JPS62105912A - Gaseous carbon dioxide adsorbing porous resin - Google Patents

Gaseous carbon dioxide adsorbing porous resin

Info

Publication number
JPS62105912A
JPS62105912A JP60242745A JP24274585A JPS62105912A JP S62105912 A JPS62105912 A JP S62105912A JP 60242745 A JP60242745 A JP 60242745A JP 24274585 A JP24274585 A JP 24274585A JP S62105912 A JPS62105912 A JP S62105912A
Authority
JP
Japan
Prior art keywords
carbon dioxide
amine
porous
polymer
dvb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60242745A
Other languages
Japanese (ja)
Other versions
JPH0437735B2 (en
Inventor
Nobuyuki Kimura
木村 修志
Hideyuki Kuroda
英行 黒田
Shigeo Miyamori
宮森 茂雄
Norio Nakabayashi
宣男 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP60242745A priority Critical patent/JPS62105912A/en
Publication of JPS62105912A publication Critical patent/JPS62105912A/en
Publication of JPH0437735B2 publication Critical patent/JPH0437735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To develop a solid amine based repeatedly usable CO2 gas adsorbing porous resin having improved adsorptivity, by subjecting porous polymer particles obtained by polymerizing divinylbenzene with glycidyl methacrylate to addition reaction of a polyfunctional amine. CONSTITUTION:A CO2 adsorbing porous resin, obtained by mixing divinylbenzene (DVB) with glycidyl methacrylate (GMA) at 7:93-65:35 weight ratio, adding 60-230pts.wt., based on 100pts.wt. total of the DVB and GMA, 4-methyl-2- pentanol as a precipitant to the resultant mixture, suspension polymerizing the mixture in water to form fine primary polymer particles having <=1mum diameter, converting the primary articles into an aggregate to form a microreticular type porous polymer, subjecting the polymer to addition reaction of a polyfunctional amine, e.g. polyethyleneimine having <=10,000 molecular weight to form an amine adduct porous polymer and washing the polymer with water, hot water and methanol to remove the precipitant and residual polyfunctional amine and having improved adsorptivity.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は優れた吸着特性を有し、繰返し使用可能な、固
体アミン系の炭酸ガス吸着性多孔化樹脂に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a solid amine-based porous carbon dioxide adsorbing resin that has excellent adsorption properties and can be used repeatedly.

[従来の技術およびその問題点] 潜水艦、宇宙基地などのような閉鎖された空間で、長時
間人間が生活する場合、適当な吸着剤を用いて炭酸ガス
を除去することにより、その濃度を一定以下に保持する
ことが必要となってくる。
[Prior art and its problems] When humans live for long periods of time in closed spaces such as submarines and space bases, it is possible to maintain a constant concentration of carbon dioxide by removing carbon dioxide using an appropriate adsorbent. It is necessary to maintain the following.

たとえば潜水艦での炭酸ガスの吸着は、モノエタノール
アミン水溶液を使用し、ステンレススチールウールを充
填した吸着塔上部からアミン液をシャワーリングし、吸
着塔下部から炭酸カス含有空気を吹込むことによってお
こなわれており、炭改ガス吸希したアミン液からの炭酸
ガスの脱着は、アミンiをhl然して炭酸ガスを放出さ
せ、残ったアミン液を再度循環使用することが、たとえ
ば、0cean  Enc+ng、Vol、10.No
For example, adsorption of carbon dioxide gas on submarines is carried out by using an aqueous monoethanolamine solution, showering the amine solution from the top of an adsorption tower filled with stainless steel wool, and blowing air containing carbon dioxide from the bottom of the adsorption tower. In order to desorb carbon dioxide from the amine liquid that has been sucked up with carbon reformed gas, it is possible to release the carbon dioxide gas by stirring the amine i and recycle the remaining amine liquid. .. No
.

4、 pp、227〜233 <’1983)などで報
告されている。
4, pp. 227-233 <'1983).

また、近年宇宙開発に関する仙究が米国(まもらろ/v
の事、日本でも盛んになっており、国家プロジエク1〜
として将来宇宙基地を作ることなども計画されている。
In addition, in recent years, the United States (Mamoro/v
It is becoming popular in Japan as well, and national projects 1~
There are also plans to build a space base in the future.

しかし宇宙の環境は、地球上とは異なり、無重力、高真
空下におるため、そこで使用される炭酸ガス吸着剤にも
種々の制約が加えられる。
However, unlike on Earth, the environment in space is zero gravity and under high vacuum, which imposes various restrictions on the carbon dioxide adsorbents used there.

