JPS6210541B2 - - Google Patents

Info

Publication number
JPS6210541B2
JPS6210541B2 JP56018054A JP1805481A JPS6210541B2 JP S6210541 B2 JPS6210541 B2 JP S6210541B2 JP 56018054 A JP56018054 A JP 56018054A JP 1805481 A JP1805481 A JP 1805481A JP S6210541 B2 JPS6210541 B2 JP S6210541B2
Authority
JP
Japan
Prior art keywords
polycarbonate
formula
polycarbonate resin
resin composition
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56018054A
Other languages
Japanese (ja)
Other versions
JPS57133149A (en
Inventor
Tatsuya Tomioka
Nobuo Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1805481A priority Critical patent/JPS57133149A/en
Publication of JPS57133149A publication Critical patent/JPS57133149A/en
Publication of JPS6210541B2 publication Critical patent/JPS6210541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリカーボネート樹脂組成物に関し、
詳しくは耐衝撃性、耐熱性に優れ、成形時の分子
最低下が極めて僅かであり、かつ着色を起こさな
い成形性の良好なポリカーボネート樹脂組成物に
関する。 従来、ポリカーボネート樹脂は耐衝撃性等の機
械的性質、電気的性質、耐熱性等に優れているた
め電気、機械部品として広く用いられている。さ
らに、このポリカーボネート樹脂の機械的強度や
耐熱性を向上させる目的でガラス繊維を混合する
ことも行なわれている。 しかしながら、ガラス繊維を混合する場合には
成形時の流動性やガラス繊維の分散の点から、成
形温度や成形圧力等の成形条件を厳しく設定する
ことが必要とされている。なお、最も一般的なポ
リカーボネートは分子量調節剤としてフエノール
やパラターシヤリーブチルフエノールを用いて製
造されたものである。しかしながら、これらの一
般的なポリカーボネートにガラス繊維を混合した
場合には成形性が十分でない。そこで成形条件を
緩やかにするとガラス繊維の分散が悪くなり十分
は補強効果は得られない。一方、この際、成形条
件を厳しくすると成形品の着色や変質が起こり、
特にポリカーボネートの最大の特徴である耐衝撃
性が劣るという欠点が生じる。 本発明者らは特定の末端基を有するポリカーボ
ネートとガラス繊維を混合することにより、これ
ら従来のポリカーボネート樹脂組成物の有する欠
点を解消した優れたポリカーボネート樹脂組成物
が得られることを見出し、本発明を完成するに至
つたのである。 本発明は式
The present invention relates to a polycarbonate resin composition,
Specifically, the present invention relates to a polycarbonate resin composition that has excellent impact resistance and heat resistance, has an extremely small molecular minimum during molding, and has good moldability without causing coloration. Conventionally, polycarbonate resins have been widely used as electrical and mechanical parts because of their excellent mechanical properties such as impact resistance, electrical properties, heat resistance, and the like. Furthermore, in order to improve the mechanical strength and heat resistance of this polycarbonate resin, glass fibers are also mixed. However, when glass fibers are mixed, it is necessary to strictly set molding conditions such as molding temperature and molding pressure from the viewpoint of fluidity during molding and dispersion of glass fibers. The most common polycarbonate is one produced using phenol or paratertiary butylphenol as a molecular weight regulator. However, when glass fiber is mixed with these general polycarbonates, moldability is not sufficient. Therefore, if the molding conditions are made gentler, the glass fibers will be less dispersed and a sufficient reinforcing effect will not be obtained. On the other hand, if the molding conditions are made too strict, the molded product may become discolored or deteriorate in quality.
In particular, polycarbonate has the disadvantage of poor impact resistance, which is its most important feature. The present inventors have discovered that an excellent polycarbonate resin composition that eliminates the drawbacks of these conventional polycarbonate resin compositions can be obtained by mixing polycarbonate having a specific terminal group with glass fiber, and has developed the present invention. It was completed. The present invention is based on the formula

