JPS6210592A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6210592A
JPS6210592A JP14947085A JP14947085A JPS6210592A JP S6210592 A JPS6210592 A JP S6210592A JP 14947085 A JP14947085 A JP 14947085A JP 14947085 A JP14947085 A JP 14947085A JP S6210592 A JPS6210592 A JP S6210592A
Authority
JP
Japan
Prior art keywords
fluid
square
heat
heat exchanger
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14947085A
Other languages
Japanese (ja)
Inventor
Chiaki Hirata
千秋 平田
Morio Tomizawa
富澤 守男
Shinya Watabe
渡部 審也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Kameyama Tekkosho KK
Original Assignee
Kumagai Gumi Co Ltd
Kameyama Tekkosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Kameyama Tekkosho KK filed Critical Kumagai Gumi Co Ltd
Priority to JP14947085A priority Critical patent/JPS6210592A/en
Publication of JPS6210592A publication Critical patent/JPS6210592A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To allow the cleaning while being operated by welding multiple square pipes together to make them a buffle-cum-heat transmission pipe. CONSTITUTION:Buffle-cum-heat pipes 4a, 4b... which consist of multiple square pipes 6 that are vertically stacked with each of the square pipes 6 placed horizontally and welded together are disposed vertically in the main body 3 with an equal spacing inbetween. Buffle supplemental plate 13, 14 are alternatingly welded to the top and bottom of the buffle-cum-heat transmission pipe composed of a square pipe panel. The joint 7 between the square pipes is connected by welding, and the joint 7 has a spontaneous depression of 0.5-5mm from the square pipe panel surface. By this structure, it becomes easy to clean the entire surface of the heat generating surface of the square pipe 6 from above. Further, the fluid A is caused to generate a turbulence by the joint 7 between the neighboring square pipes 6, improving the heat transfer coefficient.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱交換器に係わり、更に詳しくj±。[Detailed description of the invention] [Industrial application field] The present invention relates to a heat exchanger, and more particularly, to a heat exchanger.

温廃水の熱回収熱交換用として好適な熱交換器に関する
The present invention relates to a heat exchanger suitable for heat recovery and heat exchange of warm wastewater.

【従来の技術] 周知の通り温廃水を熱交換して、その廃熱を有効利用す
る技術は各種産業で実施されている。
[Prior Art] As is well known, technologies for exchanging heat with warm wastewater and effectively utilizing the waste heat are being implemented in various industries.

この場合に用いられる熱交換器も多種多様であるが、一
方の流体の流入口と流出口が形成された熱交換器本体内
に設けられた複数のバッフルと、伝熱面を形成した他方
の流体を流す為の複数の流路を持つ熱交換器を用いる場
合には、第7図に示すシェルアンドチューブ形式のもの
や第8図に示すチューブラ−形式のものが多様されてい
る。即ち第7図に示すシェルアンドチューブ形式のもの
について詳述すると、2Bは熱交換器本体を示し一側と
他側に各々流入口21と、流出口22が形成されている
と共に、本体28内には複数のバッフル25a。
There are a wide variety of heat exchangers used in this case, but one type has a plurality of baffles provided in the heat exchanger body, which has an inlet and an outlet for the fluid, and the other, which forms a heat transfer surface. When using a heat exchanger having a plurality of channels for flowing fluid, there are various types such as a shell-and-tube type shown in FIG. 7 and a tubular type shown in FIG. 8. Specifically, the shell-and-tube type shown in FIG. 7 will be described in detail. Reference numeral 2B indicates the heat exchanger body, and an inlet 21 and an outlet 22 are formed on one side and the other side. includes a plurality of baffles 25a.

25b・・・が区画されている。そして一方のヘッダー
27と他方のヘッダー28間に伝熱管30が通されてい
て、一方のヘッダー27から流入する他方の流体Bはバ
ッフル25a 、  25bφ・・間に配された複数の
伝熱管30を通り他方のヘッダー28に流出して行き、
この過程で熱交換される。
25b... are divided. Heat exchanger tubes 30 are passed between one header 27 and the other header 28, and the other fluid B flowing from one header 27 passes through a plurality of heat exchanger tubes 30 disposed between baffles 25a, 25bφ... It flows out to the other header 28,
Heat is exchanged during this process.

