JPS62107032A - Two-stage-ignition sintering method - Google Patents

Two-stage-ignition sintering method

Info

Publication number
JPS62107032A
JPS62107032A JP24570485A JP24570485A JPS62107032A JP S62107032 A JPS62107032 A JP S62107032A JP 24570485 A JP24570485 A JP 24570485A JP 24570485 A JP24570485 A JP 24570485A JP S62107032 A JPS62107032 A JP S62107032A
Authority
JP
Japan
Prior art keywords
sintering
coke
stage
layer
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24570485A
Other languages
Japanese (ja)
Inventor
Takazo Kawaguchi
尊三 川口
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24570485A priority Critical patent/JPS62107032A/en
Publication of JPS62107032A publication Critical patent/JPS62107032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain a high-strength sintered product by limiting the proportion of coke fines as raw material, in sintering the raw materials for sintering laid into two layers, the upper and lower layers, by a two-stage-ignition system, so as to prevent incomplete combustion of coke fines. CONSTITUTION:The proportion of above-mentioned coke fines in the raw materials for sintering in which iron-ore fines, coke fines, limestone, etc., are blended is limited to 2-3.5wt%. The above raw materials for sintering are laid on the pallet of a sinter machine into two layers, the upper and lower layers. Then each layer is ignited independently to allow each combustive reaction to proceed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉鉄鉱石などの焼結原料を2段点火式で焼結
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for sintering a sintering raw material such as powdered iron ore using a two-stage ignition method.

(従来の技術) 製鉄用の鉄鉱石のうち粉状鉄鉱石は焼結により塊成化し
てから高炉に装入されている。
(Prior Art) Powdered iron ore, which is used for iron ore manufacturing, is agglomerated by sintering and then charged into a blast furnace.

一般に、このような粉状鉱石などの製鉄原料にコークス
、石灰石などを配合した焼結用の原料(以下、単に“原
料”あるいは“焼結原料″という)の塊成化法としてD
 −L型(ドライ1−ロイド型)焼結機が用いられてき
た。これは第1図に示す如く、焼結ストランドlの回り
に周回回動せしめられる多数のパレット2上に、ホンパ
ー3.4からそれぞれ床敷鉱、焼結原料を順次供給し、
点火炉5を通過する過程で焼結原料表面に点火し、バレ
ント移動域下に配した風′R6がらブロワ−7で吸引す
ることによっ°ζ原料上方から下方に空気を流通させ、
パレットが排鉱端に向かう間に原料の焼成を上方から下
方に向けて進行させ排鉱端直前にて焼成を完了して塊成
化した焼結2J1:を得る方法である。
In general, D is a method of agglomerating raw materials for sintering (hereinafter simply referred to as "raw materials" or "sintering raw materials"), which are made by blending coke, limestone, etc. with ironmaking raw materials such as powdered ore.
-L type (dry 1-roid type) sintering machines have been used. As shown in Fig. 1, bedding ore and sintering raw materials are sequentially supplied from a hopper 3.4 onto a large number of pallets 2 which are rotated around a sintered strand l.
The surface of the sintered raw material is ignited in the process of passing through the ignition furnace 5, and air is circulated from above the raw material downward by suctioning it with the blower 7 from the air 'R6 placed below the valent movement area.
This is a method in which the raw material is sintered from above to the bottom while the pallet moves toward the ore discharge end, and the firing is completed just before the ore discharge end to obtain agglomerated sintered 2J1:.

