JPS62106313A - Method and apparatus for measuring position and posture of excavation head - Google Patents
Method and apparatus for measuring position and posture of excavation headInfo
- Publication number
- JPS62106313A JPS62106313A JP24774285A JP24774285A JPS62106313A JP S62106313 A JPS62106313 A JP S62106313A JP 24774285 A JP24774285 A JP 24774285A JP 24774285 A JP24774285 A JP 24774285A JP S62106313 A JPS62106313 A JP S62106313A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- receiving coil
- excavation head
- induced voltage
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はトンネル築造工法において、掘削ヘッド推進中
の掘削ヘッドの位置姿勢を継続的に簡易かつ正確に測定
することのできる掘削ヘッド位置、姿勢を計測する方法
及び装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method for measuring the position and orientation of an excavation head in a tunnel construction method, which allows continuous, simple and accurate measurement of the position and orientation of the excavation head while the excavation head is being propelled. The present invention relates to a method and apparatus for doing so.
従来の技術及び発明が解決しようとする間頂点従来のこ
の種の装置には磁界検出素子、例えば電磁コイル、レー
ザ光、ジャイロスコープを使用する方法がある。磁界検
出素子例えば電磁コイルを使用する方法には、特願昭5
4−049587及び特願昭58−27485がある。While the prior art and the invention seek to solve the problem, conventional devices of this type include methods using magnetic field sensing elements, such as electromagnetic coils, laser beams, and gyroscopes. A method of using a magnetic field detecting element such as an electromagnetic coil is disclosed in a patent application filed in 1973.
4-049587 and Japanese Patent Application No. 58-27485.
これらはともに掘削ヘッド内に電磁コイルを取付け、こ
の掘削ヘッド内電磁コイルから発射する磁界を地上通常
道路上で別の電磁コイルを走査しながら受信し、この時
の受信レベルの強弱により掘削ヘッドの位置を検知する
方法である。しかしこの地上通常道路上における電磁コ
イルの走査は危険を伴い、安全の確保が困難となり、ま
た多くの計測時間を要する。また発信用の電磁コイルを
掘削ヘッド内に取付けることから、発射する磁界強度に
限度かあり、この結果としてこの装置の適用上被りはG
rrL以内と小さいものとなっている。Both of these systems have an electromagnetic coil installed inside the excavation head, and receive the magnetic field emitted from the electromagnetic coil inside the excavation head while scanning another electromagnetic coil on a normal ground road. This is a method of detecting location. However, this scanning of electromagnetic coils on normal roads is dangerous, makes it difficult to ensure safety, and requires a lot of measurement time. In addition, since the electromagnetic coil for transmitting is installed inside the excavation head, there is a limit to the strength of the emitted magnetic field, and as a result, when applying this device, the overlap is
It is small, within rrL.
一方、レーザー光を便用するものは、発進立坑より掘削
ヘッドに向かってレーザー光を照射し、掘削ヘッドに取
付けである受光ダイオードなどで構成するターゲットに
よって前記レーザー光を受け、その受光位置により掘削
ヘッドの位置を測定するものである。しかし、トンネル
曲率半径が小さいとレーザー光が出来上がりのトンネル
壁で遮断されて測定不可能となるため、曲率半径の小さ
いトンネル工事には適用できないという欠点があった。On the other hand, in those that conveniently use laser light, the laser light is irradiated from the starting shaft toward the drilling head, and the laser light is received by a target consisting of a light-receiving diode attached to the drilling head. It measures the position of the head. However, if the tunnel radius of curvature is small, the laser beam will be blocked by the finished tunnel wall and measurement will be impossible, so this method has the disadvantage that it cannot be applied to tunnel construction with a small radius of curvature.
またジャイロスコープを使用するものは掘進に従い逐次
ジャイロスコープによる掘削ヘッドの姿勢角とその姿勢
角での掘進距離とから掘削ヘッドの変位を求め、これら
変位を出発点から加算して位置を算出するものであるが
、装置が非常に高価であること及び位置は各変位の累積
値であることから、計測精度を向上させるためには長い
計測時間を要するという欠点があった。In addition, those that use a gyroscope calculate the displacement of the excavation head from the attitude angle of the excavation head determined by the gyroscope and the excavation distance at that attitude angle as the excavation progresses, and calculate the position by adding these displacements from the starting point. However, since the device is very expensive and the position is the cumulative value of each displacement, there is a drawback that it takes a long time to measure in order to improve the measurement accuracy.
