JPS62110270A - Sodium-sulphur cell - Google Patents

Sodium-sulphur cell

Info

Publication number
JPS62110270A
JPS62110270A JP60248984A JP24898485A JPS62110270A JP S62110270 A JPS62110270 A JP S62110270A JP 60248984 A JP60248984 A JP 60248984A JP 24898485 A JP24898485 A JP 24898485A JP S62110270 A JPS62110270 A JP S62110270A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sodium
anode
electrolyte tube
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248984A
Other languages
Japanese (ja)
Inventor
Hajime Wada
元 和田
Katsuo Anpo
安保 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60248984A priority Critical patent/JPS62110270A/en
Publication of JPS62110270A publication Critical patent/JPS62110270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make it possible to enhance the charge/discharge depth at the maximum degree and reduce the inner resistance, by arranging a thin material with a high electronic conductivity, allowing a fluidity of active substance, parallel to the surface of a solid electrolyte. CONSTITUTION:A sodium 2 which is an anode active substance enclosed and held in an anode container 1 is separated from the cathode by a solid electrolyte tube 4. In order to feed a melted metallic sodium to all the area of inner wall of a solid electrolyte tube 4, sodium is filled in the area between the sodium holding tube 3 and the solid electrolyte tube 4 with a surface tension. The cathode 5 is a porous electronic conductive material impregnated with sulphur as a cathode active substance, and held in the area composed of a cathode container 6 and a solid electrode outer wall. By furnishing a highly conductive area 7 close to the surface of the solid electrolyte tube, the conductive rate in the direction parallel to the surface of the solid electrolyte tube can be increased, and a reaction in the direction parallel to the surface of the solid electrolyte tube can be made even.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 本発明はナトリウム−硫黄電池に係り、特に電池の内部
抵抗、充放電深度、寿命を改善するのに好適な電池陽極
部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to a sodium-sulfur battery, and particularly to a structure of a battery anode portion suitable for improving the internal resistance, charge/discharge depth, and life of the battery.

〔従来技術及びその問題点〕[Prior art and its problems]

ナトリウム−硫黄電池の陽極構造は電池の内部抵抗や充
放電深度に大きな影響を与える。これら二つの電池性能
は陽極中に存在する陽極活物質を均一に反応させること
により最良となる。
The anode structure of a sodium-sulfur battery has a large effect on the battery's internal resistance and depth of charge and discharge. The performance of these two batteries is best achieved by uniformly reacting the anode active material present in the anode.

一般的にはこの反応の均一化を実現するために、陽極内
部を多孔質電子伝導材が陽極活物質である硫黄を含浸保
持した陽極構造が用いられる。
Generally, in order to achieve uniformity of this reaction, an anode structure is used in which a porous electron conductive material is impregnated with sulfur, which is an anode active material, inside the anode.

陽極内部での電池反応は単に多孔質伝導材を陽極内に配
したのみでは充分に均一化しない場合が多いので従来の
装置では、特開昭54−8533号に記載のように繊維
方向のそろったマット、もしくはフェルト状の多孔質電
子伝導材の繊維長手方向を、反応の不均質が緩和される
ように配する構造が用いられてきた。しかしながら、電
池を高速充放電する場合や、大容量の単電池の場合、従
来構造では反応を完全に均一化することができず、充分
な充放電容量が得られなかった。この原因は、固体電解
質管表面に直角な方向に発生する反応の不均一と、固体
電解質管表面に平行な方向に発生する反応不均一の両方
であるが、固体電解質管表面に直角な方向の不均一は固
体電解質管表面近くの多孔質電子伝導材の導電率を小さ
くすることにより緩和できる。固体電解質管表面に平行
な方向に発生する反応不均一は、重力の影響により生じ
る活物質の体積密度の不均一によるものと考えられるが
、特に大型の電池を高速充放電した際に顕著である。こ
の固体電解質管表面に平行な方向に発生する反応不均一
は多孔質電子伝導材の繊維方向を揃えるという従来方法
では解消できず、陽極内部の反応が進行した領域で反応
が終了してしまい、電池の内部抵抗を増加せしめ、この
ため未反応の活物質が陽極内に残っているにも拘わらず
電池の充放電を終了せざるを得なくなると言う問題があ
った。
In many cases, the battery reaction inside the anode cannot be made sufficiently uniform by simply placing a porous conductive material inside the anode. A structure has been used in which the longitudinal direction of the fibers of a mat or felt-like porous electron conductive material is arranged so as to alleviate the heterogeneity of the reaction. However, in the case of high-speed charging and discharging of batteries, or in the case of large-capacity single cells, the conventional structure could not completely homogenize the reaction, and sufficient charging and discharging capacity could not be obtained. This is caused by both the non-uniform reaction occurring in the direction perpendicular to the solid electrolyte tube surface and the reaction non-uniformity occurring in the direction parallel to the solid electrolyte tube surface. Non-uniformity can be alleviated by reducing the conductivity of the porous electronically conductive material near the surface of the solid electrolyte tube. The reaction nonuniformity that occurs in the direction parallel to the solid electrolyte tube surface is thought to be due to nonuniformity in the volume density of the active material caused by the influence of gravity, and is especially noticeable when large batteries are charged and discharged at high speed. . This reaction non-uniformity that occurs in the direction parallel to the solid electrolyte tube surface cannot be resolved by the conventional method of aligning the fiber direction of the porous electron conductive material, and the reaction ends in the area where the reaction has progressed inside the anode. There is a problem in that the internal resistance of the battery increases, and therefore, charging and discharging of the battery must be terminated even though unreacted active material remains in the anode.