【式】 式【formula】 formula

【式】 (式中Rは炭素数8〜22の直鎖もしくは分岐アル
キル基を意味する)または式
[Formula] (In the formula, R means a straight chain or branched alkyl group having 8 to 22 carbon atoms) or the formula

【式】 で表わされる末端基を有するポリカーボネートお
よびガラス繊維からなるポリカーボネート樹脂組
成物である。 本発明に用いられる前記の末端基を有するポリ
カーボネートは、分子量調節剤として 式
This is a polycarbonate resin composition consisting of polycarbonate having a terminal group represented by the formula: and glass fiber. The polycarbonate having the above-mentioned terminal groups used in the present invention has the formula

【式】 式【formula】 formula

【式】 (式中Rは炭素数8〜22の直鎖もしくは分岐アル
キル基を意味する)または
[Formula] (In the formula, R means a straight chain or branched alkyl group having 8 to 22 carbon atoms) or

【式】 で表わされる化合物を用いて2価フエノールとホ
スゲンとを反応させることによつて容易に製造す
ることができる。 たとえばホスゲン法では不活性有機溶剤の存在
下にアルカリ水溶液に溶解した2価フエノールと
ホスゲンとを反応させるにあたり、反応前または
反応時に前記の分子量調節剤を加えて界面重縮合
反応を行なうことによりポリカーボネートが得ら
れる。また、2価フエノールと前記の分子量調節
剤をピリジンまたはピリジンと不活性溶剤との混
合溶媒に溶解し、この溶液にホスゲンを吹込んで
反応させるピリジン法によつてもポリカーボネー
トが得られる。このようにして得られるポリカー
ボネートは常法により精製、粉末化される。 本発明においては前記の分子量調節剤は単独で
用いてもよく、あるいは2種以上混合して用いる
こともできる。 式(A)で表わされる分子量調節剤としては、たと
えばパラクミルフエノールなどがあげられる。ま
た、式(B)で表わされる分子量調節剤としては、た
とえばパラノニルフエノール、パラターシヤリー
オクチルフエノール、パラドデシルフエノール、
2−(3・5−ジメチルヘプチル)−フエノール、
4−(3・5−ジメチルヘプチル)−フエノール、
4−(1・1・3・3−テトラメチルブチル)−フ
エノール等があげられる。さらに、式(C)で表わさ
れる分子量調節剤としては、たとえばα−ナフト
ール、β−ナフトールなどがあげられる。 原料として用いられる2価フエノールとして
は、たとえばハイドロキノン、4・4′−ジヒドロ
キシジフエニル、ビス(4−ヒドロキシフエニ
ル)アルカン(特にビスフエノール A〔2・2
−ビス(4′−ヒドロキシフエニル)プロパン〕)、
ビス(4−ヒドロキシフエニル)シクロアルカ
ン、ビス(4−ヒドロキシフエニル)オキシド、
ビス(4−ヒドロキシフエニル)スルフイド、ビ
ス(4−ヒドロキシフエニル)スルホン、ビス
(4−ヒドロキシフエニル)ケトンなど、および
これらのハロゲン置換化合物があげられる。 本発明のポリカーボネート樹脂組成物は前記の
末端基を有するポリカーボネートとガラス繊維を
既知の手法により混合することにより得られる。
本発明においてポリカーボネートとガラス繊維と
の混合割合は、ポリカーボネート90〜50重量%、
好ましくは90〜60重量%に対しガラス繊維10〜50
重量%、好ましくは10〜40重量%である。この範
囲外では目的とする効果が十分に得られない。 本発明のポリカーボネート樹脂組成物は必要に
応じて無機充てん剤、難燃剤、安定剤、着色剤等
を適宜添加することができる。 本発明のポリカーボネート樹脂組成物の混合は
押出機等を用いて行なえばよく、また成形に際し
ては射出成形法などを適用することができる。 本発明のポリカーボネート樹脂組成物は従来の
ガラス繊維を混合したポリカーボネート樹脂組成
物が有する前記の欠点を解消し、優れた性質を有
するものである。すなわち本発明のポリカーボネ
ート樹脂組成物は成形性が良く、成形時の分子量
低下が極めて僅かであり、かつ着色がみられず、
また耐熱性や耐衝撃性にも優れたものである。し
たがつて、電気部品、機械部品、自動車部品など
に有用である。 次に、本発明の実施例を示す。 実施例 1 3枚後退翼を備えたジヤケツト付撹拌槽に、
1.6規定のカ性ソーダ水溶液15とビスフエノー
ルA2630gを加えて混合、溶解し、さらにこれに
メチレンクロライド7を加えた。次いで、これ
に撹拌下、ホスゲンを毎時1.1Kgの割合で吹き込
んだ。ジヤケツトに冷却水を通すことにより反応
温度を30℃以下に保ち、90分後にPHが11.5となつ
た時点でホスゲンの吹き込みを中止した。撹拌を
止め静置して反応液を2層に分離したのち、上層
の水溶液を分離除去した。 かくして得られたポリカーボネートオリゴマー
のメチレンクロライド溶液に、ビスフエノール
A790gを1.7規定のカ性ソーダ水溶液4.5に溶解
した水溶液、メチレンクロライド9、48%カ性
ソーダ水溶液400ml、分子量調節剤としてパラク
ミルフエノール136gおよび触媒としてトリエチ
ルアミン2.7gを加えて撹拌し、縮合反応を開始
した。ジヤケツトには冷却水を通して反応温度を
30℃以下に保持しながら約1時間後、分子量が十
分に高くなつたことを確認したのちに撹拌を止め
た。 このようにして得られた縮合反応液をメチレン
クロライド18に溶解希釈したのち十分水洗し不
純物を除去し、次いでニーダーにより加熱濃縮し
て粉末状ポリカーボネートを得た。得られたポリ
カーボネートの分子量は25300であつた。 十分に乾燥したポリカーボネート粉末85重量部
とガラス繊維(長さ6mm)15重量部とを混合し、
30mmベント付押出機によりペレツトを作り、成形
温度340℃で射出成形を行ない成形品を得た。得
られた成形品はガラス繊維の分散もよく、着色の
ないものであつた。得られた成形品の物性測定結
果を第1表に示す。 実施例 2 分子量調節剤としてパラノニルフエノール138
gを用い、その他は実施例1と同様にしてポリカ
ーボネート樹脂組成物の成形品を得た。得られた
成形品の物性測定結果を第1表に示す。 実施例 3 分子量調節剤としてβ−ナフトール144gを用
い、その他は実施例1と同様にしてポリカーボネ
ート樹脂組成物の成形品を得た。得られた成形品
の物性測定結果を第1表に示す。 比較例 1〜2 分子量調節剤としてそれぞれパラターシヤリー
ブチルフエノール96g、フエノール60gを用い、
その他は実施例1と同様にしてポリカーボネート
樹脂組成物の成形品を得た。得られた成形品の物
性測定結果を第1表に示す。
