JPS6210596B2 - - Google Patents

Info

Publication number
JPS6210596B2
JPS6210596B2 JP57085699A JP8569982A JPS6210596B2 JP S6210596 B2 JPS6210596 B2 JP S6210596B2 JP 57085699 A JP57085699 A JP 57085699A JP 8569982 A JP8569982 A JP 8569982A JP S6210596 B2 JPS6210596 B2 JP S6210596B2
Authority
JP
Japan
Prior art keywords
reactor
gas
separated
distribution plate
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57085699A
Other languages
Japanese (ja)
Other versions
JPS57198791A (en
Inventor
Ruotsutsu Zetsuho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahlstrom Corp
Original Assignee
Ahlstrom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahlstrom Corp filed Critical Ahlstrom Corp
Publication of JPS57198791A publication Critical patent/JPS57198791A/en
Publication of JPS6210596B2 publication Critical patent/JPS6210596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 本発明は流動床反応器内において、流動床の上
部から排出されるガスにより運び出される固体粒
子が分離され、反応器の下部に戻される流動床反
応器内において固体炭素質材料をガス化する方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides solid carbon in a fluidized bed reactor in which solid particles carried away by the gas exiting from the upper part of the fluidized bed are separated and returned to the lower part of the reactor. The present invention relates to a method and apparatus for gasifying materials.

本発明の目的は、酸素含有ガスの遊離酸素が熱
分解の結果形成された固体粒子の酸化性ガス化に
主として用いられるように固体炭素質材料を酸化
する方法及び装置を提供することである。
It is an object of the present invention to provide a method and apparatus for oxidizing solid carbonaceous materials such that the free oxygen of the oxygen-containing gas is used primarily for the oxidizing gasification of solid particles formed as a result of pyrolysis.

固体材料のガス化における本質的なジレンマ
は、酸化相中に生成したCO2及びH2Oを、固体炭
素を用いて速度論的に遅い反応、即ちCO2+C(D)
→2CO及びH2O+C→CO+H2により還元するこ
とである。最も初期のガス化装置はいわゆる向流
型ガス化装置であり、ガス化される材料が固体ガ
ス化材料の層の上部から供給され酸化剤が該層の
下部から供給されるものであつた。これらのいわ
ゆる静置床ガス化装置においては、材料は下方に
移動し、先ず還元性雰囲気内において低温で熱分
解された。下部領域の温度は約1000℃であり、多
くの還元性炭素表面/容積があり、それによりガ
ス相の効率のよい還元がその領域において達成さ
れる。これらのタイプの気化装置の公知の欠点
は、ガス生成物のタール化合物並びにガス生成物
による小粒子の同伴である。
An essential dilemma in the gasification of solid materials is that the CO 2 and H 2 O produced in the oxidation phase can be converted to a kinetically slow reaction with solid carbon, i.e. CO 2 +C(D).
→Reduction by 2CO and H 2 O + C → CO + H 2 . The earliest gasifiers were so-called countercurrent gasifiers, in which the material to be gasified was fed from the top of a bed of solid gasified material and the oxidizing agent was fed from the bottom of the bed. In these so-called static bed gasifiers, the material moves downward and is first pyrolyzed at low temperatures in a reducing atmosphere. The temperature in the lower region is about 1000° C. and there is a lot of reducing carbon surface/volume, so that efficient reduction of the gas phase is achieved in that region. Known disadvantages of these types of vaporizers are tar compounds in the gaseous products as well as the entrainment of small particles by the gaseous products.

並流ガス化装置においては、ガス化される材料
及び酸化剤が反応器の前部に運びこまれ、相当量
の熱分解ガスがCO2及びH2Oに酸化される。残り
の固体炭素は上記の遅い還元反応により、これら
の反応器内においてガス化されなければならな
い。従つて、ガス生成物の相当なCO2及びH2Oの
含量、即ち相当な炭素損失が通常の並流ガス化装
置の典型的な問題である。
In co-current gasifiers, the material to be gasified and the oxidant are brought to the front of the reactor and a significant amount of pyrolysis gas is oxidized to CO2 and H2O . The remaining solid carbon must be gasified in these reactors by the slow reduction reaction described above. Therefore, significant CO 2 and H 2 O content of the gaseous product, ie significant carbon loss, is a typical problem in conventional co-current gasifiers.