具体的にのべると、液状アミン系吸着剤は、無重力下で
は一定の形状を保たないため、その使用が困難であり、
真空中では気化して有害なガス体となり、各種装置類を
腐食させるばかりでなく、宇宙基地に居住する人間の健
康を損う恐れがある。
Specifically, it is difficult to use liquid amine-based adsorbents because they do not maintain a constant shape under zero gravity.
In a vacuum, it vaporizes and becomes a harmful gas, which not only corrodes various equipment but also threatens the health of people living on the space base.

また、吸着した炭酸ガスは、藻類などの育成に利用し、
炭酸同化作用により酸素としてリサイクルすることが前
提となるので、宇宙環境下で使用される吸着剤としては
、固体状であること、および吸脱着容易で繰返し使用に
適すること、などが少なくとも必要とされている。しか
しながら、従来より固体吸着剤として使われている水酸
化リチウムなどのアルカリ金属水酸化物は、炭酸ガスの
脱着に高温を要し、繰返し使用に適さず、実用性に乏し
いという問題点がある。
In addition, the adsorbed carbon dioxide gas is used to grow algae, etc.
Since it is assumed that carbon dioxide will be recycled as oxygen through carbon dioxide assimilation, adsorbents used in the space environment must at least be solid, easily adsorbed and desorbed, and suitable for repeated use. ing. However, alkali metal hydroxides such as lithium hydroxide, which have been conventionally used as solid adsorbents, require high temperatures to desorb carbon dioxide gas, making them unsuitable for repeated use and lacking in practicality.

[問題を解決するための手段] 上記のような現状に鑑み、本発明者らは、優れた炭酸ガ
ス吸着性を有すると共に、地球上ではもちろんのこと、
宇宙空間でも繰返し使用できる固体アミン系吸着剤を開
発すべく、鋭意研究を重ねた結果本発明を完成するに至
ったものである。
[Means for Solving the Problem] In view of the above-mentioned current situation, the present inventors have developed a material that has excellent carbon dioxide adsorption properties and that is
The present invention was completed as a result of intensive research to develop a solid amine adsorbent that can be used repeatedly in outer space.

すなわち、本発明の炭酸ガス吸着性多孔化樹脂は、ジビ
ニルベンゼン(以下、DVBと称する)と、グリシジル
メタクリレ−1〜(以下、GMAと称する)の重合によ
って11Iられた多孔性重合体の粒子に、多価アミンを
付加反応させてなることを特徴とするものである。
That is, the carbon dioxide adsorbing porous resin of the present invention is made of porous polymer particles obtained by polymerizing divinylbenzene (hereinafter referred to as DVB) and glycidyl methacrylate-1 to (hereinafter referred to as GMA). It is characterized by being formed by adding a polyvalent amine to the above.

上記本発明において用いることのできる多孔性重合体は
、DVBとGMAのモノマー混合物に沈殿剤を加え、水
中で懸濁重合後、生成した重合体粒子を初めに水、次い
でメタノールで洗浄し、更にアセトンで恒Mになるまで
ソックスレー抽出し、粒子中に残存している沈殿剤およ
び七ツマ−を除去することにより得ることができる。
The porous polymer that can be used in the present invention is prepared by adding a precipitant to a monomer mixture of DVB and GMA, polymerizing it in suspension in water, washing the resulting polymer particles first with water, then with methanol, and then washing the resulting polymer particles with water and then methanol. It can be obtained by performing Soxhlet extraction with acetone until the M is constant and removing the precipitant and hexamer remaining in the particles.

本発明でいう沈殿剤とは、「七ツマ−とは完全に相溶す
るが、重合により生成したポリマーには親和性を示さな
い溶媒」を意味し、該溶媒の共存下で七ツマ−を懸濁重
合すると、その多くは直径1μm以下の茗しく微細なポ
リマー−次位子を生成し、これが凝集体となって、一般
にマクロレテイキュラー型(以下、MR型と称する)多
孔性樹脂と呼ばれる多孔性重合体を形成する。
The term precipitant used in the present invention refers to a "solvent that is completely compatible with nanatsumer but has no affinity for the polymer produced by polymerization," and in the presence of the solvent, nanatsumer Suspension polymerization produces soft, fine polymer particles, most of which are 1 μm or less in diameter, which become aggregates and form porous resins generally called macroreticular type (hereinafter referred to as MR type) porous resins. form a polymer.

