JPS62110136A - Method for inspecting change state of floor panel concrete - Google Patents

Method for inspecting change state of floor panel concrete

Info

Publication number
JPS62110136A
JPS62110136A JP25040785A JP25040785A JPS62110136A JP S62110136 A JPS62110136 A JP S62110136A JP 25040785 A JP25040785 A JP 25040785A JP 25040785 A JP25040785 A JP 25040785A JP S62110136 A JPS62110136 A JP S62110136A
Authority
JP
Japan
Prior art keywords
concrete
change state
photographing
bridge
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25040785A
Other languages
Japanese (ja)
Inventor
Mamoru Sugizaki
守 杉崎
Takuo Mizutani
水谷 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
ISHIKAWAJIMA KENSA KEISOKU KK
Original Assignee
IHI Corp
ISHIKAWAJIMA KENSA KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, ISHIKAWAJIMA KENSA KEISOKU KK filed Critical IHI Corp
Priority to JP25040785A priority Critical patent/JPS62110136A/en
Publication of JPS62110136A publication Critical patent/JPS62110136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To make it possible to inspect a change state efficiently and safely with high accuracy, by charging a positive film, to which the locating point from a surface to be inspected was set, in an analytical chart forming machine to form the change state distribution drawing of a concrete surface. CONSTITUTION:A measuring camera 4 arranged on the ground under the floor panel concrete of the bridge supported at a high position by bridge piers 1 to photograph the back surface of the floor concrete 2. An illumination apparatus 5 such as a stroboscope is arranged to the time of photographing to illuminate the back surface of the concrete 2. Further, in photographing, a measuring camera having a large focus distance with respect to a photographing distance is used to perform photographing on the basis of locating points based on the vertical girder, transverse girder and reinforcing girder etc. of the bridge. The photographed film is developed and, further, a positive film is formed from the obtained negative film and applied to an analytical chart forming machine to perform location to obtain a change state distribution drawing. By this method, the inspection of a change state can be efficiently and perfectly performed with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、床版コンクリ−1・等の変状検査方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for inspecting deformation of concrete floor slabs, etc.

[従来の技術] 近年、老朽化した橋梁等の床版コンクリートの変状(主
にひび割れの有無やその大きざ、その他剥離、鉄筋露出
、遊離石灰)を検査することにより、その疲労度を測定
することが種々実施されている。
[Conventional technology] In recent years, the degree of fatigue has been measured by inspecting the deformation of concrete slabs of aging bridges, etc. (mainly the presence or absence of cracks, their size, peeling, exposed reinforcing bars, and free lime). Various things are being done.

従来、橋梁床版コンクリートの変状の検査としては、一
般に橋梁コンクリート床版の裏側に足場を組付けて、検
査作業員が被検査体に接近して目視し、それを記録する
方法によって行っていた。
Conventionally, deformation of concrete bridge deck slabs has been inspected by installing scaffolding on the back side of the concrete bridge slab, allowing inspection workers to approach the object to be inspected, visually inspect it, and record it. Ta.

[発明が解決しようとする問題点コ しかし、上記従来方式においては、足場等の組立、撤去
作業が非常に大変で検査に時間と手数を要すると共に、
高所での作業は大変で危険を伴ったり、又目視による検
査では細いひびvlれを見落したり、記録ミスが生じた
り、更に目視によると検査結果に個人差が出てひびわれ
の大きさや分布等に問題を有していた。
[Problems to be solved by the invention] However, in the above conventional method, the work of assembling and dismantling scaffolding etc. is extremely difficult, and inspection requires time and effort.
Working at heights is difficult and dangerous, and visual inspections may overlook thin cracks or make recording errors.Furthermore, visual inspections may result in individual differences in inspection results, including the size and distribution of cracks. There were problems with this.