It can be easily produced by reacting divalent phenol and phosgene using a compound represented by the formula. For example, in the phosgene method, when divalent phenol dissolved in an alkaline aqueous solution is reacted with phosgene in the presence of an inert organic solvent, the above-mentioned molecular weight regulator is added before or during the reaction to perform an interfacial polycondensation reaction, thereby forming a polycarbonate. is obtained. Polycarbonate can also be obtained by the pyridine method, in which divalent phenol and the above-mentioned molecular weight regulator are dissolved in pyridine or a mixed solvent of pyridine and an inert solvent, and phosgene is blown into this solution to react. The polycarbonate thus obtained is purified and powdered by conventional methods. In the present invention, the above-mentioned molecular weight regulators may be used alone or in combination of two or more. Examples of the molecular weight regulator represented by formula (A) include paracumylphenol. Further, as the molecular weight regulator represented by formula (B), for example, paranonylphenol, paratertiary octylphenol, paradodecylphenol,
2-(3,5-dimethylheptyl)-phenol,
4-(3,5-dimethylheptyl)-phenol,
Examples include 4-(1.1.3.3-tetramethylbutyl)-phenol. Furthermore, examples of the molecular weight regulator represented by formula (C) include α-naphthol and β-naphthol. Examples of divalent phenols used as raw materials include hydroquinone, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)alkanes (especially bisphenol A [2,2
-bis(4′-hydroxyphenyl)propane]),
Bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl)oxide,
Examples include bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone, and halogen-substituted compounds thereof. The polycarbonate resin composition of the present invention can be obtained by mixing the above-mentioned polycarbonate having end groups and glass fiber by a known method.
In the present invention, the mixing ratio of polycarbonate and glass fiber is 90 to 50% by weight of polycarbonate,
Preferably 90-60% by weight to 10-50% glass fiber
% by weight, preferably 10-40% by weight. Outside this range, the desired effect cannot be sufficiently obtained. An inorganic filler, a flame retardant, a stabilizer, a coloring agent, etc. can be appropriately added to the polycarbonate resin composition of the present invention, if necessary. The polycarbonate resin composition of the present invention may be mixed using an extruder or the like, and injection molding or the like may be used for molding. The polycarbonate resin composition of the present invention eliminates the above-mentioned drawbacks of conventional polycarbonate resin compositions mixed with glass fibers and has excellent properties. In other words, the polycarbonate resin composition of the present invention has good moldability, shows very little molecular weight decrease during molding, and is free from coloration.
It also has excellent heat resistance and impact resistance. Therefore, it is useful for electrical parts, mechanical parts, automobile parts, etc. Next, examples of the present invention will be shown. Example 1 A stirring tank with a jacket equipped with three swept blades,
1.6 N caustic soda aqueous solution 15 and 2630 g of bisphenol A were added, mixed and dissolved, and methylene chloride 7 was further added thereto. Next, phosgene was blown into this at a rate of 1.1 kg/hour while stirring. The reaction temperature was kept below 30°C by passing cooling water through the jacket, and when the pH reached 11.5 after 90 minutes, the blowing of phosgene was stopped. After the stirring was stopped and the mixture was left standing to separate the reaction solution into two layers, the aqueous solution in the upper layer was separated and removed. Bisphenol was added to the methylene chloride solution of the polycarbonate oligomer thus obtained.