上記多孔性重合体におけるDVB/GM△の比率は、G
MA量が多くなるほど得られる多孔粒のグリシジル基含
有量は増大し、次工程で多価アミンと付加反応させるの
に有利であるが、DVBffiが減少すると共に比表面
積は逆に減少し、重量化でDVB/GMA=6/94で
は実質的にMR型多孔構造を形成しなくなる。したがっ
て本発明においてDVB (重量%)/GMA(重■%
)=7〜65/93〜35の範囲が好ましく、9〜45
/91〜55が特に好ましく、10〜35/90〜65
が最も好ましい。
The ratio of DVB/GMΔ in the porous polymer is G
As the amount of MA increases, the glycidyl group content of the resulting porous particles increases, which is advantageous for addition reaction with polyvalent amine in the next step, but as DVBffi decreases, the specific surface area decreases, resulting in weight gain. When DVB/GMA=6/94, an MR type porous structure is not substantially formed. Therefore, in the present invention, DVB (weight%)/GMA (weight%)
)=7-65/93-35 is preferable, 9-45
/91-55 is particularly preferable, 10-35/90-65
is most preferred.

なお、DVBは純粋(高純度)な形で供給されるよりも
、エチルビニルベンゼンおよびその他種々の飽和化合物
との混合物からなる工業用DVB(純度約55重足%)
として供給されていることが多く、このような工業用D
VBも本発明において好ましく用いることができる。
Note that DVB is not supplied in pure (high purity) form, but rather as industrial DVB (about 55% pure), which is a mixture of ethylvinylbenzene and various other saturated compounds.
These industrial D
VB can also be preferably used in the present invention.

上記DVB/GMA系多孔性重合体の多孔化に際しては
、2,2.4−トリメチルペンタンのような脂肪族炭化
水素や、ジオクチルフタレートのようなフタル酸ジアル
キルエステル(但しオクチル以上の高級アルコールのエ
ステル)などの種々の有機溶剤を、沈殿ハ11として用
いることができるが、これらの沈殿剤を用いた場合、生
成した粒子表面に亀裂や皮張り(粒の内部に比較して表
面の多孔化度合が劣り、著しい場合には表面に全< 4
1il+穴を有しない、いわゆる表皮を被った状態をい
う)などの表面欠陥が生じ、粒の脆弱化や有効表面積の
低下を招く恐れがある。
When making the above DVB/GMA porous polymer porous, aliphatic hydrocarbons such as 2,2,4-trimethylpentane, phthalic acid dialkyl esters such as dioctyl phthalate (however, esters of higher alcohols of octyl or higher) are used. ) can be used as the precipitant, but when these precipitants are used, cracks or crusting (the degree of porosity on the surface compared to the inside of the particle) may occur on the surface of the generated particles. is inferior, and in severe cases, the surface has a total < 4
Surface defects such as 1il+ holes (so-called a skin-covered state) may occur, leading to weakening of the grains and a reduction in the effective surface area.

本発明において、好ましく用いることのできる沈殿剤は
、4−メチル−2−ペンタノール(以下、MIBGと称
する)であり、このMIB(、I;玉、1〕VB/GM
Aの七ツマー比率に関係なく、表面欠陥のない多孔粒を
得ることができるため、この系の沈殿剤として特に有用
である。
In the present invention, a precipitant that can be preferably used is 4-methyl-2-pentanol (hereinafter referred to as MIBG), and this MIB (,I; ball, 1]VB/GM
It is particularly useful as a precipitant in this system because porous grains with no surface defects can be obtained regardless of the heptamer ratio of A.

沈殿剤の添加量(はDVB/GM、A、のモノマー混合
物100重尾部に対して60〜230千m1部が好まし
く、添加量が60Iff1部未満ては、ポリマーの沈殿
が不完全で必り」−分な多孔化が起らない。
The amount of the precipitant added (preferably 60 to 230,000 ml parts per 100 parts of the monomer mixture of DVB/GM, A); if the amount added is less than 60 parts, the precipitation of the polymer will necessarily be incomplete. - No significant porosity occurs.

反対に230平量部を越えると多孔化か茗しく、機械的
強l宴の弱い粒しか得られない。従って本発明において
特に好ましい添hII早は、9 C)−1ε30手は部
である。
On the other hand, if it exceeds 230 parts by weight, the grains become porous or stiff and have only weak mechanical strength. Therefore, in the present invention, a particularly preferred addition hII is 9C)-1ε30.