〔発明の目的〕[Purpose of the invention]

本発明の目的はナトリウム−硫黄電池の充放電深度を最
大限に大きくし、且つ内部抵抗の低い陽極構造を従供す
ることにある。
An object of the present invention is to maximize the depth of charge and discharge of a sodium-sulfur battery and provide an anode structure with low internal resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明ではナトリウム−硫黄電池の起電力が、陽極活物
質の反応度が増大するにつれて減少すると云う基本的性
質を積極的に用いており、反応の不均一に伴う局所的な
起電力の差により陽極内部に流れる進運電流を発生させ
、この電流による負帰還効果により電池反応の局所化を
解消するものである。従来の多孔質電子伝導材の繊維方
向を揃える構造においてもこの効果による反応の均一化
が陽極内で発生する。すなわち、反応が不均一となる方
向に対して電子伝導材の導電率が大きければ、この方向
に電子電流が流れやすくなり、放電の進んだ部分に対し
て還元電流が、また放電の遅れた部分において酸化電流
が電子伝導材より陽極活物質に供給され、その結果陽極
内部の活物質の分布が均一となる。
The present invention makes active use of the basic property that the electromotive force of a sodium-sulfur battery decreases as the reactivity of the anode active material increases, and the electromotive force decreases due to local differences in electromotive force due to non-uniform reaction. It generates a forward current flowing inside the anode, and the negative feedback effect of this current eliminates localization of battery reactions. Even in the structure of the conventional porous electron conductive material in which the fiber directions are aligned, the reaction becomes uniform within the anode due to this effect. In other words, if the conductivity of the electron-conducting material is large in the direction where the reaction is non-uniform, electron current will flow more easily in this direction, and the reduction current will flow to the areas where the discharge has progressed, and the reduction current will flow to the areas where the discharge has been delayed. An oxidation current is supplied from the electron conductive material to the anode active material, resulting in uniform distribution of the active material inside the anode.

