humanity is threatened. To take it to the extreme, in order to obtain large quantities of products at low prices,
It is easy to dispose of unnecessary things by the so-called ``flushing'' method, and we must understand that the fact that this process was carried out not only by manufacturers but also in the lives of individuals is a major cause of today's environmental pollution. It won't happen. Modern life cannot be considered inseparable from petroleum, but some of the waste produced in the manufacturing process of products that use petroleum, and the waste that is produced after using those products, are more or less indispensable. ,
So-called waste oil is mixed in. Not only that, but there are many cases where waste oil is mixed into what is considered to be just wastewater. In particular, in recent years, as industrial wastewater and the number of ships entering and exiting ports continue to increase, river and seawater pollution from waste oil has increased, and problems such as negative effects on water and marine resources and fires have become serious. Unless oil and water are separated, not only from the waste that is about to be disposed of, but also preferably from parts that have already been contaminated with waste oil, it will not be possible to live a safe life. For this reason, many oil-water separation materials (agents) and oil-water separation devices have been developed. However, most of the oil-water separation materials that have been developed to date are made of fibers or porous materials made of organic polymers, requiring complicated manufacturing methods and high costs. In general, the idea that ``it is not economical to spend a large amount of money for disposal'' still persists, and the reality is that this type of expensive oil-water separation material is not being used to its full potential. On the other hand, in the manufacturing process of silicones, RSi
Cl 3 , (R is CH 3 , C 2 H 5 , C 3 H 7 , C 2 H 3 or
A large amount of C 6 H 5 ) is produced as a by-product, and when this is added to water, silsesquioxane (RSi O 3/2 ) is formed. It had been. However, as the disposal itself has become a problem these days, manufacturers of various silicone products have been struggling to deal with the issue. By the way, it was obvious that this silisequioxane (RSi O 3/2 ) o itself has oil absorbing properties and that it was cheap because it was industrial waste, but in general, this material was made of glass-like blocks. Or, because it is a powder, it is only possible to absorb oil on the surface if it is in glass form, and although powder absorbs a large amount of oil, it is complicated to handle, so the reality is that it is not used effectively. It was hot. [Problems to be Solved by the Invention] In view of this situation, the present inventors used silsesquioxane (RSi O 3/2 ) , which is the above-mentioned industrial waste, to develop a method that is inexpensive, has a large amount of oil absorption, and is easy to handle. They conducted extensive research to create a simple oil-absorbing material and arrived at the present invention. That is, an object of the present invention is to provide an oil-absorbing material that is inexpensive and easy to handle. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. "A composition comprising 3 to 80 parts by weight of an alkali silicate component represented by the following formula [] and 97 to 20 parts by weight of a silsesquioxane component represented by the following formula [], An oil-absorbing material characterized by having a foam structure. ) (RSi O 3/2 ) o ... [] (However, R is -CH 3 , -C 2 H 5 , -C 3 H 7 , -
C 2 H 3 or -C 6 H 5 (phenyl group), n
indicates the degree of polymerization. )” Silsesquioxane (RSi O 3/2 ) , one of the components of the present invention, has low polarity and strong water repellency, whereas alkali silicate (or its raw material) has low polarity. Although it is highly hydrophilic and inherently incompatible with polarity,