本発明は、上記従来の問題点に着目したもので、足場の
設置作業などを要することなく、離れた位置から高精度
にしかも安全にコンクリート面の変状を検査できる方法
を提供することを目的としている。
The present invention focuses on the above-mentioned conventional problems, and aims to provide a method for inspecting deformation of a concrete surface with high precision and safety from a remote location without requiring installation of scaffolding or the like. It is said that

[問題点を解決するための手段] 本発明は、上記技術的課題を解決しようとしたもので、
被検査コンクリート面までの@影距離に応じて縮尺、標
定点を決めて、測定用カメラによりコンクリート面を′
@影し、撤彰、現像したネガからポジフィルムを作り、
被検査面からの標定点がセットされた前記ポジフィルム
を解析図化機に投入してコンクリート面の変状分布図を
作成することを特徴とする床版コンクリート等の変状検
査方法、に係るものである。
[Means for solving the problems] The present invention attempts to solve the above technical problems, and
Determine the scale and control point according to the shadow distance to the concrete surface to be inspected, and measure the concrete surface with the measurement camera.
@Make positive film from the negatives that have been shadowed, removed, and developed.
Relating to a deformation inspection method for floor slab concrete, etc., characterized in that the positive film on which control points from the surface to be inspected are set is fed into an analytical plotting machine to create a deformation distribution map of the concrete surface. It is something.

[作   用] 従って、本発明では、コンクリート面から離れた位置か
らそれを測定用カメラによって倣形し、その日影した情
報に基づいてコンクリート面の変状を検出するようにし
ているので、変状の検査を離れた位置から容易且つ安全
で精度よくしかも能率よく行うことができる。
[Function] Therefore, in the present invention, the concrete surface is imitated from a position far away from the concrete surface using a measuring camera, and the deformation of the concrete surface is detected based on the shadow information. inspection can be performed easily, safely, accurately, and efficiently from a remote location.

[実 施 例] 以下本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一例を示すもので、橋脚1によって高
所位置に支持された橋梁の床版コンクリート2の下部地
上3に、上方に向けて測定用カメラ4を設置して床版コ
ンクリート2の裏面を擾影する。又、橋采の下側は日中
でも暗いため、上記撤影時にはストロボ等の照明装置5
を設置して床版コンクリート2裏面の照明を行うように
している。
FIG. 1 shows an example of the present invention, in which a measuring camera 4 is installed upward on the lower ground 3 of a concrete deck 2 of a bridge supported at a high position by a bridge pier 1, and Mirror the back side of 2. In addition, since the underside of the bridge is dark even during the day, lighting devices such as strobes 5 must be used during the above removal.
is installed to illuminate the back side of concrete floor slab 2.

擾影に際しては、第2図及び第3図に示すように、回影
距離りに対して焦点距離Fの大きな測定用カメラを使用
して倣形精度を上げるようにし、又、第4図(D (n
)に示すように、擾影Aと擾影Bは例えば60%ラップ
Cのステレオ写真が得られるように、橋梁の縦通桁6、
横桁7、補強桁8等(第5図参照)を皐準とする標定点
に基づき擾影を行う。
When scanning, as shown in Figures 2 and 3, a measuring camera with a focal length F larger than the mirror distance is used to increase the accuracy of the tracing, and as shown in Figure 4 ( D (n
), the projection A and the projection B are the longitudinal girder 6 of the bridge, for example, so that a stereo photograph of 60% wrap C can be obtained.
Surveying will be carried out based on the reference points of the cross beams 7, reinforcing beams 8, etc. (see Figure 5).

上記擾影したフィルムを現像し、更にそのネガからポジ
フィルムを作り、それを解析図化機にかけて標定し、前
記第5図に示すような変状分布図を得る。解析図化機は
、擾影したときの振れ(傾き)の状態、被検査面からの
標定点にセットして実体視できるよう調整する。解析図
化機の視野の中心にはメスマークがあり、これをひび割
れ等の判定したい部分に常に密着させて追跡することに
より、メスマークと連動したペンによって描画すること
ができる。分布図の縮尺については解析図化機でセット
した値で図化することができる。
The imaged film is developed, a positive film is made from the negative, and it is oriented using an analytical plotting machine to obtain a deformation distribution map as shown in FIG. The analysis plotter is adjusted to the state of deflection (tilt) when it is imaged and set at the control point from the surface to be inspected so that it can be viewed stereoscopically. There is a scalpel mark in the center of the field of view of the analytical plotter, and by keeping this in close contact with and tracking the area to be determined, such as a crack, it is possible to draw with a pen linked to the scalpel mark. The scale of the distribution map can be plotted using the value set on the analytical plotter.