An aqueous solution of 790 g of A dissolved in a 1.7 N aqueous caustic soda solution, 400 ml of a 48% caustic soda aqueous solution, 136 g of paracumylphenol as a molecular weight regulator, and 2.7 g of triethylamine as a catalyst were added and stirred to initiate a condensation reaction. It started. Cooling water is passed through the jacket to maintain the reaction temperature.
After about 1 hour while maintaining the temperature at 30° C. or lower, stirring was stopped after confirming that the molecular weight had become sufficiently high. The condensation reaction solution thus obtained was dissolved and diluted in methylene chloride 18, thoroughly washed with water to remove impurities, and then heated and concentrated using a kneader to obtain a powdered polycarbonate. The molecular weight of the obtained polycarbonate was 25,300. Mix 85 parts by weight of sufficiently dried polycarbonate powder and 15 parts by weight of glass fiber (length 6 mm),
Pellets were made using an extruder with a 30 mm vent, and injection molding was performed at a molding temperature of 340°C to obtain a molded product. The resulting molded product had good dispersion of glass fibers and was free from coloration. Table 1 shows the results of measuring the physical properties of the molded product obtained. Example 2 Paranonylphenol 138 as a molecular weight regulator
A molded article of a polycarbonate resin composition was obtained in the same manner as in Example 1, except that the same procedure was used as in Example 1. Table 1 shows the results of measuring the physical properties of the molded product obtained. Example 3 A molded article of a polycarbonate resin composition was obtained in the same manner as in Example 1 except that 144 g of β-naphthol was used as the molecular weight regulator. Table 1 shows the results of measuring the physical properties of the molded product obtained. Comparative Examples 1 to 2 Using 96 g of paratertiary butylphenol and 60 g of phenol as molecular weight regulators,
Otherwise, a molded article of a polycarbonate resin composition was obtained in the same manner as in Example 1. Table 1 shows the results of measuring the physical properties of the molded product obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 式 (式中Rは炭素数8〜22の直鎖もしくは分岐アル
キル基を意味する) または式 で表わされる末端基を有するポリカーボネートお
よびガラス繊維からなるポリカーボネート樹脂組
成物。 2 ポリカーボネート90〜50重量%およびガラス
繊維10〜50重量%からなる特許請求の範囲第1項
に記載のポリカーボネート樹脂組成物。
[Claims] 1 formula formula (In the formula, R means a straight chain or branched alkyl group having 8 to 22 carbon atoms) or the formula A polycarbonate resin composition comprising a polycarbonate having a terminal group represented by: and glass fiber. 2. The polycarbonate resin composition according to claim 1, comprising 90 to 50% by weight of polycarbonate and 10 to 50% by weight of glass fiber.
JP1805481A 1981-02-12 1981-02-12 Polycarbonate resin composition Granted JPS57133149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1805481A JPS57133149A (en) 1981-02-12 1981-02-12 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1805481A JPS57133149A (en) 1981-02-12 1981-02-12 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPS57133149A JPS57133149A (en) 1982-08-17
JPS6210541B2 true JPS6210541B2 (en) 1987-03-06