(RSi O 3/2 ) The molecular terminal of o is thought to be -Si-OH, and the two often coalesce, probably because this chemically bonds with the alkali silicate (or its raw material) (a type of block copolymerization). do. At the same time, alkali silicates or their raw materials have the property of foaming when heated in the presence of water. Therefore, according to the present invention, even if (RSi O 3/2 ) o is used as a powder that is difficult to handle, it will coalesce with the alkali silicate.
It can be formed into various shapes, and since the alkali silicate itself foams, it is possible to form an oil-absorbing material of any shape and with a large surface area. The alkali silicate component represented by the formula [] in the present invention may be an alkali silicate itself, or may be started from a raw material that produces an alkali silicate. Such raw materials include SiO2 at 50%
It consists of a mixture of a silicic acid raw material containing more than % by weight and an alkaline raw material containing Na or K, and when heated to a temperature that foams in the presence of at least water, part or all of it becomes an alkali silicate raw material. Something that becomes something. Siliceous raw materials that can be used for this purpose include natural products such as diatomaceous earth, silica stone, silica stone, silica sand, and silicate clay, pozzolans that are by-products in the manufacturing process of metallic silicon and silicon alloys, and various metals. These include slag or fly ash from scouring. There are many alkaline raw materials such as sodium hydroxide, potassium hydroxide, sodium oxide, and potassium oxide. In the present invention, the alkali silicate may be a completely alkali silicate, a mixture of a silicic acid raw material and an alkaline raw material, or an intermediate thereof, or a mixture of both. . In the present invention, the molar ratio of SiO 2 /A 2 O is from 2 to
A range of 25 is required, particularly preferably between 2.5 and 15
is within the range of If this molar ratio is lower than the above range and the proportion of (RSi O 3/2 ) o added is small, the water resistance will be poor and the durability of the product will be poor, which is not preferable.
On the other hand, if this molar ratio is high, foaming properties will be poor,
This is not preferred because the surface area of the product is small and the oil absorption performance is reduced. In the present invention, the mixing ratio of the alkali silicate component (abbreviated as S) and silsesquioxane (abbreviated as C) is 3 to 80:97 to 20 by weight (however, S:
The range C) is good, particularly preferably 30-80:70-
20 (however, the range of S:C) is good. If the ratio of (RSi O 3/2 ) o is lower than the above range, sufficient oil absorption effect will not be exhibited, and conversely, if it is higher than the above range, the oil absorption will decrease, probably due to the smaller surface area, and it will be easier to handle. This is not desirable because it makes it difficult to freely form shapes. Further, in the present invention, the Si/Na 2 conversion ratio in all raw materials is 3.5 or more, preferably 5 or more. The reason for this is that it falls under the category of ordinary glass or other ceramics, and after being incinerated or otherwise treated, it becomes completely harmless to humans and animals. This ratio is 3.5
If it is less than that, the alkaline content of the residue will be too strong even if it is incinerated or otherwise treated after oil absorption, causing problems. Next, R in silsesquioxane (RSiO 3/2 ) which is a compound of formula [] is -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 2 H 3 , -C 6 H 5 (phenyl group). The reason for this is that most of the compounds discharged as by-products in general silicone factories have this structure. If this or that material is used, the raw material cost is low, so it can be made into a low-cost oil absorbing material. Further, n in the compound of formula [] simply indicates a polymer, and it can be used in the present invention without particular limitations. In other words, it is generally difficult to determine the degree of polymerization n for inorganic compounds; for example, quartz glass is a polymer of SiO 2 , so strictly speaking,