上記解析図化機によって得た第5図の変状分布図によれ
ば、ひび割れの幅及び大きさと位置、遊離石灰及び剥離
の位置と範囲、鉄筋露出の位置等を適確に読み取ること
ができる。尚、上記において、橋梁の管理上特に注目を
要するのは’ft、石灰を伴うひび割れで、これはひび
割れが表面に達し、雨水がしみ込んだことにより生じた
ものと思われる。
According to the deformation distribution map shown in Figure 5 obtained by the above analytical plotting machine, it is possible to accurately read the width, size and position of cracks, the position and range of free lime and flaking, the position of exposed reinforcing bars, etc. . In the above, what requires particular attention in terms of bridge management are the cracks with limestone, which are thought to have been caused by the cracks reaching the surface and allowing rainwater to seep in.

以下に実際に行った検査例を示す。Examples of tests actually conducted are shown below.

測定用カメラにハラセルブラッドM K −70を用い
、該カメラにF: 60mmのレンズを装着し、60%
ラップのステレオ写真が得られるよう、縦通桁6及び横
桁7、補強桁8等、解析図化機に必要な標定点につき連
続擾影を行った。
Hara Cell Brad MK-70 was used as the measurement camera, and a lens of F: 60 mm was attached to the camera, and the 60%
In order to obtain stereo photographs of the lap, continuous imaging was carried out at control points necessary for the analysis plotter, such as longitudinal girder 6, transverse girder 7, reinforcing girder 8, etc.

このときの床版コンクリート2と測定用カメラ4との倣
形距離りが3mと短かく、レンズの繰出し石を読み取っ
ておき、図化時に調整した。
At this time, the distance between the concrete floor slab 2 and the measurement camera 4 was as short as 3 m, so the distance of the stone being fed by the lens was read and adjusted during plotting.

このため焦点距離は、 60mm(oo) +1.2〜1.39= 61.2〜
61.39m1llとなり、多少画角がせまくなる結果
となり、1枚の写真は2.54m x 2.54mの範
囲を写すことになった。
Therefore, the focal length is 60mm (oo) +1.2~1.39=61.2~
The size of the camera was 61.39m1ll, which resulted in a somewhat narrower angle of view, resulting in one photo covering an area of 2.54m x 2.54m.

前記標定点を基にしたポジフィルムによって解析図化機
によって正しい虚像空間を再現した。
A correct virtual image space was reproduced by an analytical plotter using a positive film based on the control points.

下記の項目について、縮尺1/20の正射像を描出する
とともに、その正銅像内に56点のびびねれ計測点を定
め、ひびわれ幅の座標をM、T。
For the following items, draw a 1/20 scale orthogonal image, set 56 crack measurement points in the bronze statue, and set the coordinates of the crack width as M and T.

(!1気テープ)に記録した。It was recorded on (!1ki tape).

描出項目 1.ひびねれ 2、はく離 3、鉄筋露出 4、遊離石灰 ひびわれ幅については、 (イ)図化計測による方法 (ロ)階級区分による判読 の2種類について検討を行なった。Depiction items 1. crackle 2. Peeling 3. Reinforcement exposed 4. Free lime Regarding the crack width, (b) Method using diagrammatic measurement (b) Interpretation based on class classification We investigated two types.

図化計測による方法は、被検査体から任意の座標を設定
し、測点の座標(2点分)をM、T。
In the diagrammatic measurement method, arbitrary coordinates are set from the object to be inspected, and the coordinates (for 2 points) of measurement points are M and T.

に自動的に記録させた。automatically recorded.

階級区分による判読は、4倍に引伸した写真を用意し、
一定の幅で描かれた線群を写真縮尺に対応して写真複製
したもので、これを目視により比較対照させながら、階
級区分ごとにひびわれ幅を判読した。 。
For interpretation by class classification, prepare a photo enlarged 4 times,
A photographic reproduction of a group of lines drawn at a constant width corresponding to the photographic scale was used, and by visually comparing and contrasting this, the crack width was deciphered for each class classification. .

