JPS62108428A - Extraction electrode system for ion source - Google Patents

Extraction electrode system for ion source

Info

Publication number
JPS62108428A
JPS62108428A JP24702685A JP24702685A JPS62108428A JP S62108428 A JPS62108428 A JP S62108428A JP 24702685 A JP24702685 A JP 24702685A JP 24702685 A JP24702685 A JP 24702685A JP S62108428 A JPS62108428 A JP S62108428A
Authority
JP
Japan
Prior art keywords
electrode
deceleration
ion source
ion
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24702685A
Other languages
Japanese (ja)
Other versions
JPH0724204B2 (en
Inventor
Katsumi Tokikuchi
克己 登木口
Kuniyuki Sakumichi
訓之 作道
Hidemi Koike
英巳 小池
Takayoshi Seki
孝義 関
Osami Okada
岡田 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24702685A priority Critical patent/JPH0724204B2/en
Publication of JPS62108428A publication Critical patent/JPS62108428A/en
Publication of JPH0724204B2 publication Critical patent/JPH0724204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To greatly reduce the number of times of minute discharge, by making the surface of a deceleration electrode convex in the face of a third electrode whose potential is kept between those of an acceleration electrode and the deceleration electrode, to suppress an electrical current loss resulting from the divergence of a beam. CONSTITUTION:The surface of a deceleration electrode 2' is made convex in the face of a third electrode 3 to make equipotential lines concave on the upside. As a result, an electric field is directed toward a center so that a force oriented toward the center acts to positive ions in a deceleration space between the electrodes 2', 3. For that reason, the divergence of an ion beam is diminished to decrease the quantity of the ion beam which collides against the electrode 3. This results in reducing the number of times of minute discharge.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はイオン源の引出し電極形状に係り、特に低エネ
ルギ、大電流ビーム引出しに好適な引出し電極形状を有
するイオン源用引出し電極系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an extraction electrode shape for an ion source, and particularly to an extraction electrode system for an ion source having an extraction electrode shape suitable for low energy, high current beam extraction.

〔発明の背景〕[Background of the invention]

一般に大電流イオンビームは高密度プラズマから、加速
−減速方式の引出し電極系を使って引出される。第1図
は従来のイオンビーフ1引出し電極系の構成を説明する
図である。電極系の中央部にはスリットが開孔されてお
り、紙面垂直方向でスリット状のビームを引出している
。第1図はその断面図である。イオン源引出し電極系は
プラズマ室1′内のプラズマ5に電位を与えてビームエ
ネルギの値を求める加速用電極1、負の電圧が印加され
た減速用電極2および上記2電極中間電位にある第3t
Ii極で構成される。このうち減速用電極2の主たる機
能は、引出し後のイオンビーム4が、イオン源を構成す
るイオン源装置内の残留ガスあるいはイオンビーム輸送
系(質景分離器、ビーム偏向器など)の装置内壁との衝
突で生成する二次電子がイオン源加速用電極側に逆流す
るのを防止するためである。もし二次電子の逆流が発生
すると、ビーム4は自身の空間電荷で著しく発散する。
Generally, a high-current ion beam is extracted from a high-density plasma using an acceleration-deceleration type extraction electrode system. FIG. 1 is a diagram illustrating the configuration of a conventional ion beef 1 extraction electrode system. A slit is made in the center of the electrode system, and a slit-shaped beam is drawn out in the direction perpendicular to the plane of the paper. FIG. 1 is a sectional view thereof. The ion source extraction electrode system consists of an accelerating electrode 1 for applying a potential to the plasma 5 in the plasma chamber 1' and determining the value of beam energy, a decelerating electrode 2 to which a negative voltage is applied, and a decelerating electrode 2 at an intermediate potential between the two electrodes. 3t
Consists of Ii poles. Among these, the main function of the deceleration electrode 2 is to prevent the ion beam 4 from being removed from the residual gas in the ion source device constituting the ion source or the inner wall of the ion beam transport system (grain separator, beam deflector, etc.). This is to prevent secondary electrons generated by collision with the ion source from flowing back toward the ion source acceleration electrode. If a backflow of secondary electrons occurs, the beam 4 will diverge significantly due to its own space charge.

