JPS62107921A - Wire-cut electric discharge machining method - Google Patents

Wire-cut electric discharge machining method

Info

Publication number
JPS62107921A
JPS62107921A JP14202185A JP14202185A JPS62107921A JP S62107921 A JPS62107921 A JP S62107921A JP 14202185 A JP14202185 A JP 14202185A JP 14202185 A JP14202185 A JP 14202185A JP S62107921 A JPS62107921 A JP S62107921A
Authority
JP
Japan
Prior art keywords
machining
jet
wire
speed
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14202185A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP14202185A priority Critical patent/JPS62107921A/en
Publication of JPS62107921A publication Critical patent/JPS62107921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To promote the movement and discharge of bubbles and machined chips, by allowing the impinging point between both side jet liquids to move so that the impinging point is controlled to move at a specific speed. CONSTITUTION:Jet streams of machining liquid from both upper and lower nozzles 5, 6 are controlled in such a way that valves 8, 9 are normally and reversely associated with each other by means of a motor 10. Accordingly, when the jet stream pressures of machining liquid from both nozzles 5, 6 become equal to each other, the impinging point between jet streams of the liquid is created at a substantially middle point of the plate thickness of a workpiece 3. Further, when the jet stream pressure of the upper nozzle 5 becomes lower, the impinging point of jet streams is moved downward. The moving speed of the impinging point is controlled in accordance with the control speed of both valves 8, 9 driven by the motor. Further, the machining speed is abruptly increased when moving speed of this impinging point is about 3 m/min. This is due to that generated bubbles and machined chips comes to be easy to be moved and discharged.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はワイヤカット放電加工の改良に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to improvements in wire cut electric discharge machining.

〔従来技術及び問題点〕[Prior art and problems]

ワイヤカット放電加工に於て、ワイヤ電極が貫通する被
加工体の上下両側から対向するノズルによって加工液を
噴流供給するとき、従来は両側からの噴流加工液の衝突
点が被加工体板厚のほぼ中間部分になるよう調整し、常
にその位置を維持するようにして加工した。しかしなが
ら、その後の実験によると、噴流液の衝突点に発生する
気泡とか加工チップが集まり淀んだ状態となって、そこ
にアーク放電・短絡が発生し断線する原因になることが
わかった。
In wire-cut electrical discharge machining, when a jet of machining fluid is supplied from opposing nozzles from both the upper and lower sides of a workpiece through which a wire electrode penetrates, conventionally, the collision point of the jets of machining fluid from both sides was at a point equal to the thickness of the workpiece. I adjusted it so that it was approximately in the middle, and processed it so that it would always maintain that position. However, subsequent experiments revealed that air bubbles and machined chips generated at the collision point of the liquid jet gather and become stagnant, causing arc discharge and short circuits to occur, leading to wire breakage.

〔問題点の解決手段〕[Means for solving problems]

そこで本発明は、両側噴流液の衝突点の移動を行なわせ
るようにし、実験結果に基づいて前記衝突点の移動速度
が3 m/min以上の速度で移動するよう制御するこ
とを特徴とする。
Therefore, the present invention is characterized in that the collision point of the liquid jets on both sides is moved, and the collision point is controlled to move at a speed of 3 m/min or more based on experimental results.

〔実施例〕〔Example〕

以下図面の一実施例により本発明を説明する。 The present invention will be explained below with reference to an embodiment of the drawings.