問題点を解決するだめの手段
本発明は、トンネルを築造する工事で使用するトンネル
マシンの掘削ヘッドの位置及び姿勢を計測する方法にお
いて、2個以上の磁界発生素子を地上に設置し、1個以
上の磁界検出素子を前記掘削ヘッド内の前記トンネルマ
シンの進行方向と平行な面及び垂直な面上で回転可能な
駆動部に取付けた受はコイル器を掘削ヘッド内に配設し
、前記トンネルマシンの進行方向と平行な面及び垂直な
面における前記磁界検出素子の重力方向に対する傾斜角
を測定できる傾斜計を前記磁界検出素子に取付け、一方
、前記磁界発生素子と磁界検出素子間の水平距離をパラ
メーターとし、磁界発生素子と磁界検出素子間の垂直距
離と前記磁界検出素子の最大誘起電圧を発生する磁界検
出素子の回転角との関係図を作成し、前記磁界検出素子
と前記トンネルマシンの進行方向と平行な面及び垂直な
面上で回転しなfJ)ら前記磁界発生素子からのra
!J、;こよる最大誘起電圧を発生する前記磁界検出素
子の回転角を求め、前記回転角と作製された前記関係図
より、また前記磁界検出素子の重力方向に対する傾斜角
と前記回転角との関係から掘削ヘッドの位置及び姿勢を
算出する方法と、前記方法を実施する2個以上の磁界発
生素子を地上に設置し、1個以上の霊界検出素子に前記
磁界検出素子をトンネル築造工事で使用するトンネルマ
シンの進行方向と平行な面及び垂直な面上で回転する1
も動部を取付けた受信コイル器を、前記トンネルマシン
の掘削ヘッド内に設はし、前記トンネルマシンの進行方
向と平行な面及び垂直な面における前記磁界検出素子の
重力方向に対する傾斜角を測定できる傾斜計を前記磁界
検出素子に取付けて構成した装置と前記磁界発生素子と
磁界検出素子間の水平距離をパラメータとし、磁界発生
素子と磁界検出素子間の垂直距離と前記磁界検出素子の
最大誘起電子を発生する磁界検出素子の回転角との関係
図からなる装置にある。Means for Solving the Problems The present invention provides a method for measuring the position and orientation of the excavation head of a tunnel machine used in tunnel construction work, in which two or more magnetic field generating elements are installed on the ground, and one magnetic field generating element is installed on the ground. A receiver in which the above magnetic field detection element is attached to a drive part that is rotatable on a plane parallel to and perpendicular to the traveling direction of the tunnel machine in the excavation head is arranged such that a coiler is disposed in the excavation head and An inclinometer capable of measuring the inclination angle of the magnetic field detecting element with respect to the direction of gravity in a plane parallel to and perpendicular to the direction of movement of the machine is attached to the magnetic field detecting element, while a horizontal distance between the magnetic field generating element and the magnetic field detecting element is As a parameter, create a relationship diagram between the vertical distance between the magnetic field generating element and the magnetic field detecting element and the rotation angle of the magnetic field detecting element that generates the maximum induced voltage of the magnetic field detecting element, and calculate the relationship between the magnetic field detecting element and the tunnel machine. ra from the magnetic field generating element from fJ) rotating on a plane parallel and perpendicular to the direction of travel.
! J, ; Determine the rotation angle of the magnetic field detection element that generates the maximum induced voltage, and from the relationship diagram prepared with the rotation angle, calculate the relationship between the angle of inclination of the magnetic field detection element with respect to the direction of gravity and the rotation angle. A method for calculating the position and orientation of an excavation head from the relationship, installing two or more magnetic field generating elements on the ground that implement the method, and using the magnetic field detecting element as one or more spiritual world detecting elements in tunnel construction work. 1 rotating on a plane parallel and perpendicular to the direction of travel of the tunnel machine
A receiving coil device equipped with a moving part is installed in the excavation head of the tunnel machine, and the inclination angle of the magnetic field detection element with respect to the direction of gravity is measured in a plane parallel to and perpendicular to the traveling direction of the tunnel machine. A device configured by attaching an inclinometer to the magnetic field detecting element, and using the horizontal distance between the magnetic field generating element and the magnetic field detecting element as a parameter, the vertical distance between the magnetic field generating element and the magnetic field detecting element, and the maximum induction of the magnetic field detecting element. The apparatus consists of a diagram of the relationship between the rotation angle and the rotation angle of a magnetic field detection element that generates electrons.