2帯域ガス化装置においては、上記タイプのガ
ス化装置の欠点は、ガス化を二つの別々の反応器
に分割することによりガス化される材料を先ず熱
分解して避けられる。熱分解後に残存する固体材
料は別の反応器内においてガス化され、その煙道
ガスは熱分解反応に持ちこまれる。かようにし
て、ガス化は二つの下流連結反応器内で行われ
る。この2帯域ガス化装置の欠点は、流れ技術及
び大きな投資コストの問題である。
In a two-zone gasifier, the disadvantages of the above type of gasifier are avoided by splitting the gasification into two separate reactors and by first pyrolyzing the material to be gasified. The solid material remaining after pyrolysis is gasified in a separate reactor and the flue gas is carried into the pyrolysis reaction. Gasification thus takes place in two downstream connected reactors. The disadvantage of this two-zone gasifier is the problem of flow technology and high investment costs.

米国特許第4154581号は、流動床反応器内で行
われる。2帯域ガス化方法を開示する。ここにお
いては、流動床は中間邪魔板手段によつて二つの
帯域に分割され、下部帯域の温度は燃焼或いはガ
ス化に適当となるようにされ、上部帯域の温度が
イオウの吸収に最も適当となるように調整され
る。ガス化される燃料或いは材料は幾らかの遊離
酸素の存在する反応器の下部帯域に導入される。
次いで、熱分解炭化水素は主として酸化され、
CO2及びH2Oを形成する。これにより、炭化水素
の燃焼生成物によつてガス化されなければならな
い多くの残存炭素が形成される。
US Pat. No. 4,154,581 is carried out in a fluidized bed reactor. A two-zone gasification method is disclosed. Here, the fluidized bed is divided into two zones by intermediate baffle means, the temperature of the lower zone being suitable for combustion or gasification, and the temperature of the upper zone being most suitable for sulfur absorption. It will be adjusted so that The fuel or material to be gasified is introduced into the lower zone of the reactor where some free oxygen is present.
The pyrolyzed hydrocarbons are then mainly oxidized,
Forms CO 2 and H 2 O. This forms a lot of residual carbon that must be gasified by the hydrocarbon combustion products.

本発明は、上述の2反応器ガス化装置に関連し
た操作が次のようにして解決することに関する。
即ち、ガス化される材料の供給口が空気ノズルの
上方(3〜6m)、遊離炭素の含量が小さい領域に
上昇して配置される。これにより供給口近辺に形
成される熱分解ガスは酸化されず、熱的に短鎖炭
化水素に分解され、それは更に反応器の下部から
上昇するCO2及びH2Oと反応する。これらのいわ
ゆる還元反応は、ガス化反応器の上部において起
こり、そこにおいてはガスの滞留時間(2〜20
秒)及び温度(900゜以上)がガス生成物が最終
的に熱力学平衡近辺に達するように選ばれる。還
元反応に必要なエネルギーは反応器の下部におい
て起こつている酸素の酸化反応から得られる。過
度の高温をかけるために反応器の還元及び酸化帯
域間の温度差は炭素及び化学的に不活性な材料例
えば砂を両反応器内を循環させて調整される。酸
化及び還元帯域が同一反応器内に配置されている
ので、この循環は不活性材料の粒径及び量を材料
の適当部分が使用されるガス流速領域において空
気移動となるようにすることによつて容易に行う
ことができる。その際、ガス精製器内において分
離され反応器の下部に戻される固体材料は、先ず
高温の酸化性帯域を通過し、その後還元性帯域を
通過する際に冷却される。不活性物質循環の質量
流速は、循環物質の量をガス化される灰分の焼結
温度に従つて酸化帯域内の最高温度が970℃〜
1200℃以下及び還元帯域後の最高温度が70〜120
℃以下となるようにコントロールすることによつ
てコントロールされる。
The present invention relates to the operation related to the two reactor gasifier described above being solved as follows.
That is, the inlet for the material to be gasified is placed above the air nozzle (3 to 6 m), elevated in an area with a low content of free carbon. The pyrolysis gases thus formed near the feed inlet are not oxidized but are thermally decomposed into short-chain hydrocarbons, which further react with CO 2 and H 2 O rising from the bottom of the reactor. These so-called reduction reactions occur in the upper part of the gasification reactor, where the residence time of the gas (2-20
seconds) and temperature (above 900°) are chosen such that the gaseous products eventually reach near thermodynamic equilibrium. The energy required for the reduction reaction is obtained from the oxygen oxidation reaction taking place in the lower part of the reactor. In order to apply excessively high temperatures, the temperature difference between the reduction and oxidation zones of the reactor is adjusted by circulating carbon and a chemically inert material such as sand through both reactors. Since the oxidation and reduction zones are located in the same reactor, this circulation is controlled by adjusting the particle size and amount of inert material such that an appropriate portion of the material is air-transferred in the gas flow region where it is used. It can be done easily. In this case, the solid material separated in the gas purifier and returned to the lower part of the reactor first passes through a hot oxidizing zone and is then cooled as it passes through a reducing zone. The mass flow rate of the inert material circulation depends on the amount of circulating material and the sintering temperature of the ash to be gasified, with a maximum temperature in the oxidation zone of 970 °C ~
Below 1200℃ and maximum temperature after reduction zone is 70~120℃
It is controlled by controlling the temperature to be below ℃.