この間の焼結の進行状況は第2図に示す通りで、符号8
は原料を示し、斜線部分は焼結反応帯9を、さらに焼結
反応帯上に位置する符号1oは焼結完了帯をそれぞれ示
している。原料には燃料としてわ)コークスが予め配合
されており、第1図に示すように、点火炉5で点火後、
−上方より024度21%の空気を通気せしめて扮コー
クスを燃焼させ、これにより鉱石の溶融焼結を行ってい
る。点火後、概ね30分程度で最下層部まで焼結が進行
する。燃焼排ガスは風箱6を通して排気されるが、この
ときの排ガス中の08は11%程度、温度は平均100
°C程度である。この酸素濃度レベルのガスは未だコー
クスを燃焼させるだけの酸化力を保持しており、したが
って、排ガスの再利用が望まれる。
The progress of sintering during this period is as shown in Figure 2, with reference numeral 8.
indicates the raw material, the shaded area indicates the sintering reaction zone 9, and the symbol 1o located above the sintering reaction zone indicates the sintered completed zone. The raw material is mixed with coke as a fuel in advance, and as shown in Fig. 1, after being ignited in the ignition furnace 5,
- Air is vented from above at a temperature of 0.24 degrees and 21% to burn the coke, thereby melting and sintering the ore. After ignition, sintering progresses to the lowest layer in about 30 minutes. The combustion exhaust gas is exhausted through the wind box 6, and at this time, 08 in the exhaust gas is about 11%, and the average temperature is 100℃.
It is about °C. Gas at this oxygen concentration level still has enough oxidizing power to burn coke, and therefore it is desirable to reuse the exhaust gas.

かかる排ガス再利用技術の一つとして、従来より[鉄と
鋼J Vol、69、隘4.72頁に例示されるような
、排ガスの焼結工程への’d&環技術が実施されている
。これは焼結工程後半の排ガスを抽気しこれを再度原料
表面に吹き付けて焼成ガスとして再利用を図るもので、
大気放散ガス量低減、窒素酸化物低減さらに排熱回収量
増加等に効果がある。
As one of such exhaust gas reuse technologies, the 'd&ring technology for the exhaust gas sintering process, as exemplified in [Tetsu to Hagane J Vol. 69, page 4.72], has been implemented. This involves extracting the exhaust gas from the latter half of the sintering process and spraying it onto the raw material surface again to reuse it as sintering gas.
It is effective in reducing the amount of gas released into the atmosphere, reducing nitrogen oxides, and increasing the amount of waste heat recovered.

しかし、焼結層内で起こるコークス燃焼および焼結反応
自体は、第2図に示す従来の焼結法と同様であり、この
ため焼結進行速度増加による生産性向上効果は達成でき
ない。
However, the coke combustion and sintering reaction that occur within the sintered layer are similar to those in the conventional sintering method shown in FIG. 2, and therefore the productivity improvement effect by increasing the sintering progress rate cannot be achieved.

排ガスを再度焼結反応促進に利用し、かつ焼結進行速度
を速めるためには原料層内で焼結反応を同時多発的に進
行させる必要がある。
In order to use the exhaust gas again to promote the sintering reaction and to speed up the sintering progress, it is necessary to allow the sintering reaction to proceed simultaneously in the raw material layer.

これを具体的に実現した方法として特開昭47−263
0.1号に示される方法がある。この方法は、原料供給
装置および点火炉をパレット進行方向に位置をずらして
複数個設け、供給された各々の原料表面に順次点火せし
めて、焼結反応を進行させるもので、この操作によりυ
トガスの再利用と焼結反応速度の大幅な増加が可能と成
り、この結果、生産性向上が達成できる。2段点火式の
場合の焼結進行状況を第3図に模式的に示す。図中、符
号は第2図のそれに同じである。上層を通過した排ガス
は再び下層で燃焼用に利用される。
As a method to specifically realize this, Japanese Patent Application Laid-Open No. 47-263
There is a method shown in No. 0.1. In this method, a plurality of raw material supply devices and ignition furnaces are provided at different positions in the pallet traveling direction, and the surfaces of each supplied raw material are ignited in sequence to advance the sintering reaction.
This makes it possible to reuse waste gas and significantly increase the sintering reaction rate, resulting in improved productivity. Figure 3 schematically shows the progress of sintering in the case of the two-stage ignition type. In the figure, the symbols are the same as those in FIG. The exhaust gas that has passed through the upper layer is used again for combustion in the lower layer.