1はワイヤ電極で、図示しないリールから供給され、ブ
レーキ及び引取ローラによりガイド2間を所要の張力と
速度をもって矢印方向に移動し走行する。3は被加工体
で、ガイド2間を移動走行するワイヤ電極1に対向して
加工間隙を形成し、パルス放電を発生して加工する。4
がパルスを供給する加工用電源、5.6は被加工体の上
下両側から加工部分に向けて加工液を噴流供給するノズ
ルで、ポンプ7より制御バルブ8,9を経て水等の加工
液が供給される。10は両バルブ8と9を正逆に連動し
て循環して制御する制御モータで、ノズル5からの噴流
が強まるにしたがってノズル6からの噴流が弱まり、又
、逆にノズル5からの噴流が弱まるにしたがってノズル
6からの噴流が強まり、これを循環して変化制御する。
Reference numeral 1 denotes a wire electrode, which is supplied from a reel (not shown) and is moved between guides 2 in the direction of the arrow with the required tension and speed by means of a brake and a take-up roller. Reference numeral 3 denotes a workpiece, which forms a machining gap in opposition to the wire electrode 1 moving between the guides 2, and is machined by generating pulsed discharge. 4
5.6 is a machining power source that supplies pulses, and 5.6 is a nozzle that supplies a jet of machining liquid toward the machining part from both the upper and lower sides of the workpiece. Supplied. Reference numeral 10 denotes a control motor that circulates and controls both valves 8 and 9 in the forward and reverse directions.As the jet from nozzle 5 becomes stronger, the jet from nozzle 6 weakens, and conversely, the jet from nozzle As the jet flow weakens, the jet flow from the nozzle 6 becomes stronger, and the jet flow is circulated to control changes.

11.12はテーブル14をX軸、Y軸に駆初するモー
タ、13がそのNC制御装置である。
11 and 12 are motors that drive the table 14 in the X and Y axes, and 13 is its NC control device.

ワイヤカットは被加工体3と貫通するワイヤ電極1との
間にNC制御装置13によってプログラムされた形状の
加工送りを与え、加工用電源4からパルスを加えてパル
ス放電を繰返すことにより放電加工する。加工液は上下
のノズル5.6から被加工体加工部のワイA7電極が貫
通する方向に向けて噴流することによって供給され、ワ
イヤ電極1と被加工体3の対向する放電間隙に介在して
放電媒体となり、冷却作用し、加工チップ、気泡等の排
除作用をする。これによりアーク・短絡を防ぎ、ワイヤ
電極の断線を防止して安定加工に寄与する。
Wire cutting is performed by giving a machining feed in a shape programmed by the NC control device 13 between the workpiece 3 and the penetrating wire electrode 1, and applying pulses from the machining power source 4 to repeat pulse discharge to perform electrical discharge machining. . The machining fluid is supplied by jetting from the upper and lower nozzles 5.6 in the direction in which the wire A7 electrode of the workpiece machining section penetrates, and is interposed in the discharge gap where the wire electrode 1 and the workpiece 3 face each other. It acts as a discharge medium, has a cooling effect, and has the effect of eliminating processed chips, air bubbles, etc. This prevents arcs and short circuits, prevents wire electrode breakage, and contributes to stable machining.

しかして上下両ノズル5.6による加工液の噴流はバル
ブ8と9がモータ10によって正逆に連動して制御され
る。このため両ノズル5.6からの加工液の噴流圧が等
しくなったときは、被加工体3の板厚のほぼ中央部分に
噴流液の衝突点が形成され、又、上側ノズル5の噴流圧
が小さくなったときは、前記噴流液衝突点は加工間隙を
上方に移動し、逆に下側ノズル6の噴流圧が小さくなっ
たときは衝突点は下方に移動する。この衝突点の移動速
度はモータ10による両バルブ8.9の制御速度によっ
て制御され、任意に制御することができる。
Thus, the jet flow of machining fluid from both the upper and lower nozzles 5.6 is controlled by the valves 8 and 9 being interlocked in forward and reverse directions by the motor 10. Therefore, when the jet pressures of the machining fluid from both nozzles 5 and 6 become equal, a collision point of the jet fluid is formed at approximately the center of the thickness of the workpiece 3, and the jet pressure of the upper nozzle 5 is When the jet pressure becomes small, the jet liquid collision point moves upward in the machining gap, and conversely, when the jet pressure of the lower nozzle 6 becomes small, the collision point moves downward. The moving speed of this collision point is controlled by the control speed of both valves 8.9 by the motor 10, and can be arbitrarily controlled.

