JPS62106335A - High voltage pressure sensor - Google Patents

High voltage pressure sensor

Info

Publication number
JPS62106335A
JPS62106335A JP24743685A JP24743685A JPS62106335A JP S62106335 A JPS62106335 A JP S62106335A JP 24743685 A JP24743685 A JP 24743685A JP 24743685 A JP24743685 A JP 24743685A JP S62106335 A JPS62106335 A JP S62106335A
Authority
JP
Japan
Prior art keywords
pressure
magnetic alloy
amorphous magnetic
magnetic
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24743685A
Other languages
Japanese (ja)
Inventor
Ichiro Yamashita
一郎 山下
Hiroyuki Hase
裕之 長谷
Shinya Tokuono
徳尾野 信哉
Masayuki Wakamiya
若宮 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24743685A priority Critical patent/JPS62106335A/en
Publication of JPS62106335A publication Critical patent/JPS62106335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enhance the pressure resistance of a pressure sensor without deteriorating magnetic characteristics, by superposing a plurality of amorphous magnetic alloy discs one upon another constituting a diaphragm. CONSTITUTION:A plurality of amorphous magnetic alloy discs 2 having magnetostriction are laminated to constitute a diaphragm. When pressure is applied to the pressure introducing port 10 of a lid part 4, pressure is applied to amorphous magnetic alloy discs 2 through a through-hole 6 to downwardly push the same at the part of a soft magnetic groove 1a. As a result, stress is generated in the amorphous magnetic alloy discs 2 and the magnetic permeability of the amorphous magnetic alloy discs is reduced by magnetostriction effect due to he internal stress. This change is detected in an inductance form by a coil 8 to make it possible to measure oil pressure. By this constitution, the pressure resistance of the amorphous magnetic alloy discs constituting the diaphragm can be enhanced in the magnification corresponding to the number of superposed discs.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質磁性合金の磁歪効果を用いた圧力センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pressure sensor using the magnetostrictive effect of an amorphous magnetic alloy.

従来の技術 近年、非晶質磁性合金の磁歪効果を用いた圧力センサが
提案されている。例えば特開昭60−88336号公報
は、第3図に示すような実施例を開示している。
BACKGROUND OF THE INVENTION In recent years, pressure sensors using the magnetostrictive effect of amorphous magnetic alloys have been proposed. For example, Japanese Patent Laid-Open No. 60-88336 discloses an embodiment as shown in FIG.

31は円環状の溝31aが設けられた円柱状の軟磁性体
、32は軟磁性体31の上に配置された磁歪を有する非
晶質磁性合金円板であり、ダイアフラムを構成する。3
3は前記軟磁性体31の溝31aに巻装されたコイル、
34は一端が軟磁性体31の溝部底部に接し他端が軟磁
性体開口部面と同一面に位置する非磁性リング、35は
これらを収納する容器、36は非晶質磁性合金円板32
に圧力を伝達する透孔37を有した蓋部である。
31 is a cylindrical soft magnetic body provided with an annular groove 31a, and 32 is an amorphous magnetic alloy disk having magnetostriction disposed on the soft magnetic body 31, which constitutes a diaphragm. 3
3 is a coil wound around the groove 31a of the soft magnetic material 31;
34 is a non-magnetic ring whose one end is in contact with the bottom of the groove of the soft magnetic material 31 and the other end is located on the same plane as the opening surface of the soft magnetic material; 35 is a container for storing these; and 36 is an amorphous magnetic alloy disk 32.
This is a lid portion having a through hole 37 for transmitting pressure to.

油圧が蓋部36の油圧導入口38に加わると、透孔37
を通して圧力が非晶質磁性合金円板32に加わり、これ
を軟磁性体溝31aにおいて押し下げ非晶質磁性合金円
板32内に応力が発生する。
When hydraulic pressure is applied to the hydraulic pressure inlet 38 of the lid 36, the through hole 37
Pressure is applied to the amorphous magnetic alloy disc 32 through the amorphous magnetic alloy disc 32, pushing it down in the soft magnetic groove 31a, and stress is generated within the amorphous magnetic alloy disc 32.

この内部応力の発生で磁歪効果により非晶質磁性合金円
板32の透磁率が減少する。この変化をコイル33を用
いてインダクタンスの形で検出し油圧を測定する様にな
っている。
Due to the generation of this internal stress, the magnetic permeability of the amorphous magnetic alloy disc 32 decreases due to the magnetostrictive effect. This change is detected in the form of inductance using a coil 33 to measure the oil pressure.