(発明が解決しようとする問題点) しかしながら、上記公報においてはコークス配合比率を
明らかにすることがなく、またその臨界性についても何
ら示唆することがなかった。また、この2段点火式焼結
法では、焼結過程において上層から下層に流入するガス
は酸素濃度が低く、このため下層に配合された粉コーク
スは不完全燃焼の状態に陥りやすく、燃焼発熱量が減少
することとなる。さらに上層から下層に流入するガス温
度はほとんどが100℃以下で下層部において予熱効果
も期待できない。この結果、層内の温度が低下し、十分
な溶融焼結化が達成できず、成品焼結鉱の強度劣化を惹
起することとなり、これが2段点火式焼結法の欠点とな
っている。
(Problems to be Solved by the Invention) However, in the above-mentioned publication, the coke blending ratio was not disclosed, nor was there any suggestion regarding its criticality. In addition, in this two-stage ignition sintering method, the gas flowing from the upper layer to the lower layer during the sintering process has a low oxygen concentration, so the coke breeze blended in the lower layer tends to be incompletely combusted, causing combustion heat generation. The amount will decrease. Furthermore, the temperature of the gas flowing from the upper layer to the lower layer is mostly 100° C. or lower, and no preheating effect can be expected in the lower layer. As a result, the temperature within the layer decreases, making it impossible to achieve sufficient melting and sintering, leading to deterioration in the strength of the finished sintered ore, which is a drawback of the two-stage ignition sintering method.

このように、従来の2段点火式焼結法は、生産性は1段
式焼結法に較べ優れているが、成品強度の低下が著しく
実用上問題があった。
As described above, although the conventional two-stage ignition sintering method is superior in productivity to the one-stage sintering method, it has a practical problem in that the strength of the product is significantly reduced.

また、強度向上対策として従来実施してきた粉コークス
配合比率の増加を行うと逆に成品強度低下を招(結果と
なっていた。
In addition, increasing the blending ratio of coke powder, which has traditionally been done as a strength improvement measure, actually resulted in a decrease in the strength of the product.

かくして、本発明の目的とするところは、2段点火式焼
結法において粉コークスの不完全燃焼を防止して高強度
焼結成品を製造する方法を提供することである。
Thus, an object of the present invention is to provide a method for producing high-strength sintered products by preventing incomplete combustion of coke breeze in a two-stage ignition sintering method.

(問題点を解決するための手段) 本発明者らは、かかる目的達成のため、種々調査したと
ころ、2段点火式焼結法では2ケ所で燃焼を行うためコ
ークス配合比率が高過ぎると下層部の燃焼に際して不完
全燃焼を起こし強度低下を起こすことが判明した。そこ
で、さらに検討を重ねたところむしろ扮コークスの配合
比率に制限を設けることによって2段点火式焼結法の悪
影響である成品強度低下を防止し、焼結成品強度を低下
させることなく高生産率で操業ができることを知り、本
発明を完成した。
(Means for Solving the Problems) In order to achieve the above object, the present inventors conducted various investigations and found that in the two-stage ignition sintering method, combustion occurs in two places, so if the coke blending ratio is too high, the lower layer It was found that incomplete combustion occurs when the parts are burned, resulting in a decrease in strength. Therefore, after further consideration, we found that by setting a limit on the blending ratio of coke, we were able to prevent the decline in product strength, which is an adverse effect of the two-stage ignition sintering method, and achieve a high production rate without reducing the strength of the sintered product. The present invention was completed after learning that the operation could be carried out using

ここに、本発明の要旨とするところは、パレット上に装
入する焼結原料を上下2段に分けて敷延し、各層ごとに
それぞれ点火し、各層独立に燃焼反応を進行せしめる2
段点火式焼結法において、粉コークス配合比率を各層そ
れぞれ2.0〜3.5 wt%に制限することを特徴と
する2段点火式焼結方法である。
Here, the gist of the present invention is to spread the sintering raw material charged on a pallet in two stages, upper and lower, and to ignite each layer to cause the combustion reaction to proceed independently in each layer.
This is a two-stage ignition sintering method characterized by limiting the blending ratio of coke powder to 2.0 to 3.5 wt% in each layer.