第5図に、縮尺1/20で解析図化機により図化した変
状分布の検査結果を示した。
FIG. 5 shows the inspection results of the deformation distribution plotted using an analytical plotter at a scale of 1/20.

1、ひびわれ(幅を階級化して表現) 2、遊離石灰(Ca 、主な範囲を点線で囲む)3、剥
  2ft(D、同上) 4、鉄筋露出く形状をそのまま表現) ひびわれの状況については、すでに実施されている検査
体の目視検査の結果ともよく対応し、床版コンクリート
を@断する方向に発達していることが確認された。
1. Cracks (represented by classifying the width) 2. Free lime (Ca, main area surrounded by dotted lines) 3. Peeling 2ft (D, same as above) 4. Reinforcement exposed shape is expressed as is) Regarding the crack situation: , which corresponded well with the results of the visual inspection of the specimen that had already been carried out, and it was confirmed that the cracks were developing in the direction of cutting the slab concrete.

変状の種類としでは、1..2.が主で、4.は1ケ所
に存在したが、老朽化によるものでなく、施工時から存
在したと思われるものである。3゜は、本来の剥離は全
くなく、変色してざらついたパターンのものを採用した
The types of deformation are: 1. .. 2. The main thing is 4. was present in one location, but this is not due to deterioration and is thought to have existed from the time of construction. For 3°, there was no original peeling at all, and a pattern with discoloration and roughness was adopted.

解析図化機による測定能力は大幅で0.01mmであり
、測定結果の最小値は0.15mmであった。この値は
機械精度からみて十分有意といえる。大幅0,15mm
は縮尺1150の写真上では0.003mmとなり、は
ぼ写真粒子サイズ(2um )である。
The measurement capability of the analytical plotter was significantly 0.01 mm, and the minimum value of the measurement results was 0.15 mm. This value can be said to be sufficiently significant in terms of machine accuracy. Significantly 0.15mm
is 0.003 mm on a photograph with a scale of 1150, which is the photographic particle size (2 um).

第2図において撮影縮尺は F:焦点距離 L:撮影距離 W:ひび割れ大幅 d :ひび割れの象の幅 である。In Figure 2, the shooting scale is F: Focal length L: Shooting distance W: Significant cracking d: Width of crack elephant It is.

第3図の縮尺△、B、C,Dについてみると、測定能力
は表1の如くである。
Looking at the scales Δ, B, C, and D in FIG. 3, the measurement capabilities are as shown in Table 1.

表1 更に、撮影距離L L=レンズの焦点距離Fについてみ
ると、 L = 5 m  −+  F = 1100mm1=
10 −+  F=25On+m1=30m  −+ 
 F=500mmの如くであり、撮影距離はlyl a
X、30mが限界である。
Table 1 Furthermore, looking at the photographing distance LL = lens focal length F, L = 5 m - + F = 1100 mm1 =
10 −+ F=25On+m1=30m −+
F=500mm, and the shooting distance is lyl a
X, 30m is the limit.

又、目視による判読の場合は、写真を4倍に伸ばし、縮
尺1/12゜5で作業した結果、目視限界0.02mm
′C−あり、大幅0.25mmが限界といえる。
In addition, in the case of visual interpretation, the photograph was enlarged 4 times and worked at a scale of 1/12°5, and the visual limit was 0.02 mm.
'C- Yes, it can be said that the limit is significantly 0.25mm.

従って、実作業で、岡影距離「が現場条件によって異な
る場合には、縮尺を維持するために焦点距離Fを第3図
に従って選ぶ必要がある。
Therefore, in actual work, if the distance ``Oka-kage'' differs depending on the field conditions, it is necessary to select the focal length F according to FIG. 3 in order to maintain the scale.

上記において、地上から18影を行った場合について説
明したが、地上からの撮影が不可能な場合には、第6図
に示すような種々の方法を採用することができる。
In the above, a case has been described in which 18 shadows are taken from the ground, but if photographing from the ground is not possible, various methods such as those shown in FIG. 6 can be adopted.