第2図は前記噴流液の衝突点移動速度を変更制御して加
工したときの加工速度の実験結果のグラフで、加工条件
は線径0.25n+n+φのBS線をワイヤ電極として
SKD材を加工するとき、Ip=260A 、τon=
 1.6μsのパルスで、加工液に比抵抗5X 104
Ωcmの水を用いた。グラフから判るように噴流液の衝
突点の移動速度が約3g+/gin程度から急激に加工
速度の増大に効果がみられ、移動速度が約8 m/mi
n以上では衝突点を静止(速度OWL、た場合に比べて
約2倍にも加工速度が増加することがわかる。これは主
として発生気泡、加工チップ等が移動し排除し易くなり
、安定放電加工、断線防止等の効果によるものと思える
Figure 2 is a graph of the experimental results of machining speed when machining was performed by changing and controlling the moving speed of the collision point of the jet liquid, and the machining conditions were to process SKD material using a BS wire with a wire diameter of 0.25n+n+φ as a wire electrode. When, Ip=260A, τon=
With a pulse of 1.6μs, the specific resistance of the machining fluid is 5X 104
Water of Ωcm was used. As can be seen from the graph, the effect of rapidly increasing the machining speed was seen when the moving speed of the collision point of the jet liquid was about 3 g+/gin, and the moving speed increased to about 8 m/min.
It can be seen that when the collision point is stationary (velocity OWL), the machining speed increases by about twice compared to the case where the collision point is stationary (velocity OWL). This seems to be due to the effect of preventing wire breakage, etc.

尚、前記実施例の場合は噴流液衝突点の移動を両ノズル
からの噴流圧力の制御によって行なったが、片方ノズル
の噴流圧制御によって行なってもよく、又、加工部に対
向するノズルの対向角度の回動制御によって、対向角度
の相違する複数ノズルの切換制御によって衝突点の位置
、その位置の移動速度の制御を行なうことができる。又
、被加工体を上下に移動して制御することもできる。
In the case of the above embodiment, the jet liquid collision point was moved by controlling the jet pressure from both nozzles, but it may also be performed by controlling the jet pressure from one nozzle, or by moving the jet liquid collision point between the nozzles facing the processing part. By controlling the rotation of the angle, the position of the collision point and the speed of movement of that position can be controlled by controlling the switching of a plurality of nozzles facing different angles. It is also possible to control the workpiece by moving it up and down.

前記実験例により移動速度3 m/n+in以上で効果
がみられるが、これはワイヤ電極の走行移動速度に近似
の値であり、ワイヤ移動速度程度以上の速度で効果があ
ることを示している。
According to the above experimental example, the effect is seen at a moving speed of 3 m/n+in or more, which is a value approximate to the traveling speed of the wire electrode, indicating that the effect is effective at a speed of about the wire moving speed or higher.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は、ワイヤカットに於て、加工液
の供給を被加工体の両側から対向するノズルによってワ
イヤ電極の貫通方向に噴流するようにし、且つ前記両ノ
ズルの噴流した液の衝突点がワイヤ電極の貫通方向に3
 m/win以上の速度で移動するよう曲記両ノズルの
噴流制御を行なうようにしたから、これにより放電によ
り発生する気泡とか加工チップの移動排除が促進され、
アーク・短絡等を防止して安定加工性を高め、ワイヤ電
極の冷却効果を高めて断線を防止し、大電流密度の通電
によって加工速度を増大することができる。
As described above, in wire cutting, the present invention supplies machining fluid to the workpiece by jetting it in the penetrating direction of the wire electrode from opposing nozzles from both sides of the workpiece, and the fluid jetted from both nozzles is The point of collision is 3 in the direction of wire electrode penetration.
Since the jet flow of both nozzles is controlled to move at a speed of m/win or more, this facilitates the movement and removal of bubbles and machining chips generated by electric discharge.
It is possible to improve stable workability by preventing arcs and short circuits, improve the cooling effect of the wire electrode to prevent wire breakage, and increase processing speed by applying electricity at a high current density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の構成図、第2図は実験
グラフ図である。 1・・・・・・・・・ワイヤ電極 2・・・・・・・・・ガイド 3・・・・・・・・・被加工体 4・・・・・・・・・加工用電源 5.6−・・・・・・・・ノズル 7・・・・・・・・・ポンプ 8.9・・・・・・・・・バルブ 10・・・・・・・・・モータ 特  許  出  願  人 株式会社井上ジ17バツクス研究所 代表者 井 上   潔 ′7′ へコ ;t21;i( 樹之在ν秦4よ声
FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is an experimental graph diagram. 1...Wire electrode 2...Guide 3...Workpiece 4...Machining power supply 5 .6-...Nozzle 7...Pump 8.9...Valve 10...Motor patent issued Applicant: Representative of Inoue Ji17 Backs Research Institute, Inc. Kiyoshi Inoue '7'Heko;t21;i