第8図に示すチューブラ−形式のものについて詳述する
と、43は熱交換本体を示し、−側と他側に各々流入口
41と流出口42が形成されていると共に、本体43内
には複数のバッフル44a 、  44b 拳・・が区
画されている。そして一方のヘッダーと他方のへ7グー
の間に伝熱管45が配設されていて、一方のヘッダーか
ら流入する他方の流体はバッフル44aと 44b間、
44bと44c間に、配設された伝熱管45を通り他方
のヘッダーに流出していきこの過程で熱交換される。
To explain in detail the tubular type shown in FIG. 8, reference numeral 43 indicates a heat exchanger body, in which an inlet 41 and an outlet 42 are formed on the - side and the other side, respectively, and a plurality of heat exchangers are formed in the body 43. The baffles 44a and 44b are divided into fists. A heat transfer tube 45 is disposed between one header and the other header, and the other fluid flowing from one header is transferred between baffles 44a and 44b.
The heat flows through a heat transfer tube 45 disposed between 44b and 44c and flows out to the other header, where heat is exchanged in this process.

[発明が解決しようとする問題点] 上記従来技術は幾つかの利点を有するが、次の点に於い
て、解決課題を有している。即ち、前記産業用利用分野
でも述べた温廃水の熱回収熱交換や、水中に多種の無機
物が混入している温泉との熱交換を実施する場合、従来
のシェルアンドチューブ形式熱交換器やチューブラ−形
式の熱交換器を用いると、−偏流体に生物や不純物が混
入しているので、その伝熱面の伝熱管表面にスケールや
ヨゴレが付着し、伝熱管表面を洗じよう、清掃しなけれ
ば目標熱交換量を維持出来なくなる。
[Problems to be Solved by the Invention] Although the above-mentioned conventional technology has several advantages, it has problems to be solved in the following points. In other words, when carrying out heat recovery heat exchange of hot wastewater as mentioned in the industrial application field, or heat exchange with hot spring water containing various inorganic substances, conventional shell-and-tube heat exchangers and tubular heat exchangers are used. - When using a heat exchanger of the - type, the - polarized fluid is contaminated with living organisms and impurities, so scale and dirt adhere to the heat transfer tube surface. Otherwise, it will not be possible to maintain the target heat exchange amount.

第7図に示すシェルアンドチューブ形式では蓋29を多
数のボルトを外して、開放し清掃しなければならないし
1、運転中に清掃する事はとても出来ない、第8図に示
すチューブラ一方式に於いては運転中であっても蓋を外
して清掃作業を行なう事は出来るが、上部よりの清掃作
業となるので伝熱管45の下部や、管群の下部は清掃作
業が出来ない。
In the shell-and-tube type shown in Figure 7, the lid 29 must be opened and cleaned by removing numerous bolts (1), whereas it is impossible to clean it during operation. Even during operation, cleaning can be performed by removing the lid, but since the cleaning is done from the top, the lower part of the heat transfer tubes 45 and the lower part of the tube group cannot be cleaned.

本発明ではこれ等の点を認識し、清掃が容易であって、
運転中に於いても清掃が充分可能であり、また清掃容易
な伝熱面は平滑な伝熱面である事が望ましいが平滑な伝
熱面にすると、流体が流れる際、流速が一定となり、伝
熱面に於ける伝熱係数は低下するから、これをも防止し
、更に運転中に清掃可能な構造を考慮すると取り外し容
易な蓋構造とすることになるが、このようにした場合、
一方の流体が大気圧下におかれ、その流体の流量変化に
対し対応しにくいという問題点が出るから、この問題を
も解決できる熱交換器を提供することを目的としている
The present invention recognizes these points and is easy to clean.
It is desirable that the heat transfer surface be a smooth heat transfer surface so that it can be cleaned sufficiently even during operation, and it is easy to clean. However, if the heat transfer surface is smooth, the flow velocity will be constant when the fluid flows. Since the heat transfer coefficient on the heat transfer surface decreases, in order to prevent this and also take into consideration the structure that can be cleaned during operation, the lid structure should be designed to be easy to remove.
Since one of the fluids is placed under atmospheric pressure, there is a problem that it is difficult to respond to changes in the flow rate of that fluid.The object of the present invention is to provide a heat exchanger that can also solve this problem.