上記2¥S1.点火式焼結方法およびその操業方法はす
でに公知のものであり、特に制限はないが、各層厚は好
ましくは等しくする。また、粉コークスの大きさなどに
ついても特に制限はない。
Above 2¥S1. The pyrotechnic sintering method and its operating method are already known and there are no particular restrictions, but the thickness of each layer is preferably equal. Furthermore, there are no particular restrictions on the size of the coke powder.

(作用) 前述したように、2段点火式焼結法は燃焼を2ケ所で行
わせしめるので生産性に関しては優れている反面、成品
焼結鉱の強度低下が大きな問題点であった。本発明はか
かる問題解明にあたって次の事項の知見にもとすくもの
である。
(Function) As mentioned above, the two-stage ignition sintering method is superior in terms of productivity because combustion occurs at two locations, but on the other hand, it has a major problem in that the strength of the finished sintered ore decreases. The present invention contributes to the knowledge of the following matters in solving such problems.

すなわち、一般に、焼結層中の粉コークスの燃焼は含有
される固定炭素分の通過ガス中の酸素による酸化反応で
起こるものであり、十分に酸素が存在する場合は下記(
1)式に示す完全燃焼の状態となり、発熱量は94 k
cal/酸素モルとなる。これに対し、酸素が不足する
と下記(2)式に示す不完全燃焼の状態になり、この時
の発熱量は53 kcal/酸素モルとなり、酸素1モ
ルを基準にして考えれば不完全燃焼時の発熱量は完全燃
焼時のそれに較べ一ζ44%減少する。
That is, in general, the combustion of coke breeze in the sintered layer occurs due to the oxidation reaction of the fixed carbon contained therein by oxygen in the passing gas, and if there is sufficient oxygen, the following (
1) A state of complete combustion is reached as shown in equation 1, and the calorific value is 94 k.
cal/oxygen mole. On the other hand, if there is a lack of oxygen, incomplete combustion will occur as shown in equation (2) below, and the calorific value at this time will be 53 kcal/mole of oxygen. The calorific value is reduced by 44% compared to that during complete combustion.

C+0.−、=CO□ ・・・(1)式(発熱1=93
.989 kcal/酸素モル)2C+0□ =2CO
・・・(2)式 (発熱Mt−52,796kcal/酸素モル)そして
、前述した2段点火式焼結時の下層強度低下は、上層粉
コークスを燃焼した後の低Ot ?f4度ガスで下層部
コークスの燃焼反応が進行するためで、上層の扮コーク
ス配合の多ずぎる操作が下層粉コークスの不完全燃焼状
態をさらに惹起し、強度の極端な低下を招くのである。
C+0. -,=CO□...Equation (1) (heat generation 1=93
.. 989 kcal/oxygen mol)2C+0□ =2CO
...Equation (2) (heat generation Mt - 52,796 kcal/oxygen mol) And the lower layer strength decrease during the above-mentioned two-stage ignition type sintering is due to the low Ot after burning the upper layer powder coke? This is because the combustion reaction of the coke in the lower layer progresses in the f4 degree gas, and too many operations in the mixing of the coke in the upper layer further induce incomplete combustion of the coke powder in the lower layer, leading to an extreme drop in strength.

また同様に下層の扮コークス配合の多すぎる操作も下層
の強度低下を招くのである。
Similarly, mixing too much coke in the lower layer also causes a decrease in the strength of the lower layer.

すなわち、1段点火式焼結法においては、燃焼部が1ケ
所であり、粉コークス4%程度の配合比率では酸素が過
剰になり、はとんどが上記+11式による反応で発熱量
はコークスの配合比率によって決定される。このためコ
ークス配合比率を上昇せしめるに従い発熱■が増加し強
度が改善される。
In other words, in the one-stage ignition sintering method, there is only one combustion zone, and when the blending ratio of coke breeze is about 4%, oxygen becomes excessive, and most of the heat is generated by the reaction according to equation +11 above. It is determined by the blending ratio of Therefore, as the coke blending ratio is increased, the heat generation (2) increases and the strength is improved.