本発明の炭酸ガス吸4性多孔化樹脂(よ、上、記の多孔
性重合体粒子のグリシジルも(に、多価アミンを付加反
応させることによって(qられる。グリシジル基とアミ
ン基の付加反応65大、一般的IJは二液型のエポキシ
樹脂塗料などにみられるように室温でも容易に進行する
のが酋通であるが、本発明ではグリシジル基が箸シック
高分子最の重合休校に固定化されているためか、水やア
ルコ1−ルなどの希釈剤が存在すると、80’Cて′5
時間の加熱で・′もし応じ難い傾向がある。このため、
希釈剤に去多価アミンとの親和性を向上させるためIこ
、多孔性重合休校をん1潤させる程麿かあるいは全く用
いA”に直接多孔粒を多価アミン中に浸漬し、付加反応
を(jうようにづ゛れば、60〜・・1!’)O’Cで
1〜5時間、持に80’Cで゛5時間の条(’I −C
tv光分付h11反応を達成することができる、。
The carbon dioxide-absorbing porous resin of the present invention (the glycidyl of the porous polymer particles described above is also subjected to an addition reaction with a polyvalent amine).Addition reaction of glycidyl groups and amine groups 65, general IJ progresses easily even at room temperature, as seen in two-component epoxy resin paints, but in the present invention, glycidyl groups are fixed in the polymerization phase of the chopsticksic polymer. Possibly because of the presence of diluents such as water and alcohol, the
If it heats up over time, it tends to be difficult to respond. For this reason,
In order to improve the affinity of the diluent with the polyvalent amine, the porous particles are directly immersed in the polyvalent amine and the addition reaction is carried out. (according to the instructions, 60~...1!') at O'C for 1 to 5 hours, then at 80'C for 5 hours ('I-C
tv optical spectroscopy h11 reaction can be achieved.

上記イ」加反応(:43いで用いることのできる多価j
7ミンどし、ては、Jヂレンジアミン、ジ]−ヂレント
リ)アミン、+=リーIIヂレンデト・ラミン、デトラ
エチレンペ〕、・′ラミンおよ(fペンタ■−チ乳ノン
へキリーミン′などの1チ1/ン′7′ミンイ1、(士
、ノメヂ、Jレアーミ、/ −jf[1ピルアミン、ジ
メチルアミ77日「゛′ルアミン、ジエチルアミ7ブ日
ビ′ルアミン、−イミ5)じ′スフ′ロ1−°ルアミン
およびメチル1′ミノビ゛スブ目ピルアミンなどのプロ
ピルアミン類、1.2−または1゜3−ジアミ/ブ[1
パン、1.4−ジP′ミ2ノブタン、a3よび]、6ジ
アミ、ノ/\キサンのようなジアミノアルカン類、メタ
ンに1ノンジアミ、ン、d3よびメタアミ/ベンジルア
ミンのような化較的低融点の芳香族多価アミ〉・類、種
々の分子最を−持つポリエチjノンイミン、ポリアリル
j7ミンなどが使用て′きる。
Polyvalent j that can be used in the above A' addition reaction (:43
7 min, te, J dylenediamine, di]-dilenetri) amine, + = Lee II dylenediamine, detraethylene pe], ・'lamin and (f penta■-thiylnonhekilymin'), etc. /N'7'Minii 1, (Shi, Nomedi, J Reami, / -jf [1 Pyramine, Dimethylamine 77th "''Ruamine, Diethylamine 7th B'ylamine, -Imi 5) Ji'Sufuro 1- propylamines, such as 1,2- or 1'3-diamine/butylamine,
diaminoalkanes such as pan, 1,4-diP'mi-2butane, a3 and ], 6-diami, no/\xane; Low-melting-point aromatic polyvalent amino acids, polyethynonimine, polyallylamine, and the like having various molecular weights can be used.

」1記各種のアミンの中−7゛も、低分子アミン(ユ市
性が強く取扱に特に注意が必要て゛あり、ま’II:、
 (t IJI’Hf;、 ’(>再生時など(こ@離
を起こ(ノた場合i;: !よ非常な危険を伴う。その
白高分子最のj′ミンは安全衛生面から番よ望ましいが
、固体状のボリラー′リルノ′ミンは反応時に希釈剤が
必要であり、またボリエヂレンイミンでも高分子ωグレ
ードでは箸しく粘稠な1じめ実際トG、1肴釈剤の添7
3[1か必要1こなってくる。
Among the various amines listed in 1.7, there are also low-molecular amines (which are highly bioactive and require special care in handling).
(tIJI'Hf;, '(>If separation occurs during playback, etc.), it is very dangerous. However, the solid borylamine requires a diluent during the reaction, and the polymer ω grade of polyethyleneimine is extremely viscous and requires the addition of a diluent. 7
3 [1 or 1 is required.