この反応を均一化する速度は、反応が不均一となる方向
に対する電子伝導材の導電率にほぼ比例すると考えられ
るので、更に反応を均一化するためには多孔質電子伝導
材の導電率を大きくすれば良い。しかしながら、固体電
解質より発生するナトリウムイオン電流の流れる方向に
対しては、逆に多孔質電子伝導材の導電率を上げること
により、固体電解質管表面付近で電池反応が集中し、電
池の性能が悪くなることが知られている。そこでナトリ
ウム−硫黄電池の陽極部に用いられる多孔質電子伝導材
には、固体電解質の表面に平行な方向に導電率が高く、
垂直な方向には導電率が単位センナメートルあたり、数
モー以下であると云う導電率の異方性が要求される。繊
維方向の揃った多孔質集電材に対して、この異方性は小
さく、繊維方向に対する導電率は繊維直角方向に対する
導電率のたかだか数倍であり、このため固体電解質管と
平行な方向に発生する反応分布の局所化を抑制すること
は難しく、特に大型の電池に対してはほぼ不可能である
The rate at which this reaction is made uniform is thought to be approximately proportional to the conductivity of the electron conductive material in the direction in which the reaction becomes non-uniform, so in order to further make the reaction uniform, the conductivity of the porous electron conductive material should be increased. Just do it. However, in contrast to the direction in which the sodium ion current generated from the solid electrolyte flows, increasing the conductivity of the porous electron conductive material causes the battery reaction to concentrate near the solid electrolyte tube surface, resulting in poor battery performance. It is known that Therefore, the porous electronically conductive material used in the anode part of sodium-sulfur batteries has high conductivity in the direction parallel to the surface of the solid electrolyte.
In the vertical direction, anisotropy of conductivity is required, such that the conductivity is less than a few mho per unit of senna meter. For porous current collectors with uniform fiber directions, this anisotropy is small, and the electrical conductivity in the fiber direction is at most several times the electrical conductivity in the direction perpendicular to the fibers, so that the anisotropy occurs in the direction parallel to the solid electrolyte tube. It is difficult to suppress the localization of the reaction distribution, and is almost impossible, especially for large batteries.

ナトリウム−硫黄電池全体について見れば、陰極中の金
属ナトリウム、及び陽極部子孔質電子伝導材に接続され
た集電極は導電率が単位センナメートルあたり数千モー
と非常に大きいが、固体電解質の導電率は単位センチメ
ートルあたり0.2モ一程度である。このため、固体電
解質表面付近には他の部分と比較して大きな電位勾配が
固体電解質管表面と平行な方向に発生することができ、
この部分に反応不均一が起こりやすい。そこで、この部
分に高電子伝導性を有し且つ活物質の流動を防げない薄
肉材を、固体電解質表面に平行に設置することにより最
も有効に反応を均一化することができる。
Looking at the entire sodium-sulfur battery, the conductivity of the metallic sodium in the cathode and the collector electrode connected to the porous electron-conducting material in the anode part is extremely high at several thousand mho per senna meter. The electrical conductivity is approximately 0.2 mo per centimeter. Therefore, a large potential gradient can be generated near the solid electrolyte surface in a direction parallel to the solid electrolyte tube surface compared to other parts.
Reaction non-uniformity is likely to occur in this area. Therefore, the reaction can be most effectively uniformized by installing a thin material having high electronic conductivity and not preventing the flow of the active material in this portion parallel to the solid electrolyte surface.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。陰極
容器l内に密閉保持された陰極活物質であるナトリウム
2は、固体電解質管3により陽極部と隔離されている。
An embodiment of the present invention will be described below with reference to FIG. Sodium 2, which is a cathode active material, is hermetically held in a cathode container l, and is isolated from the anode part by a solid electrolyte tube 3.

固体電解質管4の内壁全域に溶融金属ナトリウムを供給
するため、ナトリウムは表面張力により、ナトリウム保
持管3と固体電解質管40間の領域を満たしている。陽
極部5は多孔質電子伝導材に陽極活物質である硫黄を含
浸したもので、陽極容器6と固体電解質管外壁により構
成される領域内に保持される。
In order to supply molten metal sodium to the entire inner wall of the solid electrolyte tube 4, sodium fills the area between the sodium holding tube 3 and the solid electrolyte tube 40 due to surface tension. The anode section 5 is made of a porous electron conductive material impregnated with sulfur, which is an anode active material, and is held within a region formed by the anode container 6 and the outer wall of the solid electrolyte tube.