[問題点を解決する為の手段] これらの目的を達成する為に、本発明は次の技術的手段
を有する。即ち、実施例に対応する付号を付して説明す
ると、熱交換器本体3には、一方の流体Aの流入口1と
流出口2が形成されている。そして、流入口lと流出口
2の間の空間には1等間隔を置いて、着脱可能な蓋12
及び底板の夫々下部及び上部に補助板13.14が垂設
され、ている。
[Means for solving the problems] In order to achieve these objects, the present invention has the following technical means. That is, to explain with reference numbers corresponding to the embodiments, the heat exchanger main body 3 is formed with an inlet 1 and an outlet 2 for one fluid A. In the space between the inflow port 1 and the outflow port 2, removable lids 12 are placed at equal intervals.
Auxiliary plates 13 and 14 are vertically installed at the bottom and top of the bottom plate, respectively.

各補助板13.14には、該補助板13の縦方向に沿っ
て中空部5が形成された角バイブロの複数が角バイブロ
を水平にして縦−線にパネル状に配設されている。
On each auxiliary plate 13, 14, a plurality of rectangular vibros each having a hollow portion 5 formed along the vertical direction of the auxiliary plate 13 are arranged in a panel shape in a vertical line with the rectangular vibros horizontal.

上記各角バイブロはその角パイプ同志の接合面で溶接7
されている。そして、パネル状の角パイプは、本体3の
側面に設けられた、他方の流体Bの為のヘッダー8,9
に接続されている。即ち複数の角バイブロが、パフフル
4a、4bであると同時に、他方の流体Bの伝熱管を構
成している。
Each of the above square vibros is welded at the joint surface of the square pipes 7
has been done. The panel-shaped square pipes are connected to headers 8 and 9 for the other fluid B, which are provided on the side of the main body 3.
It is connected to the. In other words, the plurality of square vibrators constitute the pufffuls 4a and 4b, and at the same time constitute a heat transfer tube for the other fluid B.

[作用] 以上の構造により上部より角バイブロの伝熱面全面をブ
ラシ、スクレッパーにより、容易に清掃する事が可能と
なる。又、流体Aは流入口1より流入するが、バッフル
4a、4b・・会の間隔によって最大流量が流れた時の
圧力損失を計算し。
[Function] With the above structure, the entire heat transfer surface of the square vibro can be easily cleaned from the top using a brush or scraper. Also, fluid A flows in from the inlet 1, and the pressure loss when the maximum flow rate flows is calculated depending on the spacing between the baffles 4a, 4b, etc.

その時の必要水頭圧を角バイブパネルの上端と流入口1
の下部位置との寸法差によって決定すれば、最大流量に
於いても流入口1の下部より水面が上昇する事がない為
、運転中に於いても上部蓋を開放する車が可能となり、
清掃作業が可能となる。
The required water head pressure at that time is calculated between the upper end of the square vibrator panel and the inlet 1.
If determined by the dimensional difference between the lower part of the inlet and the lower part of the inlet, the water level will not rise above the lower part of the inlet 1 even at the maximum flow rate, making it possible for the vehicle to open the upper cover even while driving.
Cleaning work becomes possible.

又、角バイブロ同志の隣接接合部7は、角バイブロの伝
熱端面6′より0.5〜5■程度凹部となり、この凹部
が流体流れ方向に対し直角に配されるため、流体Aは隣
接部7によって乱流を起こし伝熱係数を向上させ、平面
のみの伝熱面に比し同じ伝熱面積の場合、熱交換量が大
きくなる。
In addition, the adjacent joints 7 of the square vibros are recessed by about 0.5 to 5 cm from the heat transfer end surface 6' of the square vibros, and since this recess is arranged perpendicular to the fluid flow direction, the fluid A is The portion 7 causes turbulence to improve the heat transfer coefficient, and the amount of heat exchange becomes larger compared to a flat heat transfer surface for the same heat transfer area.

更に流量変化に対しては、上述した通り角パイプのバッ
フル4aと4b 、 4bと4cseeの間隔を設計す
る為流入口下部以上に流体Aは上昇しないようにするこ
とができ、一方流量が減少した場合に於いては角パイプ
のバッフル4aと4b間、4bと4C間・・・中による
流路抵抗が減少する為、水頭圧が小さくてすみ、自然に
水面が低下する。しかし構造上角バイブバー、フル4a
 、 4b・・・の上端部よりは水面は低下せず流体A
は連続的に流量に比例して流速が変化して流れる。
Furthermore, regarding changes in flow rate, by designing the spacing between baffles 4a and 4b and 4b and 4csee of the square pipes as described above, it is possible to prevent fluid A from rising above the lower part of the inlet, while the flow rate decreases. In this case, the flow path resistance between the square pipe baffles 4a and 4b, between 4b and 4C, etc. is reduced, so the water head pressure is small, and the water level naturally lowers. However, due to the structure, it is a square vibe bar, full 4a.
, 4b... The water level does not drop from the upper end and fluid A
The flow rate changes continuously in proportion to the flow rate.