イオン打込み装置のイオン源を例にとると5通常、加速
用電極1の印加電極は、40〜120kV、減速電極電
圧は−2〜−10kV前後であり、第3電極の電位は接
地である。イオン打込み装置における代表的な電極構成
例としては、第5回国際会議の予稿集、イオン打込み装
置および技術(Proc、of5th Interna
tional Conference on IonI
mplantation Equipments an
d Technique)+ p 16y1984(ノ
ースホーランド刊(North−Holland Po
bl、))に詳しい。
Taking the ion source of an ion implantation device as an example, the voltage applied to the acceleration electrode 1 is typically 40 to 120 kV, the deceleration electrode voltage is approximately -2 to -10 kV, and the potential of the third electrode is grounded. Typical examples of electrode configurations in ion implantation equipment are given in Proceedings of the 5th International Conference, Ion Implantation Equipment and Technology (Proc, of 5th International Conference).
tional Conference on IonI
plantation equipment
d Technique) + p 16y1984 (North-Holland Po
I am familiar with bl, )).

さて、半導体へのイオン打込みの応用では、近年40k
eV以下の低エネルギ、大電流のイオン打込みが活発に
行われてきている。これに呼応してイオン打込み装置用
の大電流イオン源では、低エネルギのビー11を効率良
く引出すための種々の考案がなされてきた。一般には、
減速用電極の負電圧を大きくし、加速用電極1と減速用
電極2の間の引出し電界を高くとり、効率良くビームを
引出す工夫が行われている(上記公知側文献に詳しい)
。しかし、第1図に示した電極形状では、減速用電極2
と第3電極3の間でのビーム発散が著しくなり、電極3
へのビーム衝突が火種になって電極間で放電が頻繁に発
生し、安定にイオンビームが取得できなかった。特に、
磁場中のマイクロ波放電で高密度プラズマを生成し、こ
れから大電流イオンビームを引出すマイクロ波イオン源
(マイクロ波イオン源の構造は、特公昭57−4056
に詳しい)の場合、上述の電極間放電(一般にグリッチ
と呼ばれる)回数は1時間に数10回以上にも達してい
た。また加速用電極圧30kV一定に保ち、減速用電極
電圧を一2kVから一30kVまで下げると、取得ビー
ム電流は増大するが、上記微小放電回数も同様に増える
こと(−)がlit 11!Iされた。
Now, in the application of ion implantation to semiconductors, in recent years 40k
Ion implantation with low energy of eV or less and large current has been actively carried out. In response to this, various ideas have been made for high current ion sources for ion implantation devices to efficiently extract low energy beads 11. In general,
Efforts have been made to efficiently extract the beam by increasing the negative voltage of the deceleration electrode and increasing the extraction electric field between the acceleration electrode 1 and the deceleration electrode 2 (details in the above-mentioned known literature).
. However, with the electrode shape shown in Fig. 1, the deceleration electrode 2
The beam divergence between the electrode 3 and the third electrode 3 becomes significant, and the
The collision of the beam with the ion beam caused a spark, causing frequent discharges between the electrodes, making it impossible to obtain a stable ion beam. especially,
A microwave ion source that generates high-density plasma by microwave discharge in a magnetic field and extracts a large current ion beam from it (the structure of the microwave ion source is based on the Japanese Patent Publication No. 57-4056).
(for details), the number of interelectrode discharges (generally referred to as glitches) was as high as several dozen times per hour. Furthermore, if the acceleration electrode voltage is kept constant at 30kV and the deceleration electrode voltage is lowered from 12kV to 130kV, the acquired beam current increases, but the number of microdischarges mentioned above also increases (-) lit 11! It was done.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、減速用電極に、高い負電圧を印加して
大電流低エネルギビームを引出す場合。
The purpose of the present invention is to apply a high negative voltage to a deceleration electrode to extract a high current, low energy beam.

電極間でのイオンビーム発散を抑え、微小放電回数を下
げる引出し電極形状を有するイオン源用引出し電極系を
提供することにある。
An object of the present invention is to provide an extraction electrode system for an ion source having an extraction electrode shape that suppresses ion beam divergence between electrodes and reduces the number of microdischarges.