陽極が硫黄で満たされている放電初期状態において、陽
極電極である金属容器6と陰極電極である金属容器lの
間に、ナトリウムと原子硫黄間の起電力に相当する電圧
、約2.08Vが発生し、外部負荷をこれら金属容器間
に接続したとき、電流が駆動される。外部に電流を駆動
すると、陽極部に外部回路より電子が供給されるが、こ
の電子は陽極中に存在する硫黄原子に吸収されることに
より、負硫黄イオンを形成することができる。この負電
荷は、正電荷であるナトリウムイオンと結合することに
より中性化されるが、中性化される以前に形成される負
の空間電位はナトリウム陰極から陽極に向かう方向に、
固体電解質内部に電界を発生し、この結果固体電解質内
部にある移動可能なナトリウムイオンが陽極側に供給さ
れる。このナトリウムイオンの移動は、陰極内ナトリウ
ムの固体電解質管表面でのナトリウム原子を電離させ、
この反応に伴って発生する電子が陰極容器より外部回路
に供給される。以上の反応は連続して発生するので、外
部負荷には定常的に電流が供給されることになる。
In the initial state of discharge when the anode is filled with sulfur, a voltage of about 2.08 V, which corresponds to the electromotive force between sodium and atomic sulfur, is generated between the metal container 6, which is the anode electrode, and the metal container L, which is the cathode electrode. When an external load is connected between these metal containers, a current is driven. When a current is applied to the outside, electrons are supplied to the anode portion from an external circuit, and these electrons can be absorbed by sulfur atoms present in the anode to form negative sulfur ions. This negative charge is neutralized by combining with the positively charged sodium ion, but the negative space potential that is formed before being neutralized moves in the direction from the sodium cathode to the anode.
An electric field is generated inside the solid electrolyte, and as a result, movable sodium ions inside the solid electrolyte are supplied to the anode side. This movement of sodium ions ionizes the sodium atoms on the solid electrolyte tube surface of the sodium inside the cathode,
Electrons generated as a result of this reaction are supplied from the cathode container to an external circuit. Since the above reactions occur continuously, current is constantly supplied to the external load.

放電が進行して陽極内部のナトリウムが増え、硫黄1モ
ルに対してナトリウムが0.4モル程度になると、電池
の起電力は放電の進行に伴って、徐々に減少する。この
起電力の減少は陽極内の活物質が固化を始める組成であ
る。硫黄1モルに対してナトリウムが0.7モルとなる
放電深度まで継続し、この組成において約1.78Vの
起電力が電池より得られる。この活物質が固化を始める
組成まで電池を放電せさることは、電池の内部抵抗増大
によるエネルギー効率の低下を招くのみならず、活物質
中に発生する針状のNa2S。
As the discharge progresses, the amount of sodium inside the anode increases, and when the amount of sodium becomes approximately 0.4 mol per 1 mol of sulfur, the electromotive force of the battery gradually decreases as the discharge progresses. This decrease in electromotive force is the composition at which the active material within the anode begins to solidify. The discharge continues until the depth of discharge becomes 0.7 mol of sodium per 1 mol of sulfur, and with this composition an electromotive force of about 1.78 V is obtained from the battery. Discharging the battery to a composition where the active material begins to solidify not only leads to a decrease in energy efficiency due to an increase in the internal resistance of the battery, but also leads to the formation of acicular Na2S in the active material.

固体が固体電解質やその他の陽極構成部材の劣化を促進
するなど電池寿命にも悪影響をおよぼすので、通常の電
池運転では硫黄1モルに対してナトリウムが0.67モ
ルとなる所で放電を終了している。
Since solids accelerate the deterioration of the solid electrolyte and other anode components and have a negative impact on battery life, in normal battery operation, discharging is terminated when the concentration of sodium is 0.67 mol per 1 mol of sulfur. ing.

電池充電時には放電時と逆の反応が起こる。When charging a battery, the opposite reaction occurs when discharging.