酸化帯域及び還元帯域間の温度差を上記範囲に
保つために、循環材料は反応器のガス内に500〜
1000g/モルの固体材料があるように循環されな
ければならない。この様に微細砂(10μm<粒子
サイズ(dp)<400μm)及び不活性石炭の多量
な流れが分離器から反応器の下部に戻されなけれ
ばならない。
In order to keep the temperature difference between the oxidation and reduction zones within the above range, the circulating material is placed in the reactor gas at
It must be circulated such that there are 1000 g/mol of solid material. Thus a large flow of fine sand (10 μm<particle size (dp)<400 μm) and inert coal must be returned from the separator to the bottom of the reactor.

以下、本発明の方法を、適用する装置の概略立
面図の断面図を示す添付の図面により、より詳細
に説明する。
In the following, the method of the invention will be explained in more detail with reference to the accompanying drawings, which show schematic elevational cross-sections of the apparatus to which it is applied.

第1図において、参照番号1は流動床原理によ
るガス化反応器を指し、2は反応器の上部におい
て排出されるガスから固体物質が公知の方法によ
り分離されるサイクロンセパレータであり、3は
固体物質の戻し管である。反応器の下部には分配
板4があり、これを通して空気のような酸素含有
ガスが反応器の下部に供給される。反応器の上部
にはガスが分離器2のサイクロン室6の接線方向
に運ばれるガス排出開口部5がある。ガス化され
る材料は供給ビン7に運び上げられスクリユフイ
ーダー8により供給開口部9を通して反応器内に
供給される。反応を開始させるために反応器内に
は開始パーナー10が備えられている。
In FIG. 1, the reference number 1 refers to a gasification reactor based on the fluidized bed principle, 2 is a cyclone separator in which solid substances are separated from the gas discharged in the upper part of the reactor by a known method, and 3 is a solid It is a return pipe for substances. In the lower part of the reactor there is a distribution plate 4 through which an oxygen-containing gas such as air is supplied to the lower part of the reactor. In the upper part of the reactor there is a gas discharge opening 5 through which the gas is conveyed tangentially to the cyclone chamber 6 of the separator 2. The material to be gasified is taken up into a feed bin 7 and fed by a screw feeder 8 through a feed opening 9 into the reactor. An initiator 10 is provided within the reactor to initiate the reaction.

分離器のサイクロン室には軸方向のガス排出管
11が配置され、このパイプを通じて、固体粒子
が分離されたガスが分離室の上方に除去される。
ガス中に含有される熱は、反応器に供給される空
気を予備加熱するために使用され、予備加熱され
たガスは分配板の下部の空気室12に導かれる。
An axial gas discharge pipe 11 is arranged in the cyclone chamber of the separator, through which the gas from which the solid particles have been separated is removed above the separation chamber.
The heat contained in the gas is used to preheat the air fed to the reactor, and the preheated gas is led to the air chamber 12 at the bottom of the distribution plate.

固体粒子は分離器のロート状の下部13に落
ち、そこからパイプ3を介して開口部14を通じ
て反応器の下部に戻される。
The solid particles fall into the funnel-shaped lower part 13 of the separator, from where they are returned via the pipe 3 through the opening 14 to the lower part of the reactor.

ガス化される材料の供給口の位置は、分配板の
上部の相当量の酸素が存在しないような高さに配
置されるように選ばれる。
The location of the inlet for the material to be gasified is chosen such that it is located at such a height that there is no significant amount of oxygen above the distribution plate.