〔実施例〕〔Example〕

以下実施例について述べる。 実施例 1 40重量%のカ性ソーダ水溶液100重量部に対し
て、まず(CH3SiO3/2oの乾燥粉末60重量部を
添加し、90℃で30分間加熱し部分反応させた。な
お前記(CH3SiO3/2oはCH3Si Cl3を水中に添加
して得たガラス状(架橋構造体)のものを過、
水洗後、乾燥しついで150〜250メツシユに粉砕し
た粉末状のものである。 次いで前記部分反応物へ水120重量部を添加し
室温に冷却後フエロシリコン製造時に副生する
SiO2、含量96重量%のシリカダスト150重量部を
添加して混合してスラリーを得た。このものをポ
リエチレン製の袋に入れ40℃で16時間反応させ固
体のブロツクを得た。 得られた反応生成物(混合組成物)は次のとお
りであつた。 0.5Na2O・2.4SiO2;約175重量部 (CH3SiO3/2o;60重量部 従つて前者の化合物は前記式〔〕のAがNa
で、y/xが4.8であり、後者の化合物は前記式
〔〕そのものであつた。また得られた反応生成
物全体を100重量部としたときには、前者化合
物:後者化合物=74:26の重量比であつた。 前記反応生成物を砕き45メツシユ以上5メツシ
ユ以下のフイルタで粉砕粒子(イ)を集めた。ついで
この(イ)の一部をとり300℃のロータ中で約5分間
加熱して、含水状態で発泡させた。その結果見か
け比重約0.5で平均4メツシユ程度に相当する発
泡ビーズ(ロ)が得られた。この(ロ)10gをポリスチレ
ンの懸濁重合槽の排水(わずかに水溶し大半はエ
マルジヨン状態で1600ppmスチレンが水に分散
している)1l中に添加し室温で約5分間かきまぜ
た。ついでその全量を60メツシユ金網を通して
過させたところごく簡単に透明な液が得られ
た。 またこの液中のスチレン含量は240ppmに低
下していることが判明し、操作が簡単でかつ吸油
性の極めて高い発泡ビーズであることが確認され
た。 比較例 1 実施例1で得られた発泡ビーズ(ロ)10gを用いる
かわりに、(CH3SiO3/2oの粉末(150〜250メツ
シユ)10g、すなわち前記本発明の式〔〕化合
物のみを用いて同じ吸油操作を行なつた。次いで
このものをナイロンタフタを布に用いて過さ
せたが、布の目づまりが大きく、また水切りが
悪く、実施例1の方法にくらべて操作に10倍以上
の時間を要すことが明らかになつた。 しかもこの粉末を使用する際にはドラフト中の
気流でまい上つてしまい本質的に取り扱いにくか
つた。また吸油効率は、実施例1と比較すると約
1/3と極めて悪いものであつた。 以上の実験から式化合物も共存させないと良
好なものは得られないことがわかつた。 実施例 2 実施例1における粒子(イ)を90℃で30分間加熱し
て含水状態で発泡させた発泡ビーズ(ハ)を得た。こ
の(ハ)50gを両端にフランジの付いた外径φ=60.5
mmで長さ50mmの亜鉛鍍金鋼管につめ込み両端フラ
ンジの部分を鉄板で一応ふさぎ鋼管をたてたまま
300℃で1時間加熱した。冷却後に、両端の鉄板
を除去したところ、鋼管内ほぼいつぱいに上記(ハ)
の二次発泡したものが半融状態でついており、し
かも鋼管ともうまく付いていた。すなわちガラス
フイルタ状に(ハ)が鋼管内におさまつていた。そこ
でこの鋼管をトルエンを主体とする油が
2050ppm含まれている廃液の配水管を接続し、
試験的に1m/minで排水を流したところ、上記
鋼管を透過した排水中の油含量はすでに800ppm
に低下していることがわかつた。この結果極めて
簡単な油水分離が可能であることが明らかになつ
た。 〔発明の効果〕 本発明による吸油材は予想外に吸油性能(油水
分離性能)が優れている。この原理については本
発明者らにも正確には明らかではないが、極性の
高いケイ酸アルカリとシルセスキオキサン(RSi
3/2oが化学的に結合している部分があり、一
種のブロツク共重合体を形成しているため界面活
性剤効果を示し、油成分を包含する性質が形成さ
れているからであると考えられる。また連続起泡
が好ましい構造を有していることとも考えられ
る。 本発明による吸油材は、上記のように焼却後に
はガラスないしは陶磁器の範疇にある組成にな
り、しかも微粉末ではないため、処分に際しても
何らの問題がないばかりか、再度本発明の原料中
に混入したり、安価な陶磁器製品の原料としても
使用することができるし、さらには多孔質で
SiO2が主体となつているため除湿剤としても現
実に使用することができる。 また本発明による吸油材で吸油させた場合にそ
の油成分がたとえば香料原料、高価なモノマーな
どの高級化成品であれば、そのまま蒸溜してその
油成分を回収して除去し、再度吸油材として使用
することができる。 また本発明の吸油材は産業廃棄物を再利用して
いるので、コストの安いものとすることができ
る。
Examples will be described below. Example 1 First, 60 parts by weight of dry powder of (CH 3 SiO 3/2 ) o was added to 100 parts by weight of a 40% by weight aqueous caustic soda solution, and heated at 90° C. for 30 minutes to cause a partial reaction. The above (CH 3 SiO 3/2 ) o is a glassy (crosslinked structure) obtained by adding CH 3 Si Cl 3 to water.
It is a powdered product that is washed with water, dried, and ground into 150 to 250 mesh pieces. Next, 120 parts by weight of water was added to the partial reactant and cooled to room temperature, which was then produced as a by-product during the production of ferrosilicon.
SiO 2 and 150 parts by weight of silica dust containing 96% by weight were added and mixed to obtain a slurry. This product was placed in a polyethylene bag and reacted at 40°C for 16 hours to obtain a solid block. The obtained reaction product (mixed composition) was as follows. 0.5Na 2 O・2.4SiO 2 ; Approximately 175 parts by weight (CH 3 SiO 3/2 ) o ; 60 parts by weight Therefore, in the former compound, A in the above formula [] is Na.
In this case, y/x was 4.8, and the latter compound was exactly the same as the above formula []. When the total reaction product obtained was 100 parts by weight, the weight ratio of the former compound to the latter compound was 74:26. The reaction product was crushed and the crushed particles (a) were collected using a filter of 45 meshes or more and 5 meshes or less. Next, a portion of this (a) was taken and heated in a rotor at 300°C for about 5 minutes to foam it in a water-containing state. As a result, foamed beads (b) with an apparent specific gravity of about 0.5 and an average size of about 4 meshes were obtained. 