すなわち、陽極内でナトリウムより解離した負硫黄イオ
ンは外部より供給される電流により還元電子を放出して
中性化し、残った正ナトリウムイオンによる正の空間電
位はナトリウムイオンを固体電解質を通して陰極に移動
させ、陰極内部で外部回路より供給される電子により、
ナトリウムイオンが中性化される0以上の連続充電反応
にともなって電池の起電力は放電反応と可逆的に増大し
、陽極内部のナトリウムの殆ど全部が陰極に戻る充電末
期では再び2.08Vとなる。充電時には固体電解質管
表面付近のナトリウム密度が徐々に低下するが、この部
分のナトリウムが完全になくなって硫黄原子の層が固体
電解質表面に形成される状態に至と、陽極から陰極への
ナトリウム輸送ができなくなる。このため電池内部抵抗
は増大し、放電路、7時と同様にエネルギー効率が低下
し、また電流の局所的な集中が起こって固体電解質が劣
化するなど、電池寿命を低下せしめる原因となる。この
ため通常の電池運転では硫黄1モルに対してナトリウム
が0.05モル以下社なるまでの充電は行われない。
In other words, negative sulfur ions dissociated from sodium in the anode are neutralized by releasing reduction electrons by the electric current supplied from the outside, and the positive space potential due to the remaining positive sodium ions moves the sodium ions to the cathode through the solid electrolyte. By the electrons supplied from the external circuit inside the cathode,
With the continuous charging reaction of 0 or more in which sodium ions are neutralized, the electromotive force of the battery increases reversibly with the discharging reaction, and at the end of charging, almost all the sodium inside the anode returns to the cathode, reaching 2.08V again. Become. During charging, the sodium density near the surface of the solid electrolyte tube gradually decreases, but when the sodium in this area completely disappears and a layer of sulfur atoms is formed on the solid electrolyte surface, sodium transport from the anode to the cathode occurs. become unable to do so. As a result, the internal resistance of the battery increases, energy efficiency decreases as in the case of the discharge path, and local concentration of current occurs, causing deterioration of the solid electrolyte, which causes a reduction in battery life. Therefore, in normal battery operation, charging is not performed until the amount of sodium is 0.05 mol or less per 1 mol of sulfur.

実際の電池運転時においては、以上の電池反応は陽極部
で不均一に発生する。この不均一は三次元的であるが、
固体電解質表面から陽極容器に向かう方向には、ナトリ
ウムイオン電流、および活物質の酸化もしくは還元を行
うために必要な電子電流が流れ、両型流により発生する
電位勾配の差が不均一となる場合があり、この時反応分
布が不均一となる。この不均一を解消するため、陽極内
部の多孔質電子伝導材は、固体電解質表面から陽極容器
に向かう方向に導電率が増大するように積層配置されて
いる。このように、多孔質電子伝導材の導電率を調節す
ることにより、固体電解質管表面に垂直な方向の反応を
均一化させるためには、多孔質電子伝導材の導電率を固
体電解質管表面で1センチメートルあたり1モー以下と
する必要がある。固体電解質管の導電率もまた、1セン
チメートルあたりlモー未満であるので、固体電解質付
近の陽極部では少ない電流で大きな電位差が発生する。
During actual battery operation, the above battery reactions occur non-uniformly at the anode portion. Although this non-uniformity is three-dimensional,
When the sodium ion current and the electron current necessary to oxidize or reduce the active material flow in the direction from the solid electrolyte surface toward the anode container, the difference in potential gradient generated by both types of flow becomes non-uniform. At this time, the reaction distribution becomes non-uniform. In order to eliminate this non-uniformity, the porous electron conductive material inside the anode is arranged in layers so that the conductivity increases in the direction from the solid electrolyte surface toward the anode container. In this way, in order to equalize the reaction in the direction perpendicular to the solid electrolyte tube surface by adjusting the conductivity of the porous electron conductive material, it is necessary to adjust the conductivity of the porous electron conductive material at the solid electrolyte tube surface. It must be less than 1 mho per centimeter. The conductivity of the solid electrolyte tube is also less than 1 mho per centimeter, so a small current generates a large potential difference at the anode near the solid electrolyte.

すなわち、固体電解質管表面に対して平行な方向に反応
の不均一が発生する可能性が太き(なる。特に大型の電
池を縦置きした場合には、重力の影響により活物質の密
度が陽極上部で疎となるため、この方向への反応分布が
不均一となる。すなわち、活物質の少ない上部では下部
よりも速く放電が進行してしまう。この不均一は、不均
一の度合が電池電流に比例することから、高速充放電の
際には更に顕著となる。
In other words, there is a high possibility that non-uniform reaction will occur in the direction parallel to the solid electrolyte tube surface.Especially when a large battery is placed vertically, the density of the active material will be lower than that of the anode due to the influence of gravity. Because it is sparse in the upper part, the reaction distribution in this direction becomes non-uniform.In other words, discharge progresses faster in the upper part where there is less active material than in the lower part. Since it is proportional to , it becomes even more noticeable during high-speed charging and discharging.