々ゝ゛ 発明の解決しようとする問題点 上記の様な構成のセンサにおいては、非晶質磁性合金円
板からなるダイヤフラムが1枚のため耐圧を高く出来な
い欠点がある。非晶質磁性合金円板の厚みを大きくすれ
ば、この欠点が解決されるが、非晶質磁性合金円板は現
在のところ高々数十ミクロンの厚さの物しか製造できず
、このような解決方法は現実的には不可能である。
[Problems to be Solved by the Invention] The sensor having the above structure has a drawback that the withstand pressure cannot be increased because it has only one diaphragm made of an amorphous magnetic alloy disc. This drawback can be solved by increasing the thickness of the amorphous magnetic alloy disk, but at present, amorphous magnetic alloy disks can only be manufactured with a thickness of several tens of microns at most. The solution is not realistically possible.

問題点を解決するための手段 圧力センサに、高耐圧性を持たせるため、ダイアフラム
を構成する非晶質磁性合金円板を複数枚重ね合わせる。
Means for Solving the Problems In order to provide a pressure sensor with high pressure resistance, a plurality of amorphous magnetic alloy discs constituting a diaphragm are stacked together.

作用 非晶質磁性合金円板を複数枚重ね合わせる事により、印
加された圧力は各非晶質磁性合金円板に均等に加わるよ
うになる。その結果、非晶質磁性合金円板に発生する応
力は、その重ね合わせた枚数分の−に減り結果として圧
力センサの耐圧が高く出来る。これにより異なる耐圧を
有する圧力センサが構成され、またインダクタンスの測
定に数十kHzの信号を用いれば、検出磁界の侵入深さ
を非晶質磁性合金ダイアフラム一枚の厚みにとれるので
、非晶質磁性合金の枚数によることなく同じ検出回路を
使用することもできる。
By stacking a plurality of operational amorphous magnetic alloy disks, the applied pressure is applied equally to each amorphous magnetic alloy disk. As a result, the stress generated in the amorphous magnetic alloy discs is reduced by the number of overlapping discs, and as a result, the withstand pressure of the pressure sensor can be increased. As a result, pressure sensors with different withstand pressures are configured, and if a signal of several tens of kHz is used to measure inductance, the penetration depth of the detection magnetic field can be set to the thickness of one amorphous magnetic alloy diaphragm. The same detection circuit can also be used regardless of the number of magnetic alloys.

実施例 第1図は本発明の一実施例の断面図である。1は円環状
の溝1aが設けられた円柱状の軟磁性体2は磁歪を有す
る非晶質磁性合金円板であり、複数枚積層され、ダイア
フラムを構成する。軟磁性体1と非晶質磁性合金円板2
の間は、非磁性円板(スペーサ)が置かれておりこの非
磁性円板3は、軟磁性体溝1aに対応する部分に細長い
溝を有している。これら三つは一つの閉磁路を構成して
いる。非晶質磁性合金円板2の上には、圧力を伝達する
透孔6を持ち圧力媒体の漏洩を阻止するOリング5を配
置した蓋部4が配置され、容器7と共に先述の磁気回路
を構成する部材を収納保持している。8は軟磁性体溝1
aの中に設けられたコイルで先述の磁気回路のインダク
タンスの測定にもちいられている。9は検出回路である
。圧力が蓋部4の圧力導入口10より加わると圧力は透
孔6を通して非晶質磁性合金円板3に加わり、非晶質磁
性合金円板3を軟磁性体溝1aの部分で下方に押し下げ
る。これにより非晶質磁性合金円板3内に応力が発生し
、この内部応力で磁歪効果によりを非晶質磁性合金の透
磁率が減少する。
Embodiment FIG. 1 is a sectional view of an embodiment of the present invention. Reference numeral 1 denotes a cylindrical soft magnetic body 2 provided with an annular groove 1a, which is an amorphous magnetic alloy disk having magnetostriction, and a plurality of disks are laminated to form a diaphragm. Soft magnetic material 1 and amorphous magnetic alloy disk 2
A non-magnetic disk (spacer) is placed between them, and this non-magnetic disk 3 has an elongated groove in a portion corresponding to the soft magnetic groove 1a. These three constitute one closed magnetic path. On top of the amorphous magnetic alloy disc 2, a lid part 4 is arranged, which has a through hole 6 for transmitting pressure and an O-ring 5 for preventing leakage of the pressure medium. It stores and holds the constituent members. 8 is soft magnetic groove 1
The coil installed inside a is used to measure the inductance of the magnetic circuit mentioned above. 9 is a detection circuit. When pressure is applied from the pressure introduction port 10 of the lid part 4, the pressure is applied to the amorphous magnetic alloy disk 3 through the through hole 6, and pushes the amorphous magnetic alloy disk 3 downward at the soft magnetic groove 1a. . This generates stress within the amorphous magnetic alloy disc 3, and this internal stress reduces the magnetic permeability of the amorphous magnetic alloy due to the magnetostrictive effect.

この変化をコイル8を用いてインダクタンスの形で検出
し油圧を測定する様になっている。以上の検出原理から
分かるように、このセンサは圧力を非晶質磁性合金円板
のダイアフラムで受けており、そのため耐圧は圧力によ
り発生する非晶質磁性合金円板の内部応力の大きさによ
り決定される。
This change is detected in the form of inductance using a coil 8 to measure the oil pressure. As can be seen from the above detection principle, this sensor receives pressure through the diaphragm of an amorphous magnetic alloy disk, and therefore the withstand pressure is determined by the magnitude of the internal stress of the amorphous magnetic alloy disk generated by pressure. be done.

第2図はこの実施例において、非晶質磁性合金円板ダイ
アフラムに主として応力が発生する軟磁性体1の溝1a
の部分の拡大図である。この図がらも分かる様に、圧力
はこの実施例の場合三枚の非晶質磁性合金円板2に均等
に加わる。すなわち非晶質磁性合金円板2に発生する内
部応力は一枚の場合の部分の−に低減されることになる
。これはこの実施例の圧力センサの耐圧が、一枚の場合
の二倍になることを意味している。
FIG. 2 shows a groove 1a of the soft magnetic material 1 in which stress is mainly generated in the amorphous magnetic alloy disc diaphragm in this embodiment.
It is an enlarged view of the part. As can be seen from this figure, pressure is applied equally to the three amorphous magnetic alloy discs 2 in this embodiment. In other words, the internal stress generated in the amorphous magnetic alloy disc 2 is reduced to - that in the case of one disc. This means that the withstand pressure of the pressure sensor of this embodiment is twice that of a single sheet.

またこの実施例では非磁性円板3(スペーサ)に軟磁性
体溝部に対応する部分に細長い溝が設けられていたが、
非磁性円板に溝が設けらてれない実施例においても、非
磁性円板の機械的降伏点は非晶質磁性合金より小さいた
め、圧力が一度加われば非磁性円板は塑性変形を起こし
実質的に細長い溝が設けられた場合に等しくなる。
Furthermore, in this embodiment, the non-magnetic disc 3 (spacer) was provided with an elongated groove in a portion corresponding to the soft magnetic groove.
Even in examples where the non-magnetic disk is not provided with grooves, the mechanical yield point of the non-magnetic disk is lower than that of an amorphous magnetic alloy, so once pressure is applied, the non-magnetic disk will undergo plastic deformation. This is equivalent if a substantially elongated groove is provided.

第4図は上記の構成のセンサの破損圧力を非晶質磁性合
金ダイアフラムの枚数に対してプロットしたグラフであ
る。非晶質磁性合金円板間の摩擦等の影響は少なく、は
ぼ耐圧が枚数に比例して増加していることが分かる。
FIG. 4 is a graph plotting the failure pressure of the sensor configured as described above against the number of amorphous magnetic alloy diaphragms. It can be seen that the influence of friction between the amorphous magnetic alloy disks is small, and the pressure resistance increases in proportion to the number of disks.

第5図は上記の構成のセンサの非晶質磁性合金円板の枚
数を増やしていった場合のセンサのインダクタンス値の
変化を示したグラフである。測定磁界の周波数を20k
Hzとした場合インダクタンスの変化が極めて小さく実
用上同一の検出回路を使用することが可能である事が分
かる。
FIG. 5 is a graph showing the change in the inductance value of the sensor with the above structure when the number of amorphous magnetic alloy discs is increased. The frequency of the measurement magnetic field is set to 20k.
It can be seen that in the case of Hz, the change in inductance is extremely small and it is possible to use the same detection circuit in practice.

発明の効果 本発明によれば、磁気特性を劣化させることなく、ダイ
アフラムを構成する非晶質磁性合金の耐圧を高めること
ができる。
Effects of the Invention According to the present invention, the withstand voltage of the amorphous magnetic alloy constituting the diaphragm can be increased without deteriorating the magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高圧圧力センサの断面図、
第2図は第1図の実施例における軟磁性体溝部周辺の拡
大断面図、第3図は従来の技術のセンサの断面図、第4
図はセンサ耐圧と非晶質磁性合金ダイアフラムの枚数と
の関係を示したグラフ、第5図はセンサのインダクタン
ス非晶質磁性合金ダイアフラムの枚数との関係を示した
グラフである。 1は軟磁性体、2は非晶質磁性合金円板、3は非磁性円
板、4は蓋部、5は0リング、6は透孔、7は容器、8
はコイル、9は検出回路である。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 1O五刀導入口 第3図 J6 第4図 12.346 井晶買金金円水炙炊 第5図 2  δ  4 夕 1賀合金円板孜、枚
FIG. 1 is a sectional view of a high pressure sensor according to an embodiment of the present invention;
FIG. 2 is an enlarged cross-sectional view of the area around the soft magnetic groove in the embodiment shown in FIG. 1, FIG. 3 is a cross-sectional view of a conventional sensor, and FIG.
The figure is a graph showing the relationship between sensor breakdown voltage and the number of amorphous magnetic alloy diaphragms, and FIG. 5 is a graph showing the relationship between sensor inductance and the number of amorphous magnetic alloy diaphragms. 1 is a soft magnetic material, 2 is an amorphous magnetic alloy disk, 3 is a non-magnetic disk, 4 is a lid, 5 is an O ring, 6 is a through hole, 7 is a container, 8
9 is a coil, and 9 is a detection circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person Fig. 1 1O Five sword inlet Fig. 3 J6 Fig. 4 12.346 Isho buying money yen water roasting Fig. 5 2 δ 4 Yo 1 Ga alloy disc Kei, piece