したがって$、発明(こ6いて、分子枦1万以下のポリ
エヂレンイミンが最適である。14加反応終了後のアミ
ン付1311多孔1生千合棒粒は、初めに水、次いて゛
熱ん)で洗浄液かj′ルカリ性を示さなくなるまで洗浄
し、ざらにメタ/−ルで洗浄力ることにより、沈!!Q
剤J″3よび付7JI反応されなかった多価アミンが完
全に除去されで、本発明の炭酸ガス吸着性多孔化樹脂が
(Aられる。
Therefore, according to the invention, polyethyleneimine with a molecular weight of 10,000 or less is optimal.After the completion of the 14-addition reaction, the amine-attached 1311 porous raw 1,000-pound rods are first heated with water and then heated. Wash the cleaning solution with water until it no longer exhibits lukewarm properties, and then wash it with methanol and detergent. ! Q
The polyvalent amines that were not reacted with Agents J''3 and 7JI were completely removed, and the carbon dioxide adsorbent porous resin of the present invention was obtained (A).

[作 用] 本発明によれば、炭酸カス吸着剤どしての多孔化樹脂は
、多孔性重合体粒子のグリシジル基に、多価アミンを付
り口させてなる固体状で17られ、該杓子に(;t h
[1された多価アミンは炭酸カスを良く吸着し、また吸
着した炭酸ガスをわずかの熱処理で容易に脱骨するとい
う作用を有づる3、[実施例] 本発明を、以下の実施例にもと71’いて、さらに詳細
に説明号る。なd3、実施例中の各成分の配合組成は千
(−7部で表わした。
[Function] According to the present invention, the porous resin used as a carbonic acid sludge adsorbent is in a solid state formed by attaching a polyvalent amine to the glycidyl group of a porous polymer particle. To the ladle (;t h
[1] The polyvalent amine adsorbs carbon dioxide gas well and has the effect of easily deboning the adsorbed carbon dioxide gas with a slight heat treatment.3 [Example] The present invention is described in the following example. A more detailed explanation will be given at 71'. d3, the composition of each component in the examples is expressed in 1,000 (-7 parts).

多孔性重合体粒子!l(カ ウ瀘−ターバスに設置した設置Wおよび]丁lンデンサ
ーイ4さの”Hの1−、パうブルノラス]に、下記表−
1に示し!、二それぞれの配合組成1こしたか−)てイ
オン交換ノ(くを什込み、攪拌下< ”! 40〜.−
160rpm)で分散邦1どN a Clを1111え
、)容解さt!【水相を形成さく!た。これ(こ、D 
V F3およびG M Aの−(I/?R合物、M I
 B G、、 F3 P01加えて混合溶解した油相を
同じく攪拌下で1111え、外温を60℃から90’C
に段階的に胃温し・Qつ、7時間h・けて重合反応をお
こへ、つた。巨応@ It ]Q □メツシュの篩で濾
過し、(−1られだ重合体粒子は、初めに水、次いでメ
タノールで充分(こ洗浄し、さらにア、セトンにより慎
重になるまでソックスレー抽出をおこなって精製し、直
f¥0.1.’r・・、・0.4si稈度の多孔粒を、
仕込みモ、/マー1こ対し80へ一90%の収率て1−
また。 ト記で冑たそれ−ぞれの多孔性重合体粒子につ
いて、比表面積およびグリシジル基金イi吊を下記の方
法で測定し〕、その測定結果を合わせて表−1に示した
Porous polymer particles! 1 (Installation W installed in the cowl bath and] in the table below)
Shown in 1! , 2. Add the ion exchange mixture (1) to 100% of each formulation, and add the ion exchange solution (2) under stirring. 40~.-
160 rpm) Disperse the Na Cl at 1111,) and take it! [Form the water phase! Ta. This (K, D
−(I/?R compound of V F3 and G M A, M I
B G,, F3 P01 was added and the mixed and dissolved oil phase was heated to 1111°C under stirring, and the external temperature was increased from 60°C to 90'C.
The stomach was warmed in stages for 7 hours to cause a polymerization reaction. The polymer particles were filtered through a mesh sieve, washed first with water and then thoroughly with methanol, and then carefully subjected to Soxhlet extraction with a, setone. Refine the porous grains with a direct f\0.1.'r..., 0.4si culm degree,
Preparation mode: 80 to 90% yield for 1 /mer 1 -
Also. The specific surface area and glycidyl foundation ratio of each of the porous polymer particles obtained in the above were measured by the following methods, and the measurement results are shown in Table 1.