即ち、第6図中(ハ)に示すように橋台9を利用した斜
め撮影、水深が浅い場合には(B)のように水中に鉄パ
イプ等による収支柱10を立てて測定用カメラ4を支持
することにより撮影する、水深が深い場合には組立式い
かだ或いは船などの浮体11と防振カメラ架台12によ
って測定用カメラ4を支持して撮影する、或いはゾンデ
(気球)13に測定用カメラ4を支持させて浮上させ、
床版コンクリート2の裏面に静止させた状態で撮影する
、等の方法によって行うことができる。
That is, as shown in (c) in Fig. 6, the camera 4 for measurement is taken obliquely using the abutment 9, or when the water depth is shallow, as shown in (B), a storage support 10 made of an iron pipe or the like is erected in the water. When the water depth is deep, the measurement camera 4 is supported by a floating body 11 such as an assembled raft or ship and an anti-vibration camera mount 12, or the measurement camera 4 is attached to a sonde (balloon) 13. 4 and float it to the surface,
This can be done by a method such as taking a photo while standing still on the back side of the concrete floor slab 2.

又、他の方法てして第7図に示すように気球13の上面
にカメラ支持プレート14を取付けてこれに測定用カメ
ラ4を支持させると共に、例えば3点支持の支柱15に
より床版コンクリート2面との撮影距離を一定に保つよ
うにする。このようにすれば、非常に離れた位置におい
ても一定した撮影距離で撮影することができる。
Alternatively, as shown in FIG. 7, a camera support plate 14 is attached to the top surface of the balloon 13 to support the measurement camera 4, and the floor slab concrete 2 is supported by, for example, three-point support columns 15. Try to keep the shooting distance to the surface constant. In this way, it is possible to take pictures at a constant shooting distance even at a very distant position.

尚、本発明は上記実施例にのみ限定されるものではなく
、橋梁の床版コンクリート以外にも人が近付いて検査す
ることのできない種々のコンクリート物の表面の変状検
査を行うことができること、その他本発明の要旨を逸脱
しない範囲内において種々変更を加え得ること、等は勿
論である。
It should be noted that the present invention is not limited only to the above-mentioned embodiments, and that it is possible to perform deformation inspections on the surface of various concrete objects other than bridge deck concrete that cannot be inspected up close by humans. It goes without saying that various other changes may be made without departing from the gist of the present invention.

[発明の効果コ 上記したように、本発明の床版コンクリート等の変状検
査方法によれば、被検査コンクリート面から離れた位置
からそれを測定用カメラによってVa影し、その撮影し
た情報により解析図化機を用いてコンクリート面の変状
を検出するようにしているので、足場の設置作業などを
要することなく、能率的にしかも安全且つ高精度に変状
の検査を行うことができる浸れた効果を奏し得る。
[Effects of the Invention] As described above, according to the method for inspecting deformation of concrete slabs, etc. of the present invention, the concrete surface to be inspected is imaged by a measuring camera from a position far away, and the captured information is used to Since deformations on the concrete surface are detected using an analytical plotting machine, deformation inspections can be carried out efficiently, safely, and with high precision without the need for setting up scaffolding. It can have a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は測定用カメラによる床版コンクリート面の撮影
状態の一例を示す側面図、第2図は撮影距離と焦点距離
の関係を示す線図、第3図は測定用ハラセルブラッドレ
ンズ群の焦点距離と撮影距離の関係を示す線図、第4図
(D (n)は撮影方法の一例を示す説明図、第5図は
解析図化機によって作成した変状分布図の一例図、第6
図は測定用カメラによる種々の撮影方法の例を示す説明
図、第7図は・更に別の撮影方法の例を示す説明図であ
る。 1は橋脚、2は床版コンクリート、4は測定用カメラ、
5は照明装置、6は縦通桁、7は横桁、8は補強桁、9
は橋台、10は仮支柱、11は浮体、12は防振カメラ
架台、13は気球を示す。
Figure 1 is a side view showing an example of how a concrete floor slab surface is photographed by a measuring camera, Figure 2 is a diagram showing the relationship between photographing distance and focal length, and Figure 3 is a diagram of the Hara Cell Blood Lens Group for measuring. A diagram showing the relationship between focal length and photographing distance, Figure 4 (D (n) is an explanatory diagram showing an example of a photographing method, Figure 5 is an example of a deformation distribution map created by an analytical plotter, 6
The figures are explanatory diagrams showing examples of various photographing methods using a measuring camera, and FIG. 7 is an explanatory diagram showing an example of yet another photographing method. 1 is a pier, 2 is a concrete floor slab, 4 is a measurement camera,
5 is a lighting device, 6 is a longitudinal beam, 7 is a horizontal beam, 8 is a reinforcing beam, 9
10 is a bridge abutment, 10 is a temporary support, 11 is a floating body, 12 is an anti-vibration camera mount, and 13 is a balloon.