Family

ID=11960976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1805481A Granted JPS57133149A (en) 1981-02-12 1981-02-12 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPS57133149A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506472A1 (en) * 1985-02-23 1986-08-28 Bayer Ag, 5090 Leverkusen NEW POLYDIORGANOSILOXANE POLYCARBONATE BLOCK COPOLYMERS
DE3519690A1 (en) * 1985-02-26 1986-08-28 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS BASED ON POLYSILOXANE-POLYCARBONATE BLOCK COPOLYMERS
DE3506680A1 (en) * 1985-02-26 1986-08-28 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS BASED ON POLYSILOXANE-POLYCARBONATE BLOCK COPOLYMERS
US5011967A (en) * 1986-10-10 1991-04-30 General Electric Company Method for preparing aromatic bischloroformate compositions
US4774315A (en) * 1986-12-23 1988-09-27 General Electric Company Copoly isophthalate carbonate end-capped with paracumylphenol
US5037937A (en) * 1987-02-13 1991-08-06 Idemitsu Petrochemical Co., Ltd. Novel polycarbonate resins, process for production of said resins, and compositions containing said resins
US4902735A (en) * 1987-06-03 1990-02-20 Idemitsu Petrochemical Co., Ltd. High impact resistant polycarbonate and process for producing said polycarbonate
JPH0621226B2 (en) * 1987-06-03 1994-03-23 出光石油化学株式会社 Polycarbonate resin composition
JPH0727662B2 (en) * 1987-08-27 1995-03-29 出光石油化学株式会社 Optical disc substrate
NL8702632A (en) * 1987-11-04 1989-06-01 Gen Electric POLYCARBONATE WITH LOW RELATIVE VISCOSITY AND POLYMER MIXTURES.
US4814421A (en) * 1987-12-04 1989-03-21 General Electric Company Hydroxy terminated polycarbonates
US4814395A (en) * 1987-12-14 1989-03-21 General Electric Company Ester terminated polycarbonates
DE3821340A1 (en) * 1988-06-24 1989-12-28 Bayer Ag POLYCARBONATES WITH MESOGENIC CONNECTIONS AS END GROUPS, THEIR PRODUCTION AND USE
WO1991000885A1 (en) * 1989-07-07 1991-01-24 Idemitsu Petrochemical Co., Ltd. Polycarbonate-polydimethylsiloxane copolymer and method of production thereof
DE10128705A1 (en) 2001-06-13 2002-12-19 Bayer Ag Polycarbonates, polyester carbonates and polyesters with branched end groups
DE10219229A1 (en) 2002-04-30 2003-11-13 Bayer Ag Polycarbonates, polyester carbonates and polyesters with special branched end groups
US6916899B2 (en) 2002-10-21 2005-07-12 Bayer Aktiengesellschaft Polycarbonates, polyester carbonates and polyesters having lateral, cycloalkyl-substituted phenols