(1)比表面積;島津マイクロメリテツクス比表面積自
動解析装置2000型を用いて、B。
(1) Specific surface area: B using Shimadzu Micromeritics specific surface area automatic analyzer model 2000.

E、T、一点法にて測定し、尻/3で表わした。E and T were measured by the single point method and expressed as tail/3.

(2)グリシジル基含有m:試料0.5gに0゜2N塩
酸−ジオキサン溶液20dを加え、60℃で1時間撮と
う後、クレゾールレッドを指示薬として0.5N水酸化
ナトリウム水溶液で滴定し、測定値よりグリシジル基含
有量を算出し、当量/試料3で表わした。
(2) Glycidyl group-containing m: Add 20d of 0°2N hydrochloric acid-dioxane solution to 0.5g of sample, photograph at 60°C for 1 hour, and then titrate with 0.5N sodium hydroxide aqueous solution using cresol red as an indicator. The glycidyl group content was calculated from the value and expressed as equivalent/sample 3.

以下余白 (注1 )DVB含有含有率約5量 VBを使用した。Margin below (Note 1) DVB content approximately 5 amounts VB was used.

(注2)ペンゾイルバーオキザイド (注3)ポリビニルアルコール(日本合成化学T業社製
、ゴーセノールGH−23)を6%水溶液として使用し
た。
(Note 2) Penzoyl peroxide (Note 3) Polyvinyl alcohol (manufactured by Nippon Gosei Kagaku T Gyo Co., Ltd., Gohsenol GH-23) was used as a 6% aqueous solution.

多価アミンの付加反応 上記で冑た多孔性重合体校(No.1−1〜1−5)の
各々2.59を取り100dの三角フラスコ1に入れ、
千六平均分子夛約300のボリエヂレンイミン109を
加え、80”Cで5時間系とうゴることによって付加反
応をおこなった。
Addition reaction of polyvalent amines Take 2.59 g of each of the porous polymers prepared above (No. 1-1 to 1-5) and put them into a 100 d Erlenmeyer flask 1.
Addition reaction was carried out by adding polyethyleneimine 109 having an average molecular weight of about 300 and boiling the system at 80"C for 5 hours.

付加反応終了後、アミン付加多孔性重合休校は、初めに
水、次いで熱湯にJ、り洗浄液がアルカリ性を示さなく
なるまで洗浄し、ざらにメタノールで洗浄して、付bo
されなかった多価アミンを完全に除去して精製した。こ
のようにして得られた炭酸ガス吸着性多孔化樹脂につい
て、炭酸ガス吸着量。
After the completion of the addition reaction, the amine addition porous polymerization process is performed by first washing with water, then boiling water until the washing solution no longer shows alkalinity, then roughly washing with methanol, and then washing with boiling water.
It was purified by completely removing the unresolved polyvalent amine. The carbon dioxide adsorption amount of the carbon dioxide adsorbent porous resin thus obtained.

を下記の方法で測定し、その結宋を表−2に示した。was measured by the following method, and the results are shown in Table 2.

(3)炭酸カス吸ン1111測定方法:試料約207J
iff(精H′)8熱人けIJ取り、iVj %埋二[
程として窒素カス気流1;、1 0 0 ’Cて恒吊に
なる土で加熱減早を53こむい、吸石している種々のガ
ス休d3よび水分を除去する。次ぎに加熱をとめ炭酸ガ
ス気流下室温でガス吸ンンを73Zなわせる。恒量にな
った時点で、次式により炭酸ガス吸着量を算出1゛る。
(3) Carbon dioxide scum absorption 1111 measurement method: Sample approximately 207J
iff (precious H') 8 hot IJ take, iVj % buried two [
As a process, the nitrogen gas stream 1;, 100'C and the soil is heated and reduced for 53 minutes to remove various gases and water absorbed by the stones. Next, the heating was stopped and gas suction was carried out at room temperature under a stream of carbon dioxide gas. When the weight reaches a constant value, the amount of carbon dioxide gas adsorbed is calculated using the following formula.

炭酸ガス吸着量(%) 1四方11重M ( 9 ) 以下余白 以上の結果から明らかなように、GMAを全く混合しな
いで製造した例No、1−1の重合体粒子およびGMA
を少星混合して製造した例No。
Carbon dioxide adsorption amount (%) 1 square 11 weight M (9) As is clear from the results in the margin below, the polymer particles of Example No. 1-1 and GMA produced without mixing GMA at all
Example No. manufactured by mixing small stars.

1−2の重合体粒子は、グリシジル基の合有量が極めて
少なく、したがって付加アミンfが少なく、炭酸ガス吸
着量の少ないものしか得られなかった。
In the polymer particles 1-2, the amount of glycidyl groups incorporated was extremely small, so the amount of added amine f was small, and only a small amount of carbon dioxide gas adsorption was obtained.