10 g of this (b) was added to 1 liter of wastewater from a polystyrene suspension polymerization tank (1600 ppm styrene dispersed in water, slightly dissolved in water, mostly in an emulsion state) and stirred at room temperature for about 5 minutes. Then, when the entire amount was passed through a 60-mesh wire mesh, a clear liquid was easily obtained. It was also found that the styrene content in this liquid was reduced to 240 ppm, confirming that the foamed beads were easy to operate and had extremely high oil absorption. Comparative Example 1 Instead of using 10 g of foamed beads (B) obtained in Example 1, 10 g of powder (150 to 250 mesh) of (CH 3 SiO 3/2 ) o , that is, only the compound of the formula [] of the present invention, was used. The same oil absorption operation was performed using Next, this material was passed through a cloth made of nylon taffeta, but it became clear that the cloth was clogged to a large extent, and drainage was difficult, and the operation required more than 10 times the time compared to the method of Example 1. Ta. Moreover, when this powder was used, it rose up in the air currents in the draft, making it essentially difficult to handle. Also, the oil absorption efficiency is approximately
It was extremely bad at 1/3. From the above experiments, it was found that a good product could not be obtained unless the compound of the formula was also present. Example 2 The particles (a) in Example 1 were heated at 90° C. for 30 minutes to foam them in a water-containing state to obtain foamed beads (c). Outer diameter of this (c) 50g with flanges on both ends φ = 60.5
packed in a galvanized steel pipe with a length of 50 mm, and the flanges at both ends were temporarily closed with iron plates, leaving the steel pipe standing.
Heated at 300°C for 1 hour. After cooling, when the iron plates at both ends were removed, the inside of the steel pipe was almost completely filled with the above (c).
The secondary foamed material was attached in a semi-molten state, and it also adhered well to the steel pipe. In other words, (c) was trapped inside the steel pipe like a glass filter. Therefore, this steel pipe is coated with oil mainly composed of toluene.
Connect the water pipe for waste liquid containing 2050ppm,
When the wastewater was experimentally flowed at 1m/min, the oil content in the wastewater that permeated through the steel pipe was already 800ppm.
It was found that there was a decline in As a result, it became clear that extremely simple oil-water separation was possible. [Effects of the Invention] The oil-absorbing material according to the present invention has unexpectedly excellent oil-absorbing performance (oil-water separation performance). Although the exact principle behind this is not clear to the inventors, it is important to note that the highly polar alkali silicate and silsesquioxane (RSi)
This is because there is a part where O is chemically bonded, forming a type of block copolymer, which exhibits a surfactant effect and has the property of containing an oil component. It is believed that there is. It is also considered that continuous foaming is preferable. As mentioned above, the oil-absorbing material according to the present invention has a composition that falls within the category of glass or ceramics after incineration, and is not a fine powder. It can be used as a raw material for inexpensive ceramic products, and it is also porous.
Since it is mainly composed of SiO 2 , it can actually be used as a dehumidifier. In addition, when oil is absorbed by the oil-absorbing material of the present invention, if the oil component is a high-grade chemical product such as a raw material for perfumery or an expensive monomer, the oil component is recovered and removed by distillation as it is, and the oil component is used again as an oil-absorbing material. can be used. Furthermore, since the oil absorbing material of the present invention reuses industrial waste, it can be made at low cost.