一方、2段点火式焼結法においては燃焼部が2ケ所あり
、通常粉コークス4%程度の配合比率では全体として酸
素不足となり、燃焼反応は上記+11式および(2)式
となる。またこの時の発熱量は酸素量(濃度)および燃
焼反応の上記+11式、(2)式の分配比率によって決
められ、供給酸素4度が21%で一定の場合には粉コー
クス配合比率の高い場合の方が上記(2)式の不完全燃
焼反応が優勢となり、結局1段点火式焼結法とは逆に発
熱量低下を招くこととなる。
On the other hand, in the two-stage ignition sintering method, there are two combustion sections, and when the blending ratio of coke breeze is about 4%, the overall combustion reaction is oxygen-deficient, and the combustion reactions are as shown in equations +11 and (2) above. In addition, the calorific value at this time is determined by the amount of oxygen (concentration) and the distribution ratio of the combustion reaction equation +11 and equation (2). In this case, the incomplete combustion reaction of equation (2) above becomes more dominant, resulting in a decrease in calorific value, contrary to the one-stage ignition sintering method.

さらに詳細に説明すれば、2段点火式焼結法の場合、上
層の粉コークス配合比率を3.5 wL%超とすると下
層に供給される酸素7店度が11%以下となり下層部で
の燃焼反応が粉コークス配合比率によらず不完全燃焼が
増加する。また、下層に供給される酸素濃度が11%以
上であっても下層部のコークス配合比率が3.5 wt
%超の場合には同様に不完全燃焼が増加する。したがっ
て、大気吸引を前提とする2段点火式焼結法において、
配合コークスの燃焼を良好に保つためにはヒ・下路層に
おいて粉コークス配合比率を3.5 wt%以下にする
ことが重要であり、これにより下層部での不完全燃焼を
防止でき、強度低下を防止できる。なお、本発明方法に
おい゛ζ粉コークス配合比率の下限を2.Owt%とし
たのは2.0wt%未満では強度発現に必要な発3il
を得られないためである。
To explain in more detail, in the case of the two-stage ignition sintering method, if the blending ratio of coke breeze in the upper layer exceeds 3.5 wL%, the oxygen concentration supplied to the lower layer will be less than 11%, and the The combustion reaction increases incomplete combustion regardless of the coke breeze blending ratio. Furthermore, even if the oxygen concentration supplied to the lower layer is 11% or more, the coke blending ratio in the lower layer is 3.5 wt.
%, incomplete combustion will similarly increase. Therefore, in the two-stage ignition sintering method that assumes atmospheric suction,
In order to maintain good combustion of blended coke, it is important to keep the blending ratio of coke breeze in the lower layer to 3.5 wt% or less, which prevents incomplete combustion in the lower layer and improves strength. Deterioration can be prevented. In addition, in the method of the present invention, the lower limit of the blending ratio of ζ coke powder is 2. Owt% is defined as less than 2.0wt%, which is necessary for developing strength.
This is because they cannot obtain .

次に、添付図面によって本発明をさらに説明する。The invention will now be further explained with reference to the accompanying drawings.

まず、焼結パレット装置について説明すると第4図は本
発明を実施するための焼結テスト機を一部断面で示すも
のである。図中、符号IIは本体を示し、これは高さ6
00mn+ 、内径300m−の円筒状になっており、
底部には間隔をおいた格子よりなるグレート仮12が設
けられ、その下部に風箱13があり、排風a(図面省略
)により吸引するようになっている。点火はパレット本
体上に設置したCガス燃焼バーナー14により行う。こ
のテスI−機を用い、グレート板12上に床敷鉱15を
敷きその上に所定量の原料16.16を2段に装入し、
この充填原料表面」二に着火して焼成を行う。
First, the sintering pallet apparatus will be explained. FIG. 4 shows a partial cross section of a sintering test machine for carrying out the present invention. In the figure, reference numeral II indicates the main body, which has a height of 6
It has a cylindrical shape with an inner diameter of 00m+ and an inner diameter of 300m-.
A grate 12 made of grids at intervals is provided at the bottom, and a wind box 13 is provided below the grate 12, which is designed to suck in air by exhaust air a (not shown). Ignition is performed by a C gas combustion burner 14 installed on the pallet body. Using this Tes I-machine, bedding ore 15 is spread on the grate plate 12, and a predetermined amount of raw material 16.16 is charged thereon in two stages.
The surface of this filled raw material is ignited and fired.