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512500A (en) * 1974-06-19 1976-01-10 Ikegami Tsushinki Kk
JPS5120993A (en) * 1974-08-14 1976-02-19 Mitsubishi Gas Chemical Co TAINETSUSEIHORIKAABONEETOJUSHINO SEIZOHOHO
JPS5211046A (en) * 1975-07-12 1977-01-27 Bayer Ag Method of manufacturing dispersion disc
JPS5250078A (en) * 1975-10-20 1977-04-21 Santou Sangyo Kk Iorn powder press
JPS5545792A (en) * 1978-09-27 1980-03-31 Bayer Ag Polycarbonates having alkylphenyl end group* their manufacture and their use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512500A (en) * 1974-06-19 1976-01-10 Ikegami Tsushinki Kk
JPS5120993A (en) * 1974-08-14 1976-02-19 Mitsubishi Gas Chemical Co TAINETSUSEIHORIKAABONEETOJUSHINO SEIZOHOHO
JPS5211046A (en) * 1975-07-12 1977-01-27 Bayer Ag Method of manufacturing dispersion disc
JPS5250078A (en) * 1975-10-20 1977-04-21 Santou Sangyo Kk Iorn powder press
JPS5545792A (en) * 1978-09-27 1980-03-31 Bayer Ag Polycarbonates having alkylphenyl end group* their manufacture and their use

Also Published As

Publication number Publication date
JPS57133149A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
JPS6210541B2 (en)
US4605731A (en) Method for preparing linear polycarbonate from cyclic oligomer with aryl carbanion generating catalyst
JPH0210175B2 (en)
JPH05186675A (en) Polymer blend comprising polycarbonate/ polysiloxane block copolymer, polycarbonate and polyester-carbonate copolymer
EP0023572B1 (en) Process for the production of mixtures of alkylated aromatic polyhydroxy compounds, these mixtures of products and their use in the production of polycarbonates
US4562242A (en) Branched polycarbonate from carboxy containing diphenol
US4294953A (en) Process for preparing a branched polycarbonate
JPS5867720A (en) Separation of polycarbonate based on 4,4'-dihydroxydiphenylsulfone
US4306055A (en) Polycarbonates having sulfur-containing phenolic diols incorporated therein
DE3120594A1 (en) NEW COPOLYESTER CARBONATES AND THEIR BLENDING WITH KNOWN POLYCARBONATES TO THERMOPLASTIC MOLDS
JPH0349930B2 (en)
JPS6284035A (en) Triphenol compound
JP4080578B2 (en) Flame retardant polyester carbonate with low glass transition temperature
DE2833024A1 (en) POLYMER BLEND WITH IMPROVED HYDROLYTIC STABILITY
JP2968402B2 (en) Manufacturing method of carbonate type flame retardant
JPH0342288B2 (en)
JPS6339610B2 (en)
US3897391A (en) Process for preparing polycarbonate
JPH09124667A (en) Silane having oxalamide-functional group and its use as plastic additive
JPH0315658B2 (en)
JPS6242941B2 (en)
KR0180827B1 (en) Method for manufacturing branched polycarbonate
JPH01245050A (en) Aromatic polycarbonate resin blend
KR100446472B1 (en) Preparation method of branched polycarbonate resin using water-soluble branching agent instead of organic branching agent
JPH0469178B2 (en)