〔発明の概要〕[Summary of the invention]

次に、従来の引出し′電極系において、高い負電圧を減
速用電極に印加した時の電位分布、それに基づくビーム
発散作用を考察する。第2図は、第1図における従来の
引出し?t!極系で得られる゛電位分布形状を説明する
図である。従来のf7 ((、系では。
Next, we will discuss the potential distribution when a high negative voltage is applied to the deceleration electrode in the conventional lead-out electrode system, and the beam divergence effect based thereon. Is Figure 2 the conventional drawer in Figure 1? T! FIG. 3 is a diagram illustrating a potential distribution shape obtained in a polar system. In the conventional f7 ((, system.

カタカナの「ハ」の字の形状の減速用’+t 極が用い
られているため、電極2と3の間に形成される等電位線
は図中に示した様に、上に凸な形状となる。一方、電界
の方向は図中E(E)の記号で示した様に、電極中心に
対し外側に向う。従って、正電荷を帯びたイオンビーム
は外側の向う電界成分Exによる発散作用を受ける。こ
の力は負電圧が高い程、大きくなるから、低エネルギビ
ーム引出し時には、イオンは大きく広がることになる。
Since the deceleration '+t pole in the shape of a katakana character is used, the equipotential line formed between electrodes 2 and 3 has an upwardly convex shape as shown in the figure. Become. On the other hand, the direction of the electric field is directed outward from the center of the electrode, as indicated by the symbol E (E) in the figure. Therefore, the positively charged ion beam is subjected to a diverging effect by the outward electric field component Ex. Since this force becomes larger as the negative voltage becomes higher, the ions will spread more when a low energy beam is extracted.

このためイオンビームは第3電極3にあたり、その表面
から出る二次電子が火種となって、電極2゜3の間で微
小放電が多発することになる。この様な等電位線の形は
、電極形状によって決まる。従って第2図において等電
位線が下に凸になる様に電極形状を変えれば発散効果は
軽減されろことが期待できる。
For this reason, the ion beam hits the third electrode 3, and the secondary electrons emitted from the surface of the third electrode 3 serve as sparks, causing frequent micro-discharges between the electrodes 2 and 3. The shape of such equipotential lines is determined by the shape of the electrodes. Therefore, it can be expected that the divergence effect will be reduced if the electrode shape is changed so that the equipotential lines in FIG. 2 are convex downward.

第3図は、本発明の′M模形状を説明する図である。即
ち、本発明では、第3電極3に対向する減速用電極面が
凸となった減速用電極2′を使い等電位線形状が下に凹
となるように改良した。本発明では、電界の向きが中心
側に向うため、正イオンは電極2′と3の減速空間で中
心軸方向の働らく力を受ける。このためビー11発敗が
減り、電極3に当るイオンビーム量が減って微小放電回
数が減少できる。
FIG. 3 is a diagram illustrating the 'M model of the present invention. That is, in the present invention, the deceleration electrode 2' having a convex deceleration electrode surface facing the third electrode 3 is used, and the equipotential line shape is improved so as to be concave downward. In the present invention, since the direction of the electric field is toward the center, positive ions are subjected to a force acting in the direction of the center axis in the deceleration space between the electrodes 2' and 3. As a result, the number of beam 11 failures is reduced, the amount of ion beams hitting the electrode 3 is reduced, and the number of minute discharges can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図により説明する。本実
施例ではイオン源として、磁場中のマイクロ波放電で高
密度プラズマを生成し、これからイオンビームを引出す
マイクロ波イオン源を用いた。本イオン源はマグネトロ
ン6で発生したマイクロ波を導波管7a、7bを使って
プラズマ室5に投入する。10.11は絶縁物であり、
コイル8はプラズマ室5に磁場を印加するためのもので
ある。加速用電極として幅2面、長さ40rrlnのス
リットが開孔したステンレス製電極を、減速用電極2′
として幅8 m +長さ4.5nnのステンレス製電極
を、また第3電極として幅10nn、長さ45m、厚み
1.0m+のステンレス製電極を用いた。
An embodiment of the present invention will be described below with reference to FIG. In this example, a microwave ion source that generates high-density plasma by microwave discharge in a magnetic field and extracts an ion beam from the plasma was used as the ion source. This ion source injects microwaves generated by a magnetron 6 into a plasma chamber 5 using waveguides 7a and 7b. 10.11 is an insulator,
The coil 8 is for applying a magnetic field to the plasma chamber 5. As the acceleration electrode, a stainless steel electrode with a slit of 2 sides wide and 40rrln in length was used as the deceleration electrode 2'.
A stainless steel electrode with a width of 8 m and a length of 4.5 nn was used as the third electrode, and a stainless steel electrode with a width of 10 nn, a length of 45 m, and a thickness of 1.0 m was used as the third electrode.