図1中に示されるように、固体電解質管表面近くに電導
率の高い領域7を設けると固体電解質管付近の、固体電
解質管表面に平行な方向に対する導電率を増大でき、上
記固体電解質管表面に平行な方向への反応を均一化でき
る。このような電導率の高い領域は硫黄や多硫化ナトリ
ウムに対して耐腐食性の高い、電導率の大きな材料、例
えば金属モリブデンなどの薄膜に穴をあけたものや、細
線網状としたものを用いることにより、簡便に形成でき
る。この高電子伝導性材層による反応均一化の効果は金
属モリブデン線のメツシュを用いた場合、用いない構造
の効果の数千倍程度であり、特に陽極が長いときに顕著
な効果を示す。
As shown in FIG. 1, providing a region 7 with high conductivity near the solid electrolyte tube surface can increase the conductivity in the direction parallel to the solid electrolyte tube surface near the solid electrolyte tube surface. The reaction in the direction parallel to can be made uniform. For such areas with high conductivity, use a material with high conductivity that is highly resistant to corrosion against sulfur and sodium polysulfide, such as a thin film made of metal molybdenum with holes or a thin wire network. By doing so, it can be easily formed. When a mesh of metal molybdenum wire is used, the effect of homogenizing the reaction by this high electron conductivity material layer is about several thousand times greater than the effect of a structure without a mesh, and this effect is particularly noticeable when the anode is long.

欺かる高電子伝導材層を形成する上で必要な事項は、こ
の層を通しての活物質の流動が妨げられないことであり
、このためメソシュ構造を用いる場合にみ金属細線の直
径が細線配列間隔の約1八以下であることが好ましい。
What is necessary to form a layer of deceptively high electronic conductivity material is that the flow of the active material through this layer is unobstructed, and for this reason only when using a mesoche structure is the diameter of the metal wires adjusted to the distance between the wires. is preferably about 18 or less.

また、固体電解質管表面に高電子伝導材を直接接触させ
ることは、高電子伝導材と固体電解質の間に充電時に硫
黄層を形成する原因となりえるので好ましくない。固体
電解質管と電子伝導材との間隙が数ミリメートル以下で
あれば、充分な反応均一化の効果が得られるので、固体
電解質管と高電子伝導材層の間には、固体電解質管表面
に垂直な方向の反応を均一化するのに必要な抵抗率を有
した多孔質材を挿入するのが良い。このような積層構造
を有する陽極体の製作を行うには、陽極を数分割した空
間を有する成形体に各部材を積層配置し、硫黄を含浸後
、成形体より取り出し、電池陽極部に挿入すれば良い。
Further, it is not preferable to bring the high electron conductivity material into direct contact with the solid electrolyte tube surface because it may cause a sulfur layer to be formed between the high electron conductivity material and the solid electrolyte during charging. If the gap between the solid electrolyte tube and the electron conductive material is several millimeters or less, a sufficient effect of homogenizing the reaction can be obtained. It is preferable to insert a porous material having a resistivity necessary to uniformize the reaction in both directions. To manufacture an anode body with such a laminated structure, each member is stacked in a molded body that has a space divided into several parts, and after being impregnated with sulfur, it is taken out from the molded body and inserted into the battery anode part. Good.

高電子伝導材層を有する陽極を形成する上で重要となる
今一つの点は、固体電解質管付近に配置された高電子伝
導材が陽極容器に触れないことである。これは上記二つ
の部材が電気的に接続されたとき、高電子伝導材と固体
電解質の間でのみ電池反応が進行し、高電子伝導材と金
属容器の間の活物質の反応が抑制されてしまい、電池の
充放電深度が著しく減少するためである。
Another important point in forming an anode having a high electronic conductivity material layer is that the high electronic conductivity material placed near the solid electrolyte tube does not touch the anode container. This is because when the above two components are electrically connected, the battery reaction progresses only between the high electron conductivity material and the solid electrolyte, and the reaction of the active material between the high electron conductivity material and the metal container is suppressed. This is because the depth of charge and discharge of the battery is significantly reduced.

このような電気接触を陽極中の活物質量を減少すること
なく避けるためには、固体電解質袋管状端部側の陽極端
部に、導電率がセンナメートルあたり数モー以下の多孔
質材に硫黄を含浸した板状材を陽極端部より挿入し、そ
の後陽極容器を溶接等にて封じれば良い。
In order to avoid such electrical contact without reducing the amount of active material in the anode, it is necessary to add sulfur to the anode end on the tubular end side of the solid electrolyte bag in a porous material with an electrical conductivity of less than a few moles per centimeter. A plate-like material impregnated with the anode may be inserted from the anode end, and then the anode container may be sealed by welding or the like.