Claims (1)

【特許請求の範囲】[Claims] ガイドを移動するワイヤ電極を被加工体を貫通させた状
態でほぼ直交する方向に相対加工送りを与えながら加工
液及び加工パルスを供給しながら放電加工するワイヤカ
ット放電加工方法に於て、前記加工液の供給を前記被加
工体の両側から対向するノズルによつてワイヤ電極の貫
通方向に噴流するようにし、且つ前記両側のノズルから
噴流した液の衝突点がワイヤ電極の貫通方向に3m/m
in以上の速度で移動するよう前記両ノズルの噴流制御
を行なうようにしたことを特徴とするワイヤカット放電
加工方法。
In the wire-cut electrical discharge machining method, electrical discharge machining is performed while supplying machining fluid and machining pulses while applying relative machining feed in substantially orthogonal directions with a wire electrode moving a guide passing through the workpiece. The liquid is supplied from both sides of the workpiece so that it is jetted in the penetrating direction of the wire electrode by opposing nozzles, and the collision point of the liquid jetted from the nozzles on both sides is 3 m/m in the penetrating direction of the wire electrode.
A wire-cut electrical discharge machining method, characterized in that the jet flow of both nozzles is controlled so that the nozzles move at a speed of in or more.
JP14202185A 1985-06-28 1985-06-28 Wire-cut electric discharge machining method Pending JPS62107921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14202185A JPS62107921A (en) 1985-06-28 1985-06-28 Wire-cut electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14202185A JPS62107921A (en) 1985-06-28 1985-06-28 Wire-cut electric discharge machining method

Publications (1)

Publication Number Publication Date
JPS62107921A true JPS62107921A (en) 1987-05-19

Family

ID=15305519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14202185A Pending JPS62107921A (en) 1985-06-28 1985-06-28 Wire-cut electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS62107921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649023U (en) * 1987-07-06 1989-01-18

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571624A (en) * 1980-06-06 1982-01-06 Makino Milling Mach Co Ltd Discharge processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571624A (en) * 1980-06-06 1982-01-06 Makino Milling Mach Co Ltd Discharge processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649023U (en) * 1987-07-06 1989-01-18
JPH0518013Y2 (en) * 1987-07-06 1993-05-13

Similar Documents

Publication Publication Date Title
US4414456A (en) Electroerosive wire-cutting method and apparatus with a shaped high-velocity stream of a cutting liquid medium
JPH0123701Y2 (en)
US20080277383A1 (en) Apparatus for removing debris from the cutting gap of a work piece on a wire electronic discharge machine and method therefor
JPS62107921A (en) Wire-cut electric discharge machining method
JPH0126807B2 (en)
GB2077171A (en) Electroerosive wire-cutting method and apparatus
US4458130A (en) Immersion-type traveling-wire electroerosion machining method
JPH0616971B2 (en) Drilling electric discharge machine
JPS626935B2 (en)
JPS629821A (en) Electric discharge machine
JP2559219B2 (en) Perforation electric discharge machine
JPS5852778B2 (en) Machining fluid supply device for electrical machining
JPH06723A (en) Fine hole electric discharge machining device
JPS61236431A (en) Wire cut electric discharge machine
JPS61164722A (en) Wire cut electric discharge machine
JPS63216630A (en) Wire cut electric discharge machine
JPS63120030A (en) Wire-cut electric discharge machining
JPS62124822A (en) Wire cut electric spark machine
JPS63306835A (en) Electric discharge machine
JPS5843210B2 (en) Wire
JPH0271924A (en) Wire-cut electric discharge machining device
JPS62287931A (en) Wire cut electric spark machine
JPH0551409B2 (en)
JPS63251123A (en) Processing liquid injecting device for wire cut electric discharge machining equipment
JPS61159327A (en) Wire cut electric discharge machine