実施例 直径600mm、分配板からガス排出開口部までの
高さ11mm及び分配板から測られた供給部までの高
さが4mのガス化反応器に下記の条件においてピ
ートをガス化した。
Example Peat was gasified in a gasification reactor having a diameter of 600 mm, a height from the distribution plate to the gas discharge opening of 11 mm, and a height measured from the distribution plate to the feed section of 4 m under the following conditions.

乾燥ピート流速 100g/秒 水流速 25g/秒 空気流速 210g/秒 酸化帯域の最高温度 990℃ 分離器後の温度 890℃ サイクロンより後のガスの組成は下記の通りで
あつた。
Dry peat flow rate 100 g/sec Water flow rate 25 g/sec Air flow rate 210 g/sec Maximum temperature in oxidation zone 990°C Temperature after separator 890°C The composition of the gas after the cyclone was as follows.

化合物 モル分率 CO 0.245 CO2 0.051 H2O 0.092 CH4 0.018 H2 0.163 N2 0.412 H2S 0.0004 ガスのモル流速 14.2モル/秒 循環材料流速 7.8Kg/秒Compound Mole fraction CO 0.245 CO 2 0.051 H 2 O 0.092 CH 4 0.018 H 2 0.163 N 2 0.412 H 2 S 0.0004 Molar flow rate of gas 14.2 mol/sec Circulating material flow rate 7.8 Kg/sec

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は、本発明の実施に用いることので
きる装置の一例の概略立面図の断面図である。 主要部分の符号の説明、1……ガス化反応器、
2……サイクロンセパレーター、3……戻し管、
4……分配板、5……ガス排出開口部、6……サ
イクロン室、7……供給ビン、8……スクリユー
フイーダ、9……供給開口部、10……開始バー
ナー、11……ガス排出管、12……空気室、1
4……開口部。
The accompanying drawings are schematic elevational cross-sectional views of an example of apparatus that may be used in the practice of the present invention. Explanation of symbols of main parts, 1...Gasification reactor,
2...Cyclone separator, 3...Return pipe,
4... Distribution plate, 5... Gas discharge opening, 6... Cyclone chamber, 7... Supply bin, 8... Screw feeder, 9... Supply opening, 10... Start burner, 11... Gas exhaust pipe, 12...Air chamber, 1
4...Opening.

Claims (1)

【特許請求の範囲】 1 流動床反応器内において、反応器の上部から
排出されるガスにより運び出される固体粒子が分
離され、反応器の下部に戻される固体炭素質材料
のガス化方法において、酸素含有ガスが反応器の
下部より導入され、ガスから分離された未反応炭
素質材料が反応器の下部において酸化され、炭素
質材料が実質的に酸素を有しない酸化帯域上部の
帯域に供給され、反応器の下部から上昇する高温
ガス及び粒子により熱分解され且つ還元されるこ
とを特徴とする方法。 2 上部に反応器から排出されるガスにより運び
出される固体粒子が分離される分離器に接続した
排出開口部が配置され、その下部に反応器に分離
された粒子を戻すための入口開口部及び反応器中
に酸素含有ガスを導入するための分配板が配置さ
れている流動床反応器よりなる炭素質材料のガス
化装置において、前記分配板の上部の酸素の実質
的量が存在しないような高さの領域中にガス化さ
れる材料を供給するように配置された供給装置を
有してなることを特徴とする装置。 3 供給口が分配板より少なくとも3メートル
上、好ましくは4〜6メートル上にある特許請求
の範囲第2項記載の装置。
[Scope of Claims] 1. A method for gasifying solid carbonaceous materials in which solid particles carried away by a gas discharged from the upper part of the reactor are separated in a fluidized bed reactor and returned to the lower part of the reactor, containing gas is introduced from the bottom of the reactor, unreacted carbonaceous material separated from the gas is oxidized in the bottom of the reactor, and the carbonaceous material is fed to a zone above the oxidation zone that is substantially free of oxygen; A process characterized in that it is pyrolyzed and reduced by hot gases and particles rising from the bottom of the reactor. 2. In the upper part there is arranged a discharge opening connected to a separator in which the solid particles carried away by the gas discharged from the reactor are separated, and in the lower part there is an inlet opening and a reaction opening for returning the separated particles to the reactor. In a carbonaceous material gasification apparatus consisting of a fluidized bed reactor in which a distribution plate is arranged for introducing an oxygen-containing gas into the vessel, the temperature is so high that there is no substantial amount of oxygen above the distribution plate. Apparatus characterized in that it comprises a supply device arranged to supply the material to be gasified into the region of the chamber. 3. Device according to claim 2, in which the feed opening is at least 3 meters above the distribution plate, preferably between 4 and 6 meters.
JP8569982A 1981-05-22 1982-05-22 Gasification of solid carbonaceous material and device therefor Granted JPS57198791A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI811587A FI62554C (en) 1981-05-22 1981-05-22 FARING EQUIPMENT FOR ORGANIZATION OF FAST KOLHALTIGT MATERIAL