[実施例] 以下本発明の実施例を示す。[Example] Examples of the present invention will be shown below.

第1図に於いて1は温廃水の流入口、2は温廃水の流出
口、3は角形の熱交換器本体、12は着脱自在な蓋を示
している0次いで4a、4b*−・は角バイブロの複数
を、各々の角バイブロが水平になるようにして、縦−線
に積み上げ、角パイプ同志を溶接接合したバッフル兼伝
熱管であり、本体3の内部に所定間隔を置いて縦に配列
しである0図の例では流入口1と流出口2の間の空間に
12枚配した例を示しである。角パイプバッフルは本体
3の側面に配された清水流入、流出用ヘッダー8.9に
接続され、各角バイブロの中空部に清水を廃水の流れに
対向する様に流入口10から流入させ廃水の流れの中を
左右交互に通過させながら流出口11より流出させるよ
うにしたものである。
In Fig. 1, 1 is an inlet for warm wastewater, 2 is an outlet for hot wastewater, 3 is a rectangular heat exchanger body, and 12 is a removable lid. It is a baffle-cum-heat transfer tube in which a plurality of square vibros are stacked vertically so that each square vibro is horizontal, and the square pipes are welded together. In the example shown in FIG. 0, 12 sheets are arranged in the space between the inlet 1 and the outlet 2. The square pipe baffle is connected to the fresh water inflow/outflow header 8.9 arranged on the side of the main body 3, and allows fresh water to flow into the hollow part of each corner vibro from the inlet 10 opposite to the flow of wastewater. The flow is made to flow from the outlet 11 while being passed alternately from left to right.

角パイプバ・ネルのバックル兼電熱管の上下には交互に
バッフル補助板13 、14が溶接され、流体Aは角パ
イプバッフルの外面に沿って上下交互に流れて流出口2
側に向い、その過程で流体Aと流体Bが角パイプバッフ
ルの表面で対向流熱交換を行う、温廃水流入口lは角バ
イブバッフル同志4a〜4b、4b〜4C1111・の
間隔3′と角バイブロの長さとの積による流体Aの流路
断面積と、角パイプバッフルの高さとの積によって計算
出来る流路長さ、及び設計最大流量、並びに角バイブバ
ッフル表面の抵抗、流体の性質などにより得られる圧力
損失によって角パイプバッフル上端部と流入口1の下部
との必要高さを算出し取り付は位置を決定する。
Baffle auxiliary plates 13 and 14 are alternately welded to the top and bottom of the buckle/heating tube of the square pipe flannel, and the fluid A flows alternately up and down along the outer surface of the square pipe baffle to the outlet 2.
In the process, fluid A and fluid B perform counterflow heat exchange on the surface of the square pipe baffle. The flow path length can be calculated by multiplying the flow path cross-sectional area of fluid A by the product of the length of the vibro and the height of the square pipe baffle, the design maximum flow rate, the resistance of the square vibrator baffle surface, the properties of the fluid, etc. The required height between the upper end of the square pipe baffle and the lower part of the inlet 1 is calculated based on the resulting pressure loss, and the installation position is determined.

上記に於いて角パイプバッフルより成るバッフル兼電熱
管 4a、4b拳・・は、上述したように角バイブロの
複数を水平にして積み上げたものがあるが・角″イブと
角ノくイブの隣接部7は1例えζf第6図に示すように
溶接によって接合されており、隣接部7は角パイプパネ
ル表面より自然に0.5〜5■凹状になる。この他、水
平に積み上げた各バイブロの各々を左右両端の所で溶接
して、しっかりと各パイプ同志を隣接させてもよい、又
角パイプパネルの上下に配されるバッフル補助板13.
14は流体Aの流入方向から上13、下14の順で溶接
取り付けられ、最上端にはアングルが添えられ補強され
ると共に蓋12のサポートも兼ねている。第4図、第5
図はバッフル補助板の取り付は方法の詳細例を例示した
ものである。
In the above, the baffle-cum-electric-heating tubes 4a and 4b consisting of square pipe baffles are made by stacking multiple square vibros horizontally as mentioned above, but the square vibros are adjacent to each other. The part 7 is joined by welding as shown in Figure 6, and the adjacent part 7 is naturally concave by 0.5 to 5 cm from the surface of the square pipe panel. The baffle auxiliary plates 13. may be welded at both left and right ends so that the pipes are firmly adjacent to each other.Also, the baffle auxiliary plates 13.
14 are attached by welding in the order of upper 13 and lower 14 from the inflow direction of fluid A, and an angle is attached to the uppermost end for reinforcement and also serves as support for lid 12. Figures 4 and 5
The figure illustrates a detailed example of the method for installing the baffle auxiliary plate.