以上の構造を有する電池の内部抵抗は、充放電期間中殆
ど全ての放電電荷量に対して一定となる。これに対して
高電子伝導材層を持たない電池の内部抵抗は放電の進行
や充電の進行とともに増加し、このため充放電深度が理
論容量の40%以下となる場合もあった。この原因は固
体電解質管表面と平行な方向の反応不均一であることが
電池陽極部の電流密度を測定することにより確認された
が、このような反応分布の不均−は固体電解質を流れる
ナトリウムイオン電流の分布を不均一化する。この効果
による固体電解質中のナトリウムイオン電流の局所化は
、固体電解質管の寿命を著しく縮める結果となり、反応
の不均一が顕著な単電池の寿命は、反応が均一な電池の
十分の−から百分の一程度である。
The internal resistance of the battery having the above structure remains constant for almost all the amount of discharged charge during the charging and discharging period. On the other hand, the internal resistance of a battery without a high electronic conductivity material layer increases with the progress of discharging and charging, and as a result, the depth of charge and discharge may be 40% or less of the theoretical capacity. It was confirmed by measuring the current density at the battery anode that the cause of this was non-uniform reaction in the direction parallel to the solid electrolyte tube surface. Makes the distribution of ion current non-uniform. Localization of the sodium ion current in the solid electrolyte due to this effect results in a significant shortening of the life of the solid electrolyte tube, and the life of a single cell with a markedly non-uniform reaction is 10-100% less than that of a cell with a uniform reaction. It is about 1/10th of that.

更に大型電池に対しても、縦置が可能なことから、図−
1中4の固体電解質であるβ“−アルミナ管と8のα−
アルミナリングを接続するために用いられるガラス半田
材が腐蝕性の多硫化ナトリウムに浸されなくなり、この
部分の腐蝕による電池の破損が減少するため、電池の信
頼性が向上する。
Furthermore, since it is possible to place vertically even for large batteries, Fig.
β”-alumina tube, which is a solid electrolyte in 4 of 1, and α- in 8
The reliability of the battery is improved because the glass solder material used to connect the alumina rings is no longer immersed in corrosive sodium polysulfide, reducing battery damage due to corrosion in this area.

〔発明の効果〕〔Effect of the invention〕

本発明を用いればナトリウム−硫黄電池陽極内部の反応
を均一化できるので、充放電深度の大きな内部抵抗の小
さい、寿命の長い大型電池を製作することができる。
By using the present invention, the reaction inside the anode of a sodium-sulfur battery can be made uniform, so it is possible to manufacture a large-sized battery with a large charge/discharge depth, low internal resistance, and a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるナトリウム−硫黄電池の長手方向
断面図である。 第2図は第1図の固体電解質管付近の拡大図である。 1・・・陰極金属容器、2・・・金属ナトリウム。 3・・・ナトリウム保持管、4・・・固体電解質管5・
・・多孔質電子伝導材に硫黄を含浸した陽極材。 6・・・陽極金属容器、7・・・高電子伝導材層。
FIG. 1 is a longitudinal cross-sectional view of a sodium-sulfur battery according to the invention. FIG. 2 is an enlarged view of the vicinity of the solid electrolyte tube in FIG. 1. 1... Cathode metal container, 2... Metallic sodium. 3... Sodium holding tube, 4... Solid electrolyte tube 5.
・Anode material made of porous electron conductive material impregnated with sulfur. 6... Anode metal container, 7... High electron conductivity material layer.