Claims (2)

【特許請求の範囲】[Claims] (1)円環状の溝が設けられた円柱状の軟磁性体と、前
記軟磁性体の溝部を有する面に接した非磁性円板と、前
記軟磁性体と反対の面で前記非磁性円板に接する磁歪を
有する複数枚の非晶質磁性合金円板と、前記軟磁性体溝
部に巻装されたコイルと、これらを保持する容器と、前
記非晶質磁性合金に接し圧力伝達媒質の流出を防ぐ手段
を有し、かつ前記軟磁性体溝部に対応し前記非晶質磁性
合金円板に圧力を伝達する手段を有する非磁性蓋部とを
備えたことを特徴とする高圧圧力センサ。
(1) A cylindrical soft magnetic body provided with an annular groove, a non-magnetic disc in contact with a surface of the soft magnetic body having the groove, and a non-magnetic circular plate on a surface opposite to the soft magnetic body. A plurality of magnetostrictive amorphous magnetic alloy disks in contact with the plate, a coil wound around the soft magnetic groove, a container holding these, and a pressure transmission medium in contact with the amorphous magnetic alloy. A high-pressure pressure sensor comprising: a non-magnetic lid portion having a means for preventing outflow, and a non-magnetic lid portion having a means for transmitting pressure to the amorphous magnetic alloy disc corresponding to the soft magnetic groove portion.
(2)非磁性円板が前記軟磁性体溝部に対応する部分に
細長い溝を有する事を特徴とする特許請求の範囲第1項
記載の高圧圧力センサ。
(2) The high-pressure pressure sensor according to claim 1, wherein the non-magnetic disc has an elongated groove in a portion corresponding to the soft magnetic groove.
JP24743685A 1985-11-05 1985-11-05 High voltage pressure sensor Pending JPS62106335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24743685A JPS62106335A (en) 1985-11-05 1985-11-05 High voltage pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24743685A JPS62106335A (en) 1985-11-05 1985-11-05 High voltage pressure sensor

Publications (1)

Publication Number Publication Date
JPS62106335A true JPS62106335A (en) 1987-05-16

Family

ID=17163408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24743685A Pending JPS62106335A (en) 1985-11-05 1985-11-05 High voltage pressure sensor

Country Status (1)

Country Link
JP (1) JPS62106335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600808B1 (en) 2004-12-08 2006-07-18 주식회사 엠디티 Variable inductor type MEMS pressure sensor using magnetostrictive effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600808B1 (en) 2004-12-08 2006-07-18 주식회사 엠디티 Variable inductor type MEMS pressure sensor using magnetostrictive effect

Similar Documents

Publication Publication Date Title
US4412454A (en) Pressure sensing unit for a pressure sensor
US4627292A (en) AC transducers, methods and systems
US20080168844A1 (en) Magnetostrictive strain sensor (airgap control)
CA2026936A1 (en) Three-toroid electrodeless conductivity cell
JPS61274235A (en) Ferromagnetic foil for torque sensor and manufacture thereof
JPS628031A (en) Hydraulic oil sensor
JPS62106335A (en) High voltage pressure sensor
JP3816514B2 (en) Pressure sensor
JPS6246225A (en) High pressure hydraulic sensor
JPS62228927A (en) Pressure sensor
JPS63121726A (en) Pressure sensor
JPS63308530A (en) Pressure sensor
US3324727A (en) Diaphragm-type high pressure transducer
JPS63101726A (en) Pressure sensor
US3122717A (en) Pressure transducer
JPS63109340A (en) Pressure sensor
JPS63140933A (en) Pressure sensor
JPS62191731A (en) Pressure sensor
JPS62211532A (en) Pressure sensor
SU1420403A1 (en) Magnetoelastic transducer of loose media pressure
JPS62175636A (en) Pressure sensor
JPS63109341A (en) Pressure switch
JPS6255537A (en) Pressure sensor
JPS62175637A (en) Pressure sensor
US3147454A (en) Differential pressure transducer