次に、焼成試験時の1榮作を説明すると、最初に層高3
001相当分の原料を装入して点火し、点火完了直後さ
らにまた原料を層高300mm相当分装入し、再度点火
を行った後大気吸引で焼成した。原料に配合する粉コー
クスは予め設定した量に調整して用いる。
Next, to explain the 1st grade during the firing test, first the layer height was 3.
A raw material equivalent to 0.001 mm was charged and ignited, and immediately after the ignition was completed, another raw material was charged in an amount equivalent to a layer height of 300 mm, and after ignition was performed again, firing was carried out by atmospheric suction. The coke powder added to the raw materials is adjusted to a preset amount before use.

次に本発明を実施例に関連させてさらに詳述するが、こ
れらはii′Lに本発明の例示であって、それにより本
発明が何ら制限されるものではない。
Next, the present invention will be further described in detail in connection with Examples, but these are ii'L illustrations of the present invention, and the present invention is not limited thereby.

実施例 本例では、第4図に示す装置を使い、2段点火式焼結を
行った。原料法本配合比率を第1表に示すが、上・下各
層の粉コークス配合比率を1.5 wt%から5wt%
までQ、5 wL%間隔で変更してテストを行った。
Example In this example, two-stage ignition sintering was carried out using the apparatus shown in FIG. The raw material method blending ratio is shown in Table 1, and the blending ratio of coke powder in each of the upper and lower layers is 1.5 wt% to 5 wt%.
The test was conducted by changing Q up to 5 wL% intervals.

第1表 (wt%) 試験結果を第5図にグラフにまとめて示すが、それらの
結果からも明らかなように、上・下各層の粉コークス配
合比率を2.0〜3.54%に制限することにより焼結
成品強度を改善することができる。
Table 1 (wt%) The test results are summarized in a graph in Figure 5, and as is clear from the results, the coke powder blending ratio of the upper and lower layers was set at 2.0 to 3.54%. By limiting the amount, the strength of the sintered product can be improved.

なお、参考例として第4図に示す装置を使い1段数焼結
(層高300mm 、第【表の配合割合、粉コークス配
合比率3.OwL%)を実施した場合の結果と本発明に
かかる2段点火式焼結(粉コークス配合比率:上層3.
5 wt%、下層3.5 wt%)の結果とを第2表に
まとめて示す。
As a reference example, the results obtained when one-stage sintering (layer height 300 mm, blending ratio shown in Table 1, coke powder blending ratio 3.OwL%) were carried out using the apparatus shown in Figure 4, and 2 according to the present invention. Stage ignition sintering (coke powder blending ratio: upper layer 3.
5 wt%, lower layer 3.5 wt%) are summarized in Table 2.

第2表 上記の比較からも本発明方法が1段焼結法と同等の強度
を有しながらも生産率を大幅に改善できるすぐれた方法
であると評価できる。
From the above comparison in Table 2, it can be evaluated that the method of the present invention is an excellent method that can significantly improve the production rate while having the same strength as the one-stage sintering method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のDL型焼結機の略式説明図;第2図は
、1段焼結法における焼結進行状況を示すグラフ; 第3図は、2段点火方式による第2図と同様のグラフ; 第4図は、本発明において利用する焼結テスト機の略式
説明図;および 第5図は、本発明の実施例の結果を示すグラフである。 12ニゲレート板、 13:風箱、 14:バーナ、   15:床敷鉱、 16:原料
Figure 1 is a schematic illustration of a conventional DL type sintering machine; Figure 2 is a graph showing the progress of sintering in the one-stage sintering method; Figure 3 is a graph showing the progress of sintering in the two-stage sintering method; Similar graphs; FIG. 4 is a schematic illustration of the sintering test machine utilized in the present invention; and FIG. 5 is a graph showing the results of an example of the present invention. 12 Nigerate board, 13: Wind box, 14: Burner, 15: Bed ore, 16: Raw material