[発明の効果] 以上述べたように、本発明は一方の流体に不純物やよご
れが混入していて、それが熱交換伝熱面に付着すると、
熱交換に支障を与えるような場合、運転中であっても容
易に清掃が可能であり、又、伝熱面が平板状で垂直に配
されている為伝熱面の清掃不可能の場所がない。
[Effects of the Invention] As described above, the present invention is effective in preventing impurities and dirt from being mixed in one of the fluids and adhering to the heat exchanger surface.
If it interferes with heat exchange, it can be easily cleaned even during operation, and since the heat transfer surface is flat and vertically arranged, there are places where the heat transfer surface cannot be cleaned. do not have.

伝熱面が平板状である為伝熱効率が悪化する点に関して
は角パイプの積み重ね方式をとって、隣接部に凹部が形
成されるから、流体の流れに乱流を起こし伝熱効率の悪
化を防止している0発明者が行った本発明のテストプラ
ントに於いて、総括伝熱係数は900〜1300kca
l/’tn” Hr ℃となった。
Since the heat transfer surface is flat, heat transfer efficiency deteriorates, so by stacking square pipes, recesses are formed in adjacent parts, which creates turbulence in the fluid flow and prevents deterioration of heat transfer efficiency. In the test plant of the present invention conducted by the inventor, the overall heat transfer coefficient was 900 to 1300 kca.
l/'tn'' Hr ℃.

又、流体Aの流量変化にも対応出来、流体Bの変化に対
しては角パイプ自体の耐圧から最高4Kg/am″まで
加圧しても安全であった。
In addition, it was able to respond to changes in the flow rate of fluid A, and with respect to changes in fluid B, it was safe to pressurize up to 4 kg/am'' from the withstand pressure of the square pipe itself.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示し、第1図は縦断面図、
第2図は第1図のx−xに沿う断面図、第3図は側面図
、第4図、第5図は各々補助バッフルプレートの取り付
は側面、第6図は角パイプパネル詳細図、第7図は従来
の熱交換器のシェルアンドチューブ型を示し、第8図は
従来のチューブラ−型を示す。 図中3は熱交換器本体、1は一方の流体Aの流入口、2
は一方の流体Aの流出口、4a、4b@会・は角パイプ
のバッフル、12は蓋、8.9は流体Bの流入、流出ヘ
ッダー、lOは流体Bの流入口、11は流体Bの流出口
、6は角パイプを示す。
The accompanying drawings show embodiments of the present invention, and FIG. 1 is a longitudinal sectional view;
Figure 2 is a sectional view along x-x in Figure 1, Figure 3 is a side view, Figures 4 and 5 are side views of the installation of the auxiliary baffle plate, and Figure 6 is a detailed view of the square pipe panel. , FIG. 7 shows a conventional shell-and-tube type heat exchanger, and FIG. 8 shows a conventional tubular type heat exchanger. In the figure, 3 is the heat exchanger body, 1 is the inlet for one fluid A, and 2
are the outflow ports for fluid A, 4a and 4b are the square pipe baffles, 12 is the lid, 8.9 is the inflow and outflow header for fluid B, 10 is the inflow port for fluid B, and 11 is the inflow port for fluid B. Outlet 6 indicates a square pipe.