Claims (1)

【特許請求の範囲】 1 次式〔〕で示されるケイ酸アルカリ成分3
〜80重量部と、次式〔)で示されるシルセスキ
オキサン成分97〜20重量部とからなる組成物であ
つて、かつ該組成物は発泡体構造を有することを
特徴とする吸油材。 x・A2O・y・Sio2 ……〔〕 (ただしAはNaまたはKを示し、y/xのモ
ル比は2〜25の範囲である。) (RSiO3/2o ……〔〕 (ただしRは−CH3、−C2H5、−C3H7、−
C2H3、または−C6H5(フエニル基)を示し、n
は重合度を示す。)
[Claims] Alkaline silicate component 3 represented by the linear formula []
80 parts by weight, and 97 to 20 parts by weight of a silsesquioxane component represented by the following formula [), wherein the composition has a foam structure. x・A 2 O・y・Sio 2 ... [] (However, A represents Na or K, and the molar ratio of y/x is in the range of 2 to 25.) (RSiO 3/2 ) o ... [ ] (However, R is -CH 3 , -C 2 H 5 , -C 3 H 7 , -
C 2 H 3 or -C 6 H 5 (phenyl group), n
indicates the degree of polymerization. )
JP11774075A 1975-10-01 1975-10-01 Oil absorbing composite material Granted JPS5242485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11774075A JPS5242485A (en) 1975-10-01 1975-10-01 Oil absorbing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11774075A JPS5242485A (en) 1975-10-01 1975-10-01 Oil absorbing composite material

Publications (2)

Publication Number Publication Date
JPS5242485A JPS5242485A (en) 1977-04-02
JPS6211039B2 true JPS6211039B2 (en) 1987-03-10

Family

ID=14719115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11774075A Granted JPS5242485A (en) 1975-10-01 1975-10-01 Oil absorbing composite material

Country Status (1)

Country Link
JP (1) JPS5242485A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113111A (en) * 1977-04-04 1977-09-22 Oki Electric Ind Co Ltd Communication line interrupt connection system

Also Published As

Publication number Publication date
JPS5242485A (en) 1977-04-02

Similar Documents

Publication Publication Date Title
Tan et al. Current development of geopolymer as alternative adsorbent for heavy metal removal
Zhang et al. A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications
JP6494618B2 (en) Geopolymer foam preparation for non-flammable, sound-absorbing and heat-insulating geopolymer foam components
ES2128706T3 (en) SILICATE ADJUVANTS AND THEIR USE IN WASHING OR CLEANING AGENTS, AS WELL AS MULTI-SUBSTANCE MIXTURES FOR USE IN THIS FIELD.
KR840005480A (en) Detergent compositions thereof useful for the preparation of sodium metasilicate granule compositions and for washing dishes
KR20120044967A (en) Hydrophobic materials made by vapor deposition coating and applications thereof
Xu et al. Synergistic treatment of heavy metals in municipal solid waste incineration fly ash with geopolymer and chemical stabilizers
JP2016504597A (en) Strontium and cesium specific ion exchange media
CA2090666C (en) Fixing agent for fixing organic and inorganic impurities containing material, method for fixing such material and a synthetic clay material
US20040173536A1 (en) Method of oil spill recovery using hydrophobic sol-gels and aerogels
US4619911A (en) Sorbant and process using rice hull ash compositions
CN109809544A (en) A kind of environmental purifying agent and its application method
JP2018514495A (en) Method for preparing functionalized geopolymer foam, this functionalized foam and use thereof
JPS6211039B2 (en)
JPH1128353A (en) Oil-absorptive material
JPS58500061A (en) Manufacturing method of modified hardening mortar
Shikuku et al. Application of geopolymer composites in wastewater treatment: Trends, opportunities, and challenges
JP2021075423A (en) Ceramic porous body and its manufacturing method
JP2718569B2 (en) Pollutant absorbing composition and pollutant absorbing method
JP3028479B2 (en) Aluminosilicate particles
US3847806A (en) Method for treating sludge formed in city sewage systems
JP2000170145A (en) Oil adsorbent not absorbing water, method of manufacture therefor, and method of oil separation
CA1182759A (en) Filter media for cleansing entrained oils from oil-in- water emulsions
KR101384176B1 (en) Media for water treatment and its preparation method
JPH0215511B2 (en)