Claims (1)

【特許請求の範囲】[Claims] パレット上に装入する焼結原料を上下2段に分けて敷延
し、各層ごとにそれぞれ点火し、各層独立に燃焼反応を
進行せしめる2段点火式焼結法において、粉コークス配
合比率を各層それぞれ2.0〜3.5wt%に制限する
ことを特徴とする2段点火式焼結方法。
In the two-stage ignition sintering method, the sintering raw material charged on a pallet is spread in two stages, upper and lower, and each layer is ignited to allow the combustion reaction to proceed independently in each layer. A two-stage ignition type sintering method characterized in that each sintering method is limited to 2.0 to 3.5 wt%.
JP24570485A 1985-11-01 1985-11-01 Two-stage-ignition sintering method Pending JPS62107032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24570485A JPS62107032A (en) 1985-11-01 1985-11-01 Two-stage-ignition sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24570485A JPS62107032A (en) 1985-11-01 1985-11-01 Two-stage-ignition sintering method

Publications (1)

Publication Number Publication Date
JPS62107032A true JPS62107032A (en) 1987-05-18

Family

ID=17137563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24570485A Pending JPS62107032A (en) 1985-11-01 1985-11-01 Two-stage-ignition sintering method

Country Status (1)

Country Link
JP (1) JPS62107032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627895A (en) * 2013-12-04 2014-03-12 四川金广实业(集团)股份有限公司 Production method for sintering chromium powder ore by continuous strand sinter machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260829A (en) * 1985-09-09 1987-03-17 Sumitomo Metal Ind Ltd Two-stage-ignition sintering method for raw material for iron manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260829A (en) * 1985-09-09 1987-03-17 Sumitomo Metal Ind Ltd Two-stage-ignition sintering method for raw material for iron manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627895A (en) * 2013-12-04 2014-03-12 四川金广实业(集团)股份有限公司 Production method for sintering chromium powder ore by continuous strand sinter machine

Similar Documents

Publication Publication Date Title
US6296479B1 (en) Direct reduction method and rotary hearth furnace
RU2001115052A (en) METHOD FOR PRODUCING METAL IRON AND DEVICE FOR ITS IMPLEMENTATION
US3264092A (en) System for producing carbonized and metallized iron ore pellets
JP4490640B2 (en) Method for producing reduced metal
AU756767B2 (en) Method for producing directly reduced iron in a layered furnace
RU2461634C2 (en) Rotary furnace with deoxidising atmosphere and method of its operation
JPS62107032A (en) Two-stage-ignition sintering method
JP7384268B2 (en) Method for producing sintered ore
JP2002097507A (en) Molten pig iron production process and equipment for the same
JP2789994B2 (en) Two-stage ignition ore manufacturing method
JPH08291342A (en) Sintering system by circulating exhaust gas
JPS6260829A (en) Two-stage-ignition sintering method for raw material for iron manufacture
JP2000017343A (en) Two-stage ignition type production of sintered ore
JPS62107033A (en) Two-stage-ignition sintering method
JP2001247920A (en) Smelting reduction method and smelting reduction apparatus
US3304168A (en) System for producing carbonized and prereduced iron ore pellets
JP2697550B2 (en) Two-stage ignition ore manufacturing method
JP2021080504A (en) Manufacturing method of sintered ore
JPS62109932A (en) Sintering method for two-step firing system
JP2697549B2 (en) Two-stage ignition ore manufacturing method
JPH04147924A (en) Two-step igniition annealing furnace
JP3745271B2 (en) Smelting reduction method and smelting reduction apparatus
SU1700069A1 (en) Method and shaft furnace for roasting vanadium slag pellets
JP7533321B2 (en) Method and apparatus for producing reduced iron
JPS6260828A (en) Multistage ignition-type sintering method