Claims (1)

【特許請求の範囲】[Claims] 1)被検査コンクリート面までの撮影距離に応じて縮尺
、標定点を決めて、測定用カメラによりコンクリート面
を撮影し、撮影、現像したネガからポジフィルムを作り
、被検査面からの標定点がセットされた前記ポジフィル
ムを解析図化機に投入してコンクリート面の変状分布図
を作成することを特徴とする床版コンクリート等の変状
検査方法。
1) Determine the scale and control point according to the shooting distance to the concrete surface to be inspected, photograph the concrete surface with a measurement camera, make a positive film from the photographed and developed negative, and measure the control point from the surface to be inspected. A method for inspecting deformation of floor slab concrete, etc., characterized in that the set positive film is fed into an analytical plotting machine to create a deformation distribution map of the concrete surface.
JP25040785A 1985-11-08 1985-11-08 Method for inspecting change state of floor panel concrete Pending JPS62110136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25040785A JPS62110136A (en) 1985-11-08 1985-11-08 Method for inspecting change state of floor panel concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25040785A JPS62110136A (en) 1985-11-08 1985-11-08 Method for inspecting change state of floor panel concrete

Publications (1)

Publication Number Publication Date
JPS62110136A true JPS62110136A (en) 1987-05-21

Family

ID=17207436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25040785A Pending JPS62110136A (en) 1985-11-08 1985-11-08 Method for inspecting change state of floor panel concrete

Country Status (1)

Country Link
JP (1) JPS62110136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219314A (en) * 2016-06-02 2017-12-14 日本電信電話株式会社 Deteriorated portion detection device, deteriorated portion detection method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219314A (en) * 2016-06-02 2017-12-14 日本電信電話株式会社 Deteriorated portion detection device, deteriorated portion detection method, and program

Similar Documents

Publication Publication Date Title
US8300986B2 (en) Image measurement apparatus for creating a panoramic image
JPS61281915A (en) Vehicle device for measuring properties of road surface
CN111457848B (en) Method and system for measuring displacement through coordinate change between adjacent monitoring points
EP0532927B1 (en) Automated photomask inspection apparatus
JPH05322778A (en) Remote sensing method for building
JPH1019562A (en) Surveying equipment and surveying method
Jáuregui et al. Photogrammetry applications in routine bridge inspection and historic bridge documentation
Forno et al. The measurement of deformation of a bridge by Moirè photography and photogrammetry
JPS62110136A (en) Method for inspecting change state of floor panel concrete
Cooper et al. High precision photogrammetric monitoring of the deformation of a steel bridge
JPS61292509A (en) Non-contacting roughness measuring apparatus
Birginie et al. Use of a laser camera scanner to highlight the surface degradation of stone samples subjected to artificial weathering
JP3211949B2 (en) Deformation detection method for hollow structures
JP2002131054A (en) Automatic surveying method
JP6967203B2 (en) Displacement measurement method, displacement measurement device, displacement observation method
Moore Mapping major joints in the Lower Oxford Clay using terrestrial photogrammetry
Przybilla et al. 3D modeling of heritage objects by fringe projection and laser scanning systems
JPH06118062A (en) Defect recording and regenerating method for nondestructive inspection
VAN WIJK Results of the International Orthophoto Experiment 1972-76
Koukash et al. Detection and measurement of surface defects by automatic fringe analysis
JPH0522847Y2 (en)
KR200202691Y1 (en) A survey equipment for rock excavation surface, using linear and undulous laser beam
JPH01291385A (en) Analyzing method for crack image
JP2684191B2 (en) Inspection system for concrete structures
LAY Early age shrinkage and bond at interface between repair material and concrete substrate