Claims (1)

【特許請求の範囲】[Claims] 一方の流体Aの流入口1と流出口2が形成された熱交換
器本体3内に設けられた複数のバッフルと、伝熱面を形
成した他方の流体Bを流す為の複数の流路を持つ熱交換
器に於いて、上記複数のバッフルの個々のバッフルは複
数の中空角パイプを縦又は横一線に積み上げて構成し、
その積み上げられて全体として平坦な伝熱面を有する中
空角パイプ群の中空部を一方のヘッダーから他方のヘッ
ダーに貫通せしめ、他方の流体Bを流すように構成され
、上記熱交換器本体の上部に脱着可能な蓋が配されてい
ることを特徴とする熱交換器。
A plurality of baffles are provided in the heat exchanger main body 3 in which an inlet 1 and an outlet 2 are formed for one fluid A, and a plurality of channels for flowing the other fluid B forming a heat transfer surface. In the heat exchanger, each baffle of the plurality of baffles is constituted by stacking a plurality of hollow square pipes in a vertical or horizontal line,
The hollow part of the stacked hollow rectangular pipe group having a flat heat transfer surface as a whole is penetrated from one header to the other header, and the other fluid B is configured to flow through the upper part of the heat exchanger main body. A heat exchanger characterized by having a removable lid.
JP14947085A 1985-07-08 1985-07-08 Heat exchanger Pending JPS6210592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14947085A JPS6210592A (en) 1985-07-08 1985-07-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14947085A JPS6210592A (en) 1985-07-08 1985-07-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS6210592A true JPS6210592A (en) 1987-01-19

Family

ID=15475839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14947085A Pending JPS6210592A (en) 1985-07-08 1985-07-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6210592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469069B1 (en) * 2002-03-21 2005-01-29 정규진 Cross flow type heat exchanger
JP2005331217A (en) * 2003-06-11 2005-12-02 Usui Kokusai Sangyo Kaisha Ltd Gas cooling device
JP2011117719A (en) * 2009-12-01 2011-06-16 Benteler Automobiltechnik Gmbh Heat exchanging device
JP2013525730A (en) * 2010-04-21 2013-06-20 リヨネーズ デ ゾー フランス System for extracting heat from wastewater flowing through a duct, and heat exchanger for the system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148047U (en) * 1974-10-09 1976-04-09
JPS57184889A (en) * 1981-05-06 1982-11-13 Nippon Denso Co Ltd Total heat exchanger
JPS6043878B2 (en) * 1979-07-24 1985-09-30 積水化学工業株式会社 hot melt adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148047U (en) * 1974-10-09 1976-04-09
JPS6043878B2 (en) * 1979-07-24 1985-09-30 積水化学工業株式会社 hot melt adhesive composition
JPS57184889A (en) * 1981-05-06 1982-11-13 Nippon Denso Co Ltd Total heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469069B1 (en) * 2002-03-21 2005-01-29 정규진 Cross flow type heat exchanger
JP2005331217A (en) * 2003-06-11 2005-12-02 Usui Kokusai Sangyo Kaisha Ltd Gas cooling device
JP4544575B2 (en) * 2003-06-11 2010-09-15 臼井国際産業株式会社 EGR gas cooling device
JP2011117719A (en) * 2009-12-01 2011-06-16 Benteler Automobiltechnik Gmbh Heat exchanging device
JP2013525730A (en) * 2010-04-21 2013-06-20 リヨネーズ デ ゾー フランス System for extracting heat from wastewater flowing through a duct, and heat exchanger for the system

Similar Documents

Publication Publication Date Title
US5031693A (en) Jet impingement plate fin heat exchanger
US20090056919A1 (en) Heat exchanger
US20030000687A1 (en) All welded plate heat exchanger
JPH0739911B2 (en) Heat exchanger used for HF alkylation method
EP1048915B1 (en) Heat exchanger
JP3691136B2 (en) Plate stack as heat exchanger
CN105466257B (en) Efficient detachable all-welded heat-exchangers of the plate type
KR20130073533A (en) Disassemblable primary surface heat exchanger
JPS6210592A (en) Heat exchanger
CN208059634U (en) A kind of heat exchanger for sewage disposal
CN205607213U (en) High -efficient removable plate heat exchanger that welds entirely and combination thereof
KR970066503A (en) heat transmitter
CN2325747Y (en) Shell removing type heat-exchanger
CN104132567B (en) Plate, plate bundle and welded plate type heat exchanger
JPH081150U (en) Selective condenser
KR200454227Y1 (en) Heat Exchanger Using Heat Recovery
US1789880A (en) Oil-refinery condenser
KR20060104174A (en) Waste heat collector
CN112197621A (en) Gas-gas pipe type heat exchanger
JPH05203375A (en) Heat exchanger for sewage
JPS6237694A (en) Heat exchanger
CN212538911U (en) Gas-gas tube type heat exchanger
US1545893A (en) Liquid cooler
US3364992A (en) Plate type heat-exchangers having corrugated, zig-zag sheet members
JPS5810583U (en) Heat exchanger