Claims (4)

【特許請求の範囲】[Claims] (1)溶融ナトリウムからなる陰極活物質、溶融硫黄か
らなる陽極活物質、両活物質を分離する固体電解質管、
および電池反応により発生した電流を陽極活物質より取
り出すため、陽極活物質を含浸保持する形で固体電解質
管周囲に配置された多孔質電子伝導材とから構成される
ナトリウム−硫黄電池において、面と垂直な方向への陽
極活物質の移動を妨げない構造の板状の高電子伝導材を
、その面を前記固体電解質管の表面と平行にして前記多
孔質電子伝導材中に配置したことを特徴とするナトリウ
ム−硫黄電池。
(1) A cathode active material consisting of molten sodium, an anode active material consisting of molten sulfur, a solid electrolyte tube separating both active materials,
In a sodium-sulfur battery, a porous electron conductive material is placed around a solid electrolyte tube to impregnate and hold the anode active material in order to extract the current generated by the battery reaction from the anode active material. A plate-shaped high electron conductive material having a structure that does not hinder movement of the anode active material in the vertical direction is arranged in the porous electron conductive material with its surface parallel to the surface of the solid electrolyte tube. Sodium-sulfur battery.
(2)板状の高電子伝導材が、溶融硫黄および多硫化ナ
トリウムに対して耐腐蝕性を有する高伝導性金属、もし
くはセラミックを網状、もしくは多穴板状に形成したも
のであることを特徴とする特許請求の範囲第1項記載の
ナトリウム−硫黄電池。
(2) The plate-shaped high electron conductivity material is made of a highly conductive metal or ceramic that is resistant to corrosion against molten sulfur and sodium polysulfide and is formed into a mesh or perforated plate shape. A sodium-sulfur battery according to claim 1.
(3)板状の高電子伝導材を電池の陽極と電気的に直接
接触しないように配置したことを特徴とする特許請求の
範囲第1項または第2項記載のナトリウム−硫黄電池。
(3) The sodium-sulfur battery according to claim 1 or 2, characterized in that the plate-shaped high electron conductivity material is arranged so as not to be in direct electrical contact with the anode of the battery.
(4)板状の高電子伝導材を固体電解質管の表面に接近
して配置したことを特徴とする特許請求の範囲第1項記
載乃至第3項のいずれかの項記載のナトリウム−硫黄電
池。
(4) A sodium-sulfur battery according to any one of claims 1 to 3, characterized in that a plate-shaped high electron conductivity material is arranged close to the surface of a solid electrolyte tube. .
JP60248984A 1985-11-08 1985-11-08 Sodium-sulphur cell Pending JPS62110270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248984A JPS62110270A (en) 1985-11-08 1985-11-08 Sodium-sulphur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248984A JPS62110270A (en) 1985-11-08 1985-11-08 Sodium-sulphur cell

Publications (1)

Publication Number Publication Date
JPS62110270A true JPS62110270A (en) 1987-05-21

Family

ID=17186296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248984A Pending JPS62110270A (en) 1985-11-08 1985-11-08 Sodium-sulphur cell

Country Status (1)

Country Link
JP (1) JPS62110270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235168A (en) * 1988-03-14 1989-09-20 Hitachi Ltd Sodium-sulfur battery and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235168A (en) * 1988-03-14 1989-09-20 Hitachi Ltd Sodium-sulfur battery and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0290764B1 (en) Cylindrical bipolar electrode battery
US2991324A (en) Alkaline storage battery
US3770502A (en) Sodium-sulfur storage battery
WO2012053555A1 (en) Molten salt battery
US4054729A (en) Rechargeable high temperature electrochemical battery
JPH01235167A (en) Rechargeable cell
WO1980001626A1 (en) Tubular electrode
JPS62110270A (en) Sodium-sulphur cell
US20230115089A1 (en) Magnetic Flow Battery
US3672994A (en) Sodium-sulfur cell with third electrode
EP0213828A1 (en) Sodium-sulphur storage battery
CN100449821C (en) Chargeable electrochemical cell
US20090075170A1 (en) Continuous-feed electrochemical cell
CN110024205B (en) Bipolar electrode for nickel-metal hydride storage battery and nickel-metal hydride storage battery
JPH0145945B2 (en)
US3740268A (en) Method of charging sodium-sulfur cell
JPH01235168A (en) Sodium-sulfur battery and manufacture thereof
US3433671A (en) Storage battery having positive and negative electrode in direct contact
US11769896B2 (en) Magnetic flow battery
JPH0552631B2 (en)
JP2011142048A (en) Electrolyte, magnesium ion secondary battery, and power system
US20110300422A1 (en) Liquid sodium battery
JPH0464146B2 (en)
Moran Charging secondary metal--air cells.[Composite gas diffusion electrode for rechargeable metal--air cells]
JP2023155214A (en) Silver-doped sulfur cathode material for rechargeable lithium battery