Publications (2)

Publication Number Publication Date
JPS57198791A JPS57198791A (en) 1982-12-06
JPS6210596B2 true JPS6210596B2 (en) 1987-03-06

Family

ID=8514425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8569982A Granted JPS57198791A (en) 1981-05-22 1982-05-22 Gasification of solid carbonaceous material and device therefor

Country Status (4)

Country Link
JP (1) JPS57198791A (en)
DE (1) DE3214649C2 (en)
FI (1) FI62554C (en)
SE (1) SE461150C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392079B (en) * 1988-03-11 1991-01-25 Voest Alpine Ind Anlagen METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
DE4340459C1 (en) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Process for operating fluidised bed reactor
JP5316843B2 (en) 2008-06-23 2013-10-16 株式会社Ihi Riser top structure of circulating fluidized bed gasifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE497894C (en) * 1930-05-15 I G Farbenindustrie Akt Ges Process for producing water gas and other flammable gases
DE647142C (en) * 1933-07-08 1937-06-29 I G Farbenindustrie Akt Ges Process for the gasification of fine-grain fuels
DE929866C (en) * 1950-07-09 1955-07-04 Huels Chemische Werke Ag Process for degassing and / or gasifying solid fuels
DE949965C (en) * 1952-11-04 1956-09-27 Basf Ag Process for degassing or activating solid, preferably raw fuels using the fluidized bed process
CA1095245A (en) * 1976-09-28 1981-02-10 David S. Mitchell Gasification of carbonaceous solids
US4168956A (en) * 1977-08-18 1979-09-25 Combustion Engineering, Inc. Method of operating a coal gasifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel

Also Published As

Publication number Publication date
FI62554C (en) 1983-01-10
DE3214649C2 (en) 1992-03-12
FI62554B (en) 1982-09-30
SE461150B (en) 1990-01-15
SE461150C (en) 1991-06-13
SE8202857L (en) 1982-11-23
JPS57198791A (en) 1982-12-06
DE3214649A1 (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US3920417A (en) Method of gasifying carbonaceous material
US3890111A (en) Transfer line burner system using low oxygen content gas
US4315758A (en) Process for the production of fuel gas from coal
US3927996A (en) Coal injection system
EP1606370B1 (en) Method for producing synthesis gas
EP2633003B1 (en) Production of synthesis gas by heating oxidized biomass with a hot gas obtained from the oxidation of residual products
US7776114B2 (en) Process and apparatus for the endothermic gasification of carbon
Susanto et al. A moving-bed gasifier with internal recycle of pyrolysis gas
US2683657A (en) Gasification of carbonaceous solids
US5895508A (en) Down-flow moving-bed gasifier with catalyst recycle
US3876392A (en) Transfer line burner using gas of low oxygen content
JPH0668108B2 (en) Gasification method and equipment for carbonaceous material
US5133780A (en) Apparatus for fixed bed coal gasification
JPS5921915B2 (en) Hydrogen gasification method
US3847566A (en) Fluidized bed gasification process with reduction of fines entrainment by utilizing a separate transfer line burner stage
US4865626A (en) Process for producing gas containing CO and H2
US3968052A (en) Synthesis gas manufacture
US5145490A (en) Process for fixed bed coal gasification
KR20130106853A (en) Method and equipment for producing coke during indirectly heated gasification
JPS6210596B2 (en)
JP2012514078A (en) Tar-free gasification system and method
US6117199A (en) Method and apparatus for gasifying solid carbonaceous material
US4261856A (en) Ammonia synthesis gas production
GB1565034A (en) Process of removing fines in fluidized coal gasification
US4135893A (en) Mixing method and device