第3電極の電位は本実施例では接地電位とした。The potential of the third electrode was set to the ground potential in this example.

放電ガスとしてBFAガスを導入し、朋素(B)を含む
イオンビーム4を引出し、これを質量分離器で質量分離
してBビームを選別、取得した。第1図に示した従来の
電極構成では、例えば30に、VでBビームを引出した
時、質量分離後の電流で3mAの値が得られた。しかし
微小放電回数は1時間当り、数10回以上にも達した。
BFA gas was introduced as a discharge gas, and an ion beam 4 containing boron (B) was extracted, which was mass-separated by a mass separator to select and obtain a B beam. In the conventional electrode configuration shown in FIG. 1, when the B beam was extracted at 30 V, for example, a current value of 3 mA after mass separation was obtained. However, the number of microdischarges reached several dozen times per hour.

これに対し、第4図に示した電極構成では、加速用電極
に30kV、減速用電極に一30kVの電圧を印加した
時でも、4〜5 m AのB十電流が安定に得られた。
On the other hand, with the electrode configuration shown in FIG. 4, even when a voltage of 30 kV was applied to the acceleration electrode and -30 kV to the deceleration electrode, a B current of 4 to 5 mA was stably obtained.

この時の微小放電回数は1時間当り、1〜2回以下に減
少した。
The number of microdischarges at this time was reduced to 1 to 2 times per hour.

第5図は、本発明に基づく別の実施例を説明する図であ
る。本実施例では、等電位線形状を改善するため、第3
電極3′を減速用電極に対し凹形状にしている。この場
合、等電位線は第3′電極内に、より深く入り込むから
、減速空間でのビーム発散は強く抑えられた。微小放電
回数もほぼ0回/時のひん度に減少した。第5図では、
減速用電極の凸部として山型形状のもの2#を電極2′
に取り付ける分割構造とし、電極加工の運易度を升減し
た。なお、等電位線を、第3電t@3′に効率良く入り
込ませるため、図中の各電極のスリット幅として d≦W が成立つようにスリット幅寸法を選んである。また実験
によれば1本発明の効果は、減速用電極の電圧が一2k
V以上で有効である。特に減速電界が高くなる一10k
V以上の電圧印加の場合、著しい効果があった。また第
5図の山型部分2′を取り除いても、第1図の従来例に
比べると微小放電回数は著しく改善された。
FIG. 5 is a diagram illustrating another embodiment based on the present invention. In this example, in order to improve the equipotential line shape, the third
The electrode 3' has a concave shape relative to the deceleration electrode. In this case, since the equipotential line penetrates deeper into the 3' electrode, beam divergence in the deceleration space was strongly suppressed. The number of microdischarges also decreased to almost 0 times/hour. In Figure 5,
As the convex part of the deceleration electrode, place the chevron-shaped part 2# on the electrode 2'.
It has a split structure that can be attached to the electrode, reducing the ease of electrode processing. In order to efficiently introduce the equipotential line into the third electric potential t@3', the slit width dimensions of each electrode in the figure are selected so that d≦W holds. Also, according to experiments, one effect of the present invention is that the voltage of the deceleration electrode is 12k.
Effective above V. Especially when the deceleration electric field becomes high - 10k
When applying a voltage of V or more, there was a significant effect. Furthermore, even if the chevron-shaped portion 2' in FIG. 5 was removed, the number of minute discharges was significantly improved compared to the conventional example shown in FIG.