一方GMA混合量の多い例No、1−5の重合体粒子は
、グリシジル塁含有量が多いものの、多孔性粒子を形成
しておらず、結果として炭酸ガス吸着量の少ないもので
あった。
On the other hand, the polymer particles of Example No. 1-5 with a large amount of GMA mixed had a high content of glycidyl groups, but did not form porous particles, and as a result, the amount of carbon dioxide gas adsorbed was small.

これに対して、例N0.1−373よび1−4の重合体
粒子は、適度な多孔性とグリシジル塁含有量を有するの
で、この粒子から得られた多価アミン付加樹脂、特に例
No、2’−4の樹脂は、極めて優れた炭酸ガス吸着性
を示した。
In contrast, the polymer particles of Examples Nos. The 2'-4 resin showed extremely excellent carbon dioxide adsorption properties.

また、上記例No、2−4のアミン付加樹脂について、
上記(3)炭酸ガス吸@品測定法にa3ける「窒素ガス
気流下、100°Cで種々のガス体、水分を除去する前
処理工程」と、「恒量になるまで炭酸ガス吸着を行う工
程」の連続操作を1ザイクルとし、これを繰返すことに
より吸脱着の繰返し使用性能を確認したところ、下記表
−3の結果が示すように、1Qザイクル繰返しにおいて
も炭酸ガス吸着量の低下は極めて小さく、優れたもので
あった。
Moreover, regarding the amine-added resin of the above example No. 2-4,
The "pretreatment step of removing various gases and moisture at 100°C under a nitrogen gas flow" and the "step of adsorbing carbon dioxide until a constant weight is achieved" in A3 of the above (3) Carbon dioxide adsorption @ product measurement method '' was defined as one cycle, and the performance of adsorption and desorption was confirmed by repeating this cycle. As shown in the results in Table 3 below, the decrease in the amount of carbon dioxide adsorption was extremely small even after repeating the 1Q cycle. , which was excellent.

表−3 [発明の効果] 本発明の炭酸ガス吸着性多孔化樹脂は、DVBとGMA
の重合によって得られた多孔性重合体粒子、および該粒
子中に含有されているグリシジル基に多価アミンを付加
反応させたものからなっているので、炭酸ガス吸着性に
優れていると共に、炭酸ガスの吸、脱着を繰返しても初
期の炭酸ガス吸着特性が低下しないなど、固体アミン系
炭酸カス吸着剤として、極めて優れたものである。
Table 3 [Effects of the invention] The carbon dioxide adsorbing porous resin of the present invention has DVB and GMA
It is made of porous polymer particles obtained by the polymerization of , and polyvalent amines added to the glycidyl groups contained in the particles, so it has excellent carbon dioxide adsorption properties and It is an extremely excellent solid amine-based carbon dioxide adsorbent, as its initial carbon dioxide adsorption properties do not deteriorate even after repeated gas adsorption and desorption.

Claims (1)

【特許請求の範囲】[Claims] ジビニルベンゼンとグリシジルメタアクリレートの重合
によって得られた多孔性重合体の粒子に、多価アミンを
付加反応させてなることを特徴とする炭酸ガス吸着性多
孔化樹脂。
1. A carbon dioxide gas-adsorbing porous resin, which is produced by adding a polyvalent amine to particles of a porous polymer obtained by polymerizing divinylbenzene and glycidyl methacrylate.
JP60242745A 1985-10-31 1985-10-31 Gaseous carbon dioxide adsorbing porous resin Granted JPS62105912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242745A JPS62105912A (en) 1985-10-31 1985-10-31 Gaseous carbon dioxide adsorbing porous resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242745A JPS62105912A (en) 1985-10-31 1985-10-31 Gaseous carbon dioxide adsorbing porous resin

Publications (2)

Publication Number Publication Date
JPS62105912A true JPS62105912A (en) 1987-05-16
JPH0437735B2 JPH0437735B2 (en) 1992-06-22

Family

ID=17093626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242745A Granted JPS62105912A (en) 1985-10-31 1985-10-31 Gaseous carbon dioxide adsorbing porous resin

Country Status (1)