作用
本発明は地上に発信コイル1,2を2個配設し、掘削ト
ンネルの掘削ヘッド内に直角に交差する受信コイル3を
具備し、前記受信コイルをトンネルマシンの進行方向と
平行な面と垂直な面上で回転する駆動部1】を取付けた
受信コイル器’3Aを配設し、受信コイル63Aには重
力方向に対する傾斜角を測定する傾斜計を取付け、発信
コイル1の磁界の面、発信コイル2の磁界の面が受信コ
イル器3Aの垂直軸EHに対する角をそれぞれθ3、θ
、とする。受信コイル3をEHMLO面(線分ACに対
し角度Vだけ回転した面)で回転したときの発信コイル
1の磁界によって最大誘起電圧を示す受信コイル回転角
をθ、x %同様発信コイル2に対しては02X%、同
様にDKHGの面(面EI(MLに直角な而)で回「伏
したときの発信コイル1の磁界によって最大誘起電圧を
示す受信コイル回転角θ、y、同様発信コイル2に対し
てはθ2yとする。Function The present invention includes two transmitting coils 1 and 2 arranged on the ground, and a receiving coil 3 intersecting at right angles in the excavation head of an excavation tunnel, and the receiving coil is connected to a plane parallel to the traveling direction of the tunnel machine. A receiving coil device 3A is installed with a drive unit 1 which rotates on a vertical plane, and an inclinometer for measuring the inclination angle with respect to the direction of gravity is attached to the receiving coil 63A. The plane of the magnetic field of the transmitting coil 2 has angles θ3 and θ with respect to the vertical axis EH of the receiving coil 3A, respectively.
, and so on. When the receiving coil 3 is rotated in the EHMLO plane (a plane rotated by an angle V with respect to the line segment AC), the receiving coil rotation angle that exhibits the maximum induced voltage due to the magnetic field of the transmitting coil 1 is θ, x %Similarly with respect to the transmitting coil 2 is 02X%, similarly in the plane of DKHG (plane EI (perpendicular to ML) θ2y is assumed for θ2y.
一方、実験または有限要素法により、発信コイル間の水
平距離をパラメーターとして発信コイルと受信フィル間
の垂直距離と受信コイルの最大誘起電圧を発生する受信
コイルの回転角の関係図を作製し、前記のθ1x、θ2
X、θ1 y%θ2yと関係図よりθ1とR,、θ2と
R2の関係か求められ、これらより発信コイルと受信コ
イルの座標x1Jが求まり、x yp求まると式(7)
(後述)よりyが求まり、2個の発信コイルを結ぶ線へ
のR1、R,の交点よりの垂線EBとなす掘削ヘッドの
進行方向の角V′はtanα−Cα
tan’/’ = □
1 + Cj (1tanα
より求めることができる。αはR1と垂線EEとな2個
の加速度計で掘削ヘッドの進行に対する平行及び垂直な
両方向の重力方向に対する回転を測定できる。On the other hand, using experiments or the finite element method, a relationship diagram between the vertical distance between the transmitting coil and the receiving coil and the rotation angle of the receiving coil that generates the maximum induced voltage in the receiving coil was created using the horizontal distance between the transmitting coils as a parameter. θ1x, θ2
The relationship between θ1 and R,, θ2 and R2 is determined from the relationship diagram with X, θ1 y% θ2y, and from these the coordinates x1J of the transmitting coil and receiving coil are determined, and when x yp is determined, equation (7) is obtained.
(described later), y is found, and the angle V' in the direction of advance of the excavation head between the perpendicular line EB from the intersection of R1 and R to the line connecting the two transmitter coils is tanα - Cα tan'/' = □ 1 +Cj (1tanα) α can be determined by two accelerometers, R1 and perpendicular EE, which can measure the rotation with respect to the direction of gravity both parallel and perpendicular to the advance of the drilling head.
実施例
第1図は本発明の掘削ヘッド位置と姿勢計澗方法および
装置(以下方法および装置という。)の構成図、(イ)
図は縦断面図、(ロ)図は平面図、第2図はコイル5
、を示す。Embodiment FIG. 1 is a block diagram of the drilling head position and attitude measuring method and device (hereinafter referred to as method and device) of the present invention, (a)
The figure is a longitudinal cross-sectional view, the (b) figure is a plan view, and the second figure is a coil 5.
, is shown.
図において、Tはトンネル、20は掘削ヘッド、1.2
は発信コイル、3Aは受信コイル器、3は受信コイル、
4は発信器、5はバンドパスフィルタ、6は増幅器、7
は掘削ヘッド内送受信器、8は立坑側送受信器、9はパ
ーソナルコンピュータ、10は傾斜計の1つである加速
度計、11は受信コイル、駆動部、を示す。In the figure, T is a tunnel, 20 is a drilling head, 1.2
is the transmitting coil, 3A is the receiving coil, 3 is the receiving coil,
4 is an oscillator, 5 is a bandpass filter, 6 is an amplifier, 7
8 is a shaft-side transceiver, 9 is a personal computer, 10 is an accelerometer which is one of the inclinometers, and 11 is a receiving coil and a driving section.
本発明の方法および装置の構成と動作を説明する。The structure and operation of the method and apparatus of the present invention will be explained.
掘削すべきトンネルTを挾み、両側の地上に発信器4と
発信コ・イル/、2を、更に立坑側送受信器8とパーソ
ナルコンピュータ9を接続して配設する。A transmitter 4 and a transmitter coil 2 are connected to the ground on both sides of the tunnel T to be excavated, and a shaft-side transmitter/receiver 8 and a personal computer 9 are connected.
トンネルT内にはトンネル内に挿入した掘削ヘッド1内
に先端より受はコイル器3A、バンドパスフィルタ5、
増1り2二6および送受信器7を順に接続し配設する。Inside the tunnel T, a coil device 3A, a bandpass filter 5,
The add-on 226 and the transmitter/receiver 7 are connected and arranged in order.
発信コイル2には発信器4により雑音特性のよい周波数
220 Hzの電流を流して交流磁界を発生する。A current with a frequency of 220 Hz with good noise characteristics is passed through the transmitter coil 2 by a transmitter 4 to generate an alternating current magnetic field.
受信コイル器3Aの受信コイル3は受信コイル器駆動部
11により互に直角に交差する2方向すなわち掘削ベッ
ドの進行方向に対して平行及び垂直な方向の面上に回転
する受信コイル3−1.3−2からなり、また2個の加
速度計10により両方向の重力方向に対する回転角を測
定することができる。The receiving coils 3 of the receiving coil device 3A are rotated by the receiving coil device driving unit 11 in two directions perpendicular to each other, that is, in planes parallel and perpendicular to the traveling direction of the excavation bed. 3-2, and two accelerometers 10 can measure the rotation angle with respect to the direction of gravity in both directions.
受信コイル3に誘起される電圧及び加速度計10からの
測定電圧はバンドパスフィルタ5によりノイズ分を除去
し、前記電圧を増幅器6により増幅し、掘削ヘッド内送
受信器7によって地上に設置する立坑側送受(a器8へ
送信し、パーソナルコンピュータ9に格納する。パーソ
ナルコンピュータ9では、後述する掘削ヘノドエの位置
の算出方法により掘削ヘッドの位置及び姿勢(方位角)
を算出し、かつ、受信コイル3への駆動命令を立坑側送
受信器8、掘削ヘッド内送受信器7を通して受信コイル
器の駆動部」】へ送信する。The voltage induced in the receiving coil 3 and the measured voltage from the accelerometer 10 are filtered by a bandpass filter 5 to remove noise, and the voltage is amplified by an amplifier 6, and transmitted to the shaft side installed on the ground by a transceiver 7 in the drilling head. Transmission/reception (sent to the A device 8 and stored in the personal computer 9. The personal computer 9 calculates the position and orientation (azimuth angle) of the excavation head using the method for calculating the position of the excavation head, which will be described later.
is calculated, and a driving command to the receiving coil 3 is transmitted to the receiving coil device drive unit through the shaft-side transmitter/receiver 8 and the excavation head internal transmitter/receiver 7.
次に、本発明の位置姿勢の測定原理について説明する。Next, the principle of position and orientation measurement according to the present invention will be explained.
受信コイル駆動部11により受信コイル3を垂直に交差
する2方向に回転すると、この動作に伴い受信コイル3
に誘起される電圧が変化する。When the receiving coil drive unit 11 rotates the receiving coil 3 in two directions that intersect perpendicularly, this operation causes the receiving coil 3 to rotate.
The induced voltage changes.
第3図は受信コイル3の回転角に対する誘起電圧の測定
例であって、第4図は測定例における受信コイル3と発
信コイル1,2との位置関係を説明する図である。第3
図の測定例においては第4図の発信コイル1,2と受信
コイル3間の水平距離R1垂直距離2の値かそれぞれ3
.5 m % 2.77yyiであり、誘起電圧は受信
コイル3の回転角の変化に従い正弦波状に変化し、受信
コイル回転角が80.4度の時、誘起電圧が最大となる
ことを示している。誘起電圧の最大値を示す受信コイル
回転角θを種々のR,Zで調べると第5図のとおりとな
る。第5図はRをパラメータとした2とθの関係図とな
る。図上の・印は実験値、0印は有限要素法で求めた値
であり、有限要素法による磁界解析は実験値とよく合致
し、再現性のあるものである。FIG. 3 shows an example of measuring the induced voltage with respect to the rotation angle of the receiving coil 3, and FIG. 4 is a diagram illustrating the positional relationship between the receiving coil 3 and the transmitting coils 1 and 2 in the measurement example. Third
In the measurement example shown in the figure, the values of the horizontal distance R1 and the vertical distance 2 between the transmitting coils 1 and 2 and the receiving coil 3 in Figure 4 are 3 or 3, respectively.
.. 5 m % 2.77yyi, the induced voltage changes in a sinusoidal manner as the rotation angle of the receiving coil 3 changes, and the induced voltage reaches its maximum when the receiving coil rotation angle is 80.4 degrees. . When the receiving coil rotation angle θ, which indicates the maximum value of the induced voltage, is examined at various R and Z values, the results are as shown in FIG. FIG. 5 is a relationship diagram between 2 and θ with R as a parameter. The * mark on the figure is an experimental value, and the 0 mark is a value obtained by the finite element method. Magnetic field analysis by the finite element method agrees well with the experimental value and is reproducible.
このようにして実験又は有限要素法による解析で得られ
た誘起電圧の最大を示す受信コイル回転角θとR,Zの
関係を表わす特性データを利用すれば、誘起電圧の最大
を示す受信コイル回転角θからR,Zを求めることがで
きる。In this way, by using the characteristic data representing the relationship between the receiving coil rotation angle θ indicating the maximum induced voltage and R, Z obtained through experiments or analysis using the finite element method, it is possible to determine the receiving coil rotation indicating the maximum induced voltage. R and Z can be determined from the angle θ.
第6図は掘削ヘッドの位置姿勢を算出する方法を説明す
る図である。FIG. 6 is a diagram illustrating a method of calculating the position and orientation of the excavation head.
Aに発信コイル1、Cに発信コイル2、Hに受信コイル
3を設置し、2個の発信コイルの間隔ACをL1発信コ
イルと受信コイルとの位置を示す値として、B K =
x 、 A B =y 、 EH= 7とする。Install the transmitting coil 1 at A, the transmitting coil 2 at C, and the receiving coil 3 at H, and let the interval AC between the two transmitting coils be a value indicating the position of the L1 transmitting coil and the receiving coil, B K =
Let x, A B = y, and EH = 7.
掘削ヘッドは2個の発信コイルを結ぶ線分ACに対して
角度1だけ回転しているとすれば、受信コイル3はDE
F工HG、KHMLの面を回転することとなる。DKF
はBEに対し直角、DG、F工はDKFに対し垂直、G
H工はDKFと平行で、DGとF工と直角である。Hに
おける発信コイル1からの磁界は面11CHON、発信
コイル2がらの磁界は面KHKJにあり、Hにおいて鉛
直軸FliHとなす角をそれぞれθ7.θ、とする。ま
た受信コイル3をFiHMLの面で回転した時の発信コ
イル1の磁界によって最大誘起電圧を示す受信コイル3
−1の回転角(鉛直軸KHに対して)をθIX1発信コ
イル2の磁界によって最大誘起電圧を示す受信コイル3
−1の回転角をθ2xとする。受信フィルをDKH,G
の面で回転した時の発信コイルエの磁界によって最大誘
起電圧を示す受信コイル3−2の回転角をθ17%発信
コイル2の磁界によって最大誘起電圧を示す受信コイル
3−2の回転角をθ2yとする。If the drilling head is rotated by an angle of 1 with respect to the line segment AC connecting the two transmitter coils, then the receiver coil 3 is DE
The surfaces of F engineering HG and KHML will be rotated. DKF
is perpendicular to BE, DG and F are perpendicular to DKF, G
H construction is parallel to DKF and perpendicular to DG and F construction. The magnetic field from the transmitter coil 1 at H is on the plane 11CHON, the magnetic field from the transmitter coil 2 is on the plane KHKJ, and the angles they make with the vertical axis FliH at H are θ7. Let θ be. Also, when the receiving coil 3 is rotated in the FiHML plane, the receiving coil 3 exhibits the maximum induced voltage due to the magnetic field of the transmitting coil 1.
-1 rotation angle (with respect to the vertical axis KH) θIX1 The receiving coil 3 exhibits the maximum induced voltage due to the magnetic field of the transmitting coil 2
-1 rotation angle is θ2x. Receive fill DKH,G
The rotation angle of the receiving coil 3-2 that exhibits the maximum induced voltage due to the magnetic field of the transmitting coil 2 when rotated in the plane of is θ17%, and the rotation angle of the receiving coil 3-2 that exhibits the maximum induced voltage due to the magnetic field of the transmitting coil 2 is θ2y. do.
θ、と02は下記の式より計測値θ、X、θ2X、θ1
y、θ2yより求めることができる。θ, and 02 are the measured values θ, X, θ2X, θ1 from the following formulas.
It can be determined from y and θ2y.
発信コイル1と発信コイル2間距離をLz トンネルマ
シンの線分ACの垂直線BEに対する角度を11発信コ
イルlと受信コイル3間のAEの水平距離をR3、発信
コイル2と受信コイル3間のCEの水平距離をR2とす
る。The distance between transmitting coil 1 and transmitting coil 2 is Lz. The angle of line segment AC of the tunnel machine with respect to the vertical line BE is 11. The horizontal distance of AE between transmitting coil l and receiving coil 3 is R3. The horizontal distance between transmitting coil 1 and receiving coil 3 is R3. Let the horizontal distance of CE be R2.
また、三角形ACEにおいて、垂線KBとAm。Also, in triangle ACE, perpendiculars KB and Am.
CV、のなす角をそれぞれα、βとすると次の式が成立
する。Letting the angles formed by CV be α and β, respectively, the following equation holds true.
j FLn U 2 X tanσ2y
tanθ2 ”’+21(11,+21より
(41、(51より
θ、 = tan−” (n tan O、x )同様
に
θ2= tan ’ (m tanθ2x)(4)より
(4Yを(5)に代入
(C(L+ OB ) (tanαtanβ−1) +
(1−CaCjβ)(tanα+tanβ)=0
Ca+Cβ=C71〜ccLcβ=c2 とすると0
、(tanαtanβ−1)+c2(tanα+tan
β) = O−・・(6)(6)に(3)を代入
C,y2−0.Ly+C,x2−0.、xL =0(7
)より
((復号は +: y≧i
−:y(H))
となる。j FLn U 2 X tanσ2y
tan θ2 ”'+21 (11, +21 (41, (51 θ, = tan-” (n tan O, x ) Similarly, θ2 = tan ' (m tan θ2x) (4) (Substitute 4Y into (5) (C(L+ OB) (tanαtanβ-1) +
(1-CaCjβ) (tanα+tanβ)=0 Ca+Cβ=C71~ccLcβ=c2 then 0
, (tanαtanβ-1)+c2(tanα+tan
β) = O-... (6) Substitute (3) into (6) C, y2-0. Ly+C, x2-0. ,xL =0(7
), ((decoding is +: y≧i −:y(H)).
そこでこれらのθ1とR3、θ2とR2との関係を、例
えば第5図に示すような実験又は有限要素法による解析
で求めた最大誘起電圧を示す受信コイル回転角、発信コ
イル授信コイル間の水平距離R1垂直距離2との特性に
、θ8.02両方において2が等しいという条件で代入
すると、X及びlが求まる。ただし前記の方法でJは初
期値から始まり算出する度に逐次記憶していった値の近
傍の瞳を用いる。このようにして工が求まると、yは式
(7)より求められる。Therefore, the relationships between θ1 and R3, and θ2 and R2 are determined by, for example, the rotation angle of the receiving coil indicating the maximum induced voltage obtained by experiment or analysis using the finite element method as shown in Fig. 5, and the horizontal distance between the transmitting coil and the transmitting coil. By substituting the characteristics of distance R1 and vertical distance 2 on the condition that 2 is equal for both θ8.02, X and l can be found. However, in the above method, J starts from the initial value and uses pupils near the value that is sequentially stored each time it is calculated. When the y is determined in this way, y is determined from equation (7).
yが求められるとR1、R,は式(8)より、更に1は
式(4)′より求められる。Once y is determined, R1 and R are determined from equation (8), and 1 is obtained from equation (4)'.
以上のように受信コイルの位置、つまり掘削ヘッドの位
置及び姿勢(方位角)を求めることができる。As described above, the position of the receiving coil, that is, the position and attitude (azimuth angle) of the excavation head can be determined.
発明の効果
本発明は以上説明したように地上に2個の発信コイルを
設置し、あらかじめ最大誘起電圧を示す受信コイル回転
角、発信コイルと受[言コイル間の水平圧!Rおよび垂
直距離との特性図を作製し、掘削ヘッド内の受信コイル
を進行方向の面とそれに垂直な面で回転し、その時の誘
起電圧を測定するだけで、前記特性図より簡単に掘削ヘ
ッドの絶対位置及び方位角を測定することができる。Effects of the Invention As explained above, the present invention installs two transmitter coils on the ground, and determines in advance the rotation angle of the receiver coil that indicates the maximum induced voltage, the horizontal pressure between the transmitter coil and the receiver coil! By simply creating a characteristic diagram of R and vertical distance, rotating the receiving coil in the drilling head in the plane of the traveling direction and a plane perpendicular to it, and measuring the induced voltage at that time, the drilling head can be easily adjusted based on the characteristic diagram. The absolute position and azimuth can be measured.
したかつて、位置、姿勢計測作業時の無人化、位置計測
の高精度化ができる。発信器は外部にあるので、掘削ト
ンネルの深さに応じ簡単に出力の増大化ができる、従来
の内部の発信器のように高価にならず計測装置の低廉化
が計れる、などの効果を生ずる。In the past, position and orientation measurement work can be unmanned and position measurement can be performed with high accuracy. Since the transmitter is external, the output can be easily increased depending on the depth of the excavated tunnel, and the measurement equipment can be made cheaper instead of being expensive like conventional internal transmitters. .
第1図は本発明の掘削ヘッド位置姿勢計測装置の一実施
例の構成図、げ)図は掘削トンネルの断面視図、第3図
は受信コイル回転角に対する誘起電圧の測定例、第4図
は第3図に示す測定例における受信コイルと発信コイル
との位置関係図、第5図は受信コイルと発信コイルとの
水平距離をパラメーターとした発受信コイルの最大誘起
電圧を示す受信コイル回転角と垂直距離の関係図、第6
図は掘削ヘッドの位i■、姿勢を算出する方法の説明図
、を示す。
T:トンネル 9!D:掘削ヘッド 1.2:発信コ
イル 3A:受信コイル器 3:受信コイル4:発
信u s :バンドパスフィルタ6:増幅器 7
:掘削ヘッド内送受信器8:立坑側送受信器 9:パ
ーソナルコンピュータ 【0:加速度計 11=受
信コイル駆動部特許出願人 日本電信電話株式会社
代理人弁理士 阿 部 功10”/’ A
’h 7 )−t 2 : Bzイ”’ jO:
# 信y()し 4 °yr=2、り;/\゛ンド
ハ9ズフイIし7
邸砺龜V)
−一−N−j
第5図Fig. 1 is a configuration diagram of one embodiment of the excavation head position and orientation measuring device of the present invention, Fig. 3 is a cross-sectional view of an excavation tunnel, Fig. 3 is an example of measurement of induced voltage with respect to receiving coil rotation angle, and Fig. 4 is a diagram of the positional relationship between the receiving coil and the transmitting coil in the measurement example shown in Fig. 3, and Fig. 5 is the receiving coil rotation angle showing the maximum induced voltage of the transmitting and receiving coil with the horizontal distance between the receiving coil and the transmitting coil as a parameter. and perpendicular distance, 6th
The figure shows the position i of the excavation head and an explanatory diagram of a method for calculating the posture. T: Tunnel 9! D: Drilling head 1.2: Transmitting coil 3A: Receiving coil device 3: Receiving coil 4: Transmitting us: Band pass filter 6: Amplifier 7
: Transmitter/receiver inside the drilling head 8: Transmitter/receiver on the shaft side 9: Personal computer [0: Accelerometer 11 = Receiving coil drive unit Patent applicant Nippon Telegraph and Telephone Corporation Representative Patent Attorney Isao Abe 10''/' A
'h7)-t2: Bzii"'jO:
# Believe y()shi 4 °yr=2, ri;/\゛doha9zufiIshi7 Teikōkaku V) -1-N-j Figure 5
Claims (2)
ンの掘削ヘッドの位置及び姿勢を計測する方法において
、2個以上の磁界発生素子を地上に設置し、1個以上の
磁界検出素子を当該掘削ヘッド内の前記トンネルマシン
の進行方向と平行な面及び垂直な面上で回転可能な駆動
部に取付けた受信コイル器を掘削ヘッド内に配設し、前
記トンネルマシンの進行方向と平行な面及び垂直な面に
おける前記磁界検出素子の重力方向に対する傾斜角を測
定できる傾斜計を前記磁界検出素子に取付け、一方、前
記磁界発生素子と磁界検出素子間の水平距離をパラメー
ターとし、磁界発生素子と磁界検出素子間の垂直距離と
前記磁界検出素子の最大誘起電圧を発生する磁界検出素
子の回転角との関係図を作成し、前記磁界検出素子と前
記トンネルマシンの進行方向と平行な面及び垂直な面上
で回転しながら前記磁界発生素子からの磁界による最大
誘起電圧を発生する前記磁界検出素子の回転角を求め、
前記回転角と作製された前記関係図より、また前記磁界
検出素子の重力方向に対する傾斜角と前記回転角との関
係から掘削ヘッドの位置及び姿勢を算出することを特徴
とする掘削ヘッド位置姿勢計測方法。(1) In a method for measuring the position and orientation of the excavation head of a tunnel machine used in tunnel construction work, two or more magnetic field generating elements are installed on the ground, and one or more magnetic field detection elements are attached to the excavation head of the excavation head. A receiving coil device attached to a drive unit rotatable on a plane parallel to and perpendicular to the traveling direction of the tunnel machine is disposed inside the excavation head, and An inclinometer capable of measuring the inclination angle of the magnetic field detecting element with respect to the direction of gravity in a plane is attached to the magnetic field detecting element, and the horizontal distance between the magnetic field generating element and the magnetic field detecting element is used as a parameter, A relationship diagram between the vertical distance between the elements and the rotation angle of the magnetic field detection element that generates the maximum induced voltage of the magnetic field detection element is created, and a plane parallel to and perpendicular to the traveling direction of the magnetic field detection element and the tunnel machine is created. Determine the rotation angle of the magnetic field detection element that generates the maximum induced voltage due to the magnetic field from the magnetic field generation element while rotating above the magnetic field generation element,
Excavation head position and orientation measurement characterized in that the position and orientation of the excavation head are calculated from the rotation angle and the created relationship diagram, and from the relationship between the tilt angle of the magnetic field detection element with respect to the direction of gravity and the rotation angle. Method.
上の磁界検出素子に前記磁界検出素子をトンネル築造工
事で使用するトンネルマシンの進行方向と平行な面及び
垂直な面上で回転する駆動部を取付けた受信コイル器を
前記トンネルマシンの掘削ヘッド内に設置し、前記トン
ネルマシンの進行方向と平行な面及び垂直な面における
前記磁界検出素子の重力方向に対する傾斜角を測定でき
る傾斜計を前記磁界検出素子に取付けて構成した装置と
、前記磁界発生素子と磁界検出素子間の水平距離をパラ
メーターとし、磁界発生素子と磁界検出素子間の垂直距
離と前記磁界検出素子の最大誘起電圧を発生する磁界検
出素子の回転角との関係図からなる掘削ヘッド位置姿勢
計測装置。(2) Two or more magnetic field generating elements are installed on the ground, and one or more magnetic field detecting elements are installed on a plane parallel to and perpendicular to the traveling direction of the tunnel machine used in tunnel construction work. A receiving coil device equipped with a rotating drive unit is installed in the excavation head of the tunnel machine, and can measure the inclination angle of the magnetic field detection element with respect to the direction of gravity in a plane parallel to and perpendicular to the traveling direction of the tunnel machine. A device configured by attaching an inclinometer to the magnetic field detecting element, with the horizontal distance between the magnetic field generating element and the magnetic field detecting element as a parameter, the vertical distance between the magnetic field generating element and the magnetic field detecting element, and the maximum induction of the magnetic field detecting element. An excavation head position and orientation measuring device consisting of a diagram of the relationship between the rotation angle and the magnetic field detection element that generates the voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24774285A JPS62106313A (en) | 1985-11-05 | 1985-11-05 | Method and apparatus for measuring position and posture of excavation head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24774285A JPS62106313A (en) | 1985-11-05 | 1985-11-05 | Method and apparatus for measuring position and posture of excavation head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62106313A true JPS62106313A (en) | 1987-05-16 |
Family
ID=17167991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24774285A Pending JPS62106313A (en) | 1985-11-05 | 1985-11-05 | Method and apparatus for measuring position and posture of excavation head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62106313A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442415U (en) * | 1987-09-09 | 1989-03-14 | ||
WO1991014079A1 (en) * | 1990-03-08 | 1991-09-19 | Kabushiki Kaisha Komatsu Seisakusho | System for detecting position of underground excavator and magnetic field producing cable |
-
1985
- 1985-11-05 JP JP24774285A patent/JPS62106313A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442415U (en) * | 1987-09-09 | 1989-03-14 | ||
WO1991014079A1 (en) * | 1990-03-08 | 1991-09-19 | Kabushiki Kaisha Komatsu Seisakusho | System for detecting position of underground excavator and magnetic field producing cable |
US5240350A (en) * | 1990-03-08 | 1993-08-31 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus for detecting position of underground excavator and magnetic field producing cable |
EP0718465A1 (en) * | 1990-03-08 | 1996-06-26 | Kabushiki Kaisha Komatsu Seisakusho | Magnetic field producing cable for an underground excavator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1127666C (en) | Locator | |
CA1332832C (en) | Moling system | |
US4434654A (en) | Borehole orientation detection system employing polarized radiation | |
CA2452120A1 (en) | Relative drill bit direction measurement | |
CN114051552B (en) | Drilling planning tools, systems, and related methods for terrain characterization | |
JP2007263689A (en) | Azimuth measuring method for apparatus in environment where external information can not be acquired | |
JP2014041117A (en) | Method for measuring position of underground excavation, device for measuring position of underground excavation, and excavation system for non-open-cut method | |
JPS62106313A (en) | Method and apparatus for measuring position and posture of excavation head | |
GB2254430A (en) | Drilling apparatus | |
JP2640766B2 (en) | Method and apparatus for detecting relative angle in two-dimensional measurement by laser displacement meter | |
US5208538A (en) | Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator | |
JPH02112718A (en) | Surveying method for tunnel | |
US5107938A (en) | Apparatus for detecting position of underground excavator | |
JP5131729B2 (en) | Underground position detection method | |
JP3121237B2 (en) | Excavator position measuring device and excavator position measuring method | |
JP2757058B2 (en) | Underground excavator relative position detector | |
JPS61117409A (en) | Detecting method of current place of building machine | |
RU2805584C2 (en) | Topographic survey drilling plan tool, system and related methods | |
JP3062027B2 (en) | Rolling measuring device | |
JPS62169012A (en) | Horizontal displacement measuring apparatus for underground excavator | |
JPH0521483B2 (en) | ||
JP3062046B2 (en) | Rolling measurement device and method for vertical excavator | |
JPH11201709A (en) | Position measuring method and device | |
JP3267330B2 (en) | Hole wall accuracy measuring method and measuring device | |
JP2978751B2 (en) | Excavator position / posture and excavation wall shape measurement device, excavator position / posture and excavation wall shape measurement method, and excavation control and excavation management method using the method |