次に、第4図の別の実施例においては、コイルによる磁
場発生効率を高める観点から加速用電極として磁性体の
鉄で作られたものを使い、引出し電極系を構成した。こ
の場合、電極2,3の空間に洩れる磁束の量が減り、微
小放電回数も減った。
Next, in another embodiment shown in FIG. 4, from the viewpoint of increasing the efficiency of magnetic field generation by the coil, an accelerating electrode made of magnetic iron was used to construct an extraction electrode system. In this case, the amount of magnetic flux leaking into the space between the electrodes 2 and 3 was reduced, and the number of microdischarges was also reduced.

これは、上記空間での磁場によるビーム軌道変化が減少
したためである。
This is because changes in the beam trajectory due to the magnetic field in the space are reduced.

なお、本実施例では第3電極を接地電位としたが、この
電極の電位としては加速用電極電位と減速用電極電位の
中間の値であっても、本発明の効果が得られることは明
らかである。
In this example, the third electrode was set to the ground potential, but it is clear that the effects of the present invention can be obtained even if the potential of this electrode is an intermediate value between the acceleration electrode potential and the deceleration electrode potential. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、イオン源から低エネルギー、大電流ビ
ームを引出すにあたり、ビーム発散による電流損失を抑
えて微小放電回数を激減させることができ、安定なビー
ム出しに著しい効果がある。
According to the present invention, when extracting a low-energy, high-current beam from an ion source, current loss due to beam divergence can be suppressed and the number of minute discharges can be drastically reduced, which has a remarkable effect on stable beam extraction.

特に本発明は、長時間のビーム安定度が要求されるイオ
ン打込み機用イオン源に好適であり、実用に供しその効
果は著しく大である。
In particular, the present invention is suitable for an ion source for an ion implanter that requires long-term beam stability, and its effects in practical use are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のイオン源用引出し電極系の形状と構成
を説明する電極系断面図、第2図は従来の引出し電極系
における電位分布を説明する図、第3図は本発明の引出
し電極系の形状を説明する図、第4図は本発明に基づく
一実施例を説明する図、第5図は本発明に基づく別の引
出し電極形状を説明する図である。 1・・・加速用電極、1′・・・プラズマ室、2,2′
・・・減速用電極、2′・・・減速電極に取付られる山
型部分、3,3′・・・第3電極、4・・・イオンビー
ム、5・・・プラズマ、6・・・マグネトロン、7a、
7b・・・導波管、8・・・コイル、9・・・ガス導入
パイプ、10゜第 /II −第 2 目 第 3 口 I:x 第 4 図
FIG. 1 is an electrode system cross-sectional view explaining the shape and configuration of a conventional extraction electrode system for an ion source, FIG. 2 is a diagram explaining the potential distribution in the conventional extraction electrode system, and FIG. FIG. 4 is a diagram for explaining the shape of the electrode system, FIG. 4 is a diagram for explaining one embodiment based on the present invention, and FIG. 5 is a diagram for explaining another extraction electrode shape based on the present invention. 1... Acceleration electrode, 1'... Plasma chamber, 2, 2'
... Deceleration electrode, 2'... Chevron-shaped part attached to the deceleration electrode, 3, 3'... Third electrode, 4... Ion beam, 5... Plasma, 6... Magnetron ,7a,
7b...Waveguide, 8...Coil, 9...Gas introduction pipe, 10゜th /II - 2nd eye 3rd port I:x Fig. 4

Claims (1)

【特許請求の範囲】 1、プラズマから引出し電極系を使つてイオンビームを
引出すイオン源において、プラズマに正の電位を与える
ための加速用電極、負の高電圧が印加される減速用電極
、および加速用電極と減速用電極の中間の電位に保たれ
た第3電極でなる引出し電極のうち、第3電極に対向す
る減速用電極面が第3電極方向に凸形状となつたイオン
源用引出し電極系。 2、特許請求範囲第1項記載の引出し電極のうち、第3
電極として減速用電極に対向する第3電極面を凹形状と
したイオン源用引出し電極系。 3、上記イオン源が、磁場中のマイクロ波放電による、
高密度プラズマからイオンビームを引出すマイクロ波イ
オン源であり、従つてその加速用電極が磁性体(例えば
鉄、ニッケル、コバルト、フェライトなど)であること
を特徴とした特許請求の範囲第1項記載のイオン源用引
出し電極系。
[Claims] 1. In an ion source that extracts an ion beam from plasma using an extraction electrode system, an acceleration electrode for applying a positive potential to the plasma, a deceleration electrode to which a negative high voltage is applied, and An ion source drawer in which the deceleration electrode surface facing the third electrode has a convex shape in the direction of the third electrode, of the extraction electrode consisting of a third electrode maintained at an intermediate potential between the acceleration electrode and the deceleration electrode. Electrode system. 2. Among the extraction electrodes described in claim 1, the third
An extraction electrode system for an ion source in which the third electrode surface facing the deceleration electrode has a concave shape. 3. The ion source uses microwave discharge in a magnetic field,
Claim 1, which is a microwave ion source that extracts an ion beam from high-density plasma, and whose accelerating electrode is made of a magnetic material (for example, iron, nickel, cobalt, ferrite, etc.) Extraction electrode system for ion source.
JP24702685A 1985-11-06 1985-11-06 Ion source Expired - Lifetime JPH0724204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24702685A JPH0724204B2 (en) 1985-11-06 1985-11-06 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24702685A JPH0724204B2 (en) 1985-11-06 1985-11-06 Ion source

Publications (2)

Publication Number Publication Date
JPS62108428A true JPS62108428A (en) 1987-05-19
JPH0724204B2 JPH0724204B2 (en) 1995-03-15

Family

ID=17157297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24702685A Expired - Lifetime JPH0724204B2 (en) 1985-11-06 1985-11-06 Ion source

Country Status (1)

Country Link
JP (1) JPH0724204B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541965A (en) * 2006-06-30 2009-11-26 ノルディコ テクニカル サーヴィシズ リミテッド apparatus
JP2017183145A (en) * 2016-03-31 2017-10-05 住友重機械工業株式会社 Ion source device
US11361934B2 (en) 2017-09-22 2022-06-14 Sumitomo Heavy Industries, Ltd. Ion source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541965A (en) * 2006-06-30 2009-11-26 ノルディコ テクニカル サーヴィシズ リミテッド apparatus
JP2017183145A (en) * 2016-03-31 2017-10-05 住友重機械工業株式会社 Ion source device
US11361934B2 (en) 2017-09-22 2022-06-14 Sumitomo Heavy Industries, Ltd. Ion source device

Also Published As

Publication number Publication date
JPH0724204B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US5365070A (en) Negative ion beam injection apparatus with magnetic shield and electron removal means
US4011449A (en) Apparatus for measuring the beam current of charged particle beam
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
CA1061416A (en) Method for varying the diameter of a beam of charged particles
EP1132946A1 (en) Ion beam processing apparatus
US3955091A (en) Method and apparatus for extracting well-formed, high current ion beams from a plasma source
JPS62235485A (en) Ion source device
US6501081B1 (en) Electron flood apparatus for neutralizing charge build up on a substrate during ion implantation
US4749910A (en) Electron beam-excited ion beam source
US6414327B1 (en) Method and apparatus for ion beam generation
JPS62108428A (en) Extraction electrode system for ion source
EP0101867B1 (en) Plasma ion source
EP0055452A2 (en) Neutral beam injector
Walko et al. A high output neutron tube using an occluded gas ion source
JP2713692B2 (en) Ion implantation equipment
Kanshin Simulation of charged particle beam dynamics extracted from a plasma source
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JPS62147643A (en) Ion source draw-out electrode system
JP3341497B2 (en) High frequency type charged particle accelerator
Purser Heavy ion injection for tandem accelerators
Keller et al. Versatile Source For Intense Multiply Charged Ion Beams
JPS617542A (en) Microwave ion source
RU1766201C (en) Ion source
JPH1064437A (en) Ion beam generating device
US3667058A (en) Electrostatic accelerated-charged-particle deflector