Country Link
JP (1) JPS62105912A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017388A1 (en) * 1996-10-22 1998-04-30 United Technologies Corporation Regenerable solid amine sorbent
WO2009076042A1 (en) * 2007-12-11 2009-06-18 Alstom Technoloby Ltd Co2 absorption by solid materials
JP2012170414A (en) * 2011-02-23 2012-09-10 Nitto Boseki Co Ltd Method for promoting photosynthesis of photosynthetic organism
EP3378550A1 (en) * 2017-03-23 2018-09-26 Kabushiki Kaisha Toshiba Carbon dioxide adsorbent and carbon dioxide separation and recovery system
CN109453750A (en) * 2018-09-25 2019-03-12 北京化工大学常州先进材料研究院 One kind being used for CO2The synthesis of the Core-shell structure material of absorption
CN109647363A (en) * 2018-11-23 2019-04-19 中山大学 A kind of porous solid amine absorption granular materials and the preparation method and application thereof with fluorescence response
CN111825796A (en) * 2020-07-31 2020-10-27 武汉汇碳科技有限公司 For CO2Adsorbed polyacrylate composite material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017388A1 (en) * 1996-10-22 1998-04-30 United Technologies Corporation Regenerable solid amine sorbent
US5876488A (en) * 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
WO2009076042A1 (en) * 2007-12-11 2009-06-18 Alstom Technoloby Ltd Co2 absorption by solid materials
JP2012170414A (en) * 2011-02-23 2012-09-10 Nitto Boseki Co Ltd Method for promoting photosynthesis of photosynthetic organism
EP3378550A1 (en) * 2017-03-23 2018-09-26 Kabushiki Kaisha Toshiba Carbon dioxide adsorbent and carbon dioxide separation and recovery system
JP2018158302A (en) * 2017-03-23 2018-10-11 株式会社東芝 Carbon dioxide absorbing material and carbon dioxide separation recovery system
US10722838B2 (en) 2017-03-23 2020-07-28 Kabushiki Kaisha Toshiba Carbon dioxide absorbent and carbon dioxide separation and recovery system
CN109453750A (en) * 2018-09-25 2019-03-12 北京化工大学常州先进材料研究院 One kind being used for CO2The synthesis of the Core-shell structure material of absorption
CN109647363A (en) * 2018-11-23 2019-04-19 中山大学 A kind of porous solid amine absorption granular materials and the preparation method and application thereof with fluorescence response
CN111825796A (en) * 2020-07-31 2020-10-27 武汉汇碳科技有限公司 For CO2Adsorbed polyacrylate composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0437735B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
DE2027065C3 (en) Use of polymers as absorbents to remove contaminants from gases and vapors
CN105413624B (en) For the preparation method of the modified silica-gel sorbing material of anionic dye waste water processing
CN105080367B (en) A kind of composite nanometer filtering film containing composite nanoparticle and preparation method
CN107892733B (en) Heavy metal wastewater ion adsorption resin and preparation method thereof
CN113698579B (en) Porphyrin conjugated microporous polymer and its synthesis method and application
JPS62105912A (en) Gaseous carbon dioxide adsorbing porous resin
CN109499393A (en) A kind of super hydrophilic PVDF water-oil separationg film and the preparation method and application thereof separating oily wastewater
CN103894080B (en) Fill hybridized film and Synthesis and applications that hydrogel microsphere regulates water content in film
CN110038536B (en) Preparation method of chemical grafting modified polyvinylidene fluoride separation membrane
AU2009349599B2 (en) Oil adsorbent and method of manufacturing oil adsorbent
JP2011083711A (en) Boron adsorbent, resin composition for boron adsorbent and method for manufacturing boron adsorbent
JPH08208212A (en) Production of activated carbon
CN115228426A (en) Modified silicon dioxide adsorbent for trapping medium-low concentration carbon dioxide
CN108250339A (en) A kind of novel chelate resin material and its preparation method and application
JP2003064128A (en) Boron-absorbing polymer porous body, method for manufacturing the same and boron absorbing agent
TWI752157B (en) Method of cleaning resins
CN107043106B (en) A method of in surface of graphene oxide scion grafting carbonate
CN108190894B (en) acid washing circulation process of high-purity quartz sand
EP3277626B1 (en) Treating sulfuric acid
CN114573823B (en) Tree-shaped molecule functionalized mesoporous material and preparation method and application thereof
CN115138340B (en) Preparation method and application of phosphorylated magnetic chitosan adsorbent
CN1329312C (en) Method for adsorbing separating methyl nitrobenzene waste water and resource recovering by zeolite
CN106311176A (en) Particle adsorption agent for indole adsorption and preparation method thereof
CN116217851A (en) Hollow sea urchin-shaped COFs and preparation method and application thereof
CN1312049C (en) Method for separating and recovering nitro chlorobenzene from wastewater by using silanization modified zeolite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees