JPS62104970A - Functionating treatment of hollow yarn membrane - Google Patents

Functionating treatment of hollow yarn membrane

Info

Publication number
JPS62104970A
JPS62104970A JP24369785A JP24369785A JPS62104970A JP S62104970 A JPS62104970 A JP S62104970A JP 24369785 A JP24369785 A JP 24369785A JP 24369785 A JP24369785 A JP 24369785A JP S62104970 A JPS62104970 A JP S62104970A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
fibrils
wall surface
functionalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24369785A
Other languages
Japanese (ja)
Inventor
笹木 勲
憲治 串
卓司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24369785A priority Critical patent/JPS62104970A/en
Publication of JPS62104970A publication Critical patent/JPS62104970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質中空糸膜の機能化処理方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for functionalizing porous hollow fiber membranes.

本発明において機能化処理とは親水性、制電性、生体適
合性、特定物質例えば色素、蛋白質、脂質などの吸着性
、抗菌性、高度の撥水性等もともとの多孔質中空糸膜が
有していない機能を該多孔質中空糸膜に賦与する処理を
いい、機能性モノマーとは多孔質中空糸膜に結合した時
に上記機能を該多孔質中空糸膜に付与する能力を有する
モノマーをいう。
In the present invention, functionalization treatment refers to properties that the original porous hollow fiber membrane has, such as hydrophilicity, antistatic property, biocompatibility, adsorption of specific substances such as dyes, proteins, and lipids, antibacterial properties, and high water repellency. A functional monomer refers to a treatment that imparts a function to the porous hollow fiber membrane that it does not already have, and a functional monomer refers to a monomer that has the ability to impart the above function to the porous hollow fiber membrane when bonded to the porous hollow fiber membrane.

〔従来の技術〕[Conventional technology]

中空糸膜としてはセルロース系、ポリオレフィン系、ポ
リスルホン系等種々の素材の膜が開発され、各々の素材
の特性に応じた分野で使用されてきた。
As hollow fiber membranes, membranes made of various materials such as cellulose, polyolefin, and polysulfone have been developed and used in fields depending on the characteristics of each material.

しかし膜の用途開発が進むにつれ工、耐薬品性と親水性
、生体適合性と吸着能、親水性と抗菌性、耐熱性と親水
性等複数の機能を要求される用途が多くなってきた。こ
れらの機能の中にはもともと相反する性質のため両者を
満足する素材がないとか特定の複数の機能を有する素材
は合成が困難であったり、中空糸膜とするのが困難であ
るという問題の他、特定の用途ごとに素材を選択し℃中
空糸膜とするのではロットがまとまらず開発費が高くつ
きすぎるという経済的問題があった。
However, as the development of membrane applications progresses, there are an increasing number of applications that require multiple functions such as chemical resistance, hydrophilicity, biocompatibility and adsorption capacity, hydrophilicity and antibacterial properties, heat resistance and hydrophilicity, etc. Some of these functions originally have conflicting properties, so there are problems such as there is no material that satisfies both, or materials that have multiple specific functions are difficult to synthesize, or it is difficult to make into hollow fiber membranes. In addition, there was an economic problem in that selecting materials for each specific application and making them into °C hollow fiber membranes would result in a lot failure and development costs would be too high.

そこで既存の微多孔質中空糸膜に新たな機能を賦与する
機能化光面処理方法が活発に検討されてきた。
Therefore, functionalized optical surface treatment methods that impart new functions to existing microporous hollow fiber membranes have been actively investigated.

例えばポリオレフィン系の膜に親水性を賦与する方法と
しては界面活性剤を塗布するもの(特開昭47−142
69号公報)やγ線等の放射線を照射後(メタ)アクリ
ル酸をグラフト重合するもの(特開昭55−10623
9号公報)がある。
For example, a method of imparting hydrophilicity to a polyolefin film is to apply a surfactant (Japanese Patent Laid-Open No. 47-142
No. 69) and those in which (meth)acrylic acid is graft-polymerized after irradiation with radiation such as γ-rays (Japanese Patent Laid-Open No. 55-10623)
Publication No. 9).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前者は使用中に徐々に界面活性剤が脱落し℃処理液中に
溶出し1くるという問題があり、また後者は線源管理が
難しく、一般工業用途には適していないとか、放射線が
高エネルギーのため中空糸膜素材を傷め易いという問題
があった。
The former has the problem that the surfactant gradually falls off during use and elutes into the processing solution at ℃, and the latter has the problem that it is difficult to control the radiation source and is not suitable for general industrial use, or the radiation is high energy. Therefore, there was a problem that the hollow fiber membrane material was easily damaged.

さらに後者は特に微多孔質中空糸膜としてその微小空孔
が中空糸内壁面から外壁面にかけて幾重にも積層したフ
ィブリルとフィブリルの両端を固定する節部とによりで
きるフィブリル間の空間で形成された微小空孔がそのフ
ィブリル間の空間として相互につながって中空糸内壁面
から外壁面まで貫通したものであるものを用いる場合は
膜の分画特性を左右するフィブリルが切れる等高エネル
ギー線による膜の傷みが大きいため用い難いという欠点
があった。
Furthermore, the latter is particularly a microporous hollow fiber membrane in which the micropores are formed in the spaces between the fibrils created by the fibrils laminated in multiple layers from the inner wall surface to the outer wall surface of the hollow fibers and the knots that fix both ends of the fibrils. When using a hollow fiber in which micropores are interconnected as spaces between the fibrils and penetrate from the inner wall surface to the outer wall surface of the hollow fiber, a membrane using contour energy rays that cuts the fibrils, which determines the fractionation characteristics of the membrane, is used. The disadvantage was that it was difficult to use because of the large amount of damage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはこのような現状に鑑み、経隣性、生産性に
優れ、耐久性のあり、かつ膜の損傷の少ない微多孔質中
空糸膜の機能化処理方法に関して鋭意検討した結果本発
明に到達した。
In view of the current situation, the inventors of the present invention have conducted intensive studies on a method for functionalizing microporous hollow fiber membranes that has excellent adhesion properties, productivity, and durability, and causes less damage to the membrane.As a result, the present invention has been developed. reached.

即ち本発明の要旨は、機能性七ツマ−及び光増感剤とを
含有する反応液を微多孔質中空糸膜に含浸させ、紫外線
照射後洗浄処理を行う中空糸膜の機能化処理方法にある
That is, the gist of the present invention is to provide a method for functionalizing a hollow fiber membrane, in which a microporous hollow fiber membrane is impregnated with a reaction solution containing a functional 7mer and a photosensitizer, and a cleaning treatment is performed after irradiation with ultraviolet rays. be.

本発明において用いられる機能性七ツマ−としては賦与
すべき機能に応じて種々の官能基を有する七ツマ−を使
用することができる。
As the functional hexamer used in the present invention, hexamers having various functional groups can be used depending on the function to be imparted.

親水性、生体適合性、訓電性を賦与するためには、例え
ば−NH,基、−OH基、−COOH基、+OC,H,
八〇H基、へQC,H6福OH1÷QC,H,鮨OCH
,、N ”f CHI )*基などのような親水性基を
有するモノマーが用いられ、この例として2−ヒドロキ
シエチルアクリレート、2−ヒドロキシエチルメタクリ
レート、アクリル酸、メタクリル酸、アクリルアミド、
ジメチルアミノエチルアクリレート、N−ヒドロキシエ
チル−N−メチルアクリルアミド、N−ヒドロキシメチ
ルアクリルアミド、ボリエテレングリコールモノアクリ
レ−ト、ポリエチレングリコールモノメタクリレート、
ポリグロピレングリコールモノアクリレート、2−メタ
クリロイルオキシエチルコハク醒、ビニルピロリドン、
ビニルピリジン等を挙げることができる。
In order to impart hydrophilicity, biocompatibility, and electrical conductivity, for example, -NH, -OH, -COOH, +OC, H,
80H group, to QC, H6 fortune OH1÷QC, H, sushi OCH
Monomers having hydrophilic groups such as ,,N"f CHI )* groups are used, examples of which include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid, methacrylic acid, acrylamide,
Dimethylaminoethyl acrylate, N-hydroxyethyl-N-methylacrylamide, N-hydroxymethylacrylamide, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate,
Polyglopylene glycol monoacrylate, 2-methacryloyloxyethyl succinate, vinylpyrrolidone,
Examples include vinylpyridine.

又、色素、蛋白質、脂質等を吸着する機能を賦与する場
合は一8o、I(基、−8O3Nm基、−0SO。
In addition, when imparting the function of adsorbing pigments, proteins, lipids, etc., -8o, I (group, -8O3Nm group, -0SO).

Na基を有するモノマーが用いられ、この例としては2
−アクリルアミド−2−メチルプロパンスルホン酸、ス
ルホエチルアクリレート、スルホプロピルアクリレート
、スルホフェニルアクリレート等を挙げることができ、
色素、蛋白質、脂質等の吸着機能と共に抗菌機能をも付
与する場合には−NモCH,)、・CH,SO,−基、
−N (CHs)sC/−基を有するモノマーが用いら
れ、このようなモノマーの例としてはアクリロイルオキ
シトリメチルアンモニウムクロライド、トリメチルアミ
ノエチルメタクリレートのメチル硫酸塩を挙げられる。
Monomers having Na groups are used, examples of which include 2
-acrylamido-2-methylpropanesulfonic acid, sulfoethyl acrylate, sulfopropyl acrylate, sulfophenyl acrylate, etc.
When imparting an antibacterial function as well as an adsorption function for pigments, proteins, lipids, etc., -NmoCH, ), CH, SO, - group,
Monomers having a -N (CHs)sC/- group are used; examples of such monomers include acryloyloxytrimethylammonium chloride and methyl sulfate of trimethylaminoethyl methacrylate.

一方、例えば3,3,3,2.2−ペンタフルオロプロ
ピルアクリレート、1,1,1,3,3.3−へキサフ
ルオログロビルメタクリレート、22,33゜44.5
5−オクタフルオロペンチルアクリレート等の÷CF、
)F基等のパーフルオロアルキル基を有するモノマーは
高度な撥水性を与える。
On the other hand, for example, 3,3,3,2.2-pentafluoropropyl acrylate, 1,1,1,3,3.3-hexafluoroglobyl methacrylate, 22,33°44.5
÷CF of 5-octafluoropentyl acrylate, etc.
) Monomers having perfluoroalkyl groups such as F groups provide a high degree of water repellency.

また、アクリロイルオキシエチルフォスフェート、メタ
クリロイルオキシエチル7オスフエート等の一〇−P÷
OH)、基を有するモノマーは親水性、制電性を付与す
る。
In addition, acryloyloxyethyl phosphate, methacryloyloxyethyl 7 phosphate, etc.
OH), a monomer having a group imparts hydrophilicity and antistatic properties.

これらの機能性モノマーは単独又は併立できる機能であ
る範囲で2種以上の混合系で使用することXb−できる
These functional monomers can be used alone or in a mixture of two or more to the extent that they can function together.

なお、機能性モノマーとしては紫外線照射時のグラフト
活性を考慮すると、重合性基としてアクリロイルオキシ
基、メタクリ四イルオキシ基又はアクリルアミド基を有
するモノマーが好ましい。
In addition, in consideration of the graft activity upon irradiation with ultraviolet rays, the functional monomer is preferably a monomer having an acryloyloxy group, a methacryloyloxy group, or an acrylamide group as a polymerizable group.

本発明で用いられる光増感剤としては光子を吸収して励
起し、基材となる微多孔質中空糸膜を構成する素材から
水素を引抜き、基材にラジカル活性点を形成できるもの
が用いられ、このような光増感剤の例としてベンゾフェ
ノン、3゜3’、 4 、4’−ベンゾフェノンテトラ
カルボン酸無水物、4,4′−ジメトキシベンゾフェノ
ン、4−クロロベンゾフェノン、2,4−ジクロロベン
ゾフェノン、4,4′−ジクロロベンゾフェノン、4−
フロロベンゾフェノン、4−トリフロロメチルベンゾフ
ェノン、4−メトキシベンゾフェノン、4−メチルベン
ゾフェノン、 4.4’−ジメチルベンゾフェノン、4
−シアノベンゾフェノン、Q−ペンソイルベンゾフェノ
ン等のベンゾフェノン系光増感剤、ベンジル、ジベンジ
ルケトン等のベンジル系光増感剤、2−メチルチオキサ
ントン、2−エチルチオキサントン、チオキサントン、
2−イソプロピルチオキサントン等のチオキサントン系
光増感剤、アントラキノン、2−二チルアントラキノン
、2−クロロアントラキノン、2−t−ブチルアントラ
キノン等のアント2キノン系光増感剤、ベンズアルデヒ
ド、4−メトキシベンズアルデヒド、4−メチルベンズ
アルデヒド、1−ナツトアルデヒド等のベンズアルデヒ
ド系光増感剤、2,3−ブタンジオン、2,3−ペンタ
ンジオン等のジオン系光増感剤、ジベンゾスベロン、メ
チル−〇−ペンソイルベンゾエート、9−フルオレノン
、3.4−ベンゾフルオレン、l−アセチルナフタレン
、ベンズアントロン、9.10−フェナントレンキノン
、2−ベンゾイルナフタレン、3,5−ジメチルアセト
フェノン、4−ブロモアセトフェノン等をあげることが
できる。
The photosensitizer used in the present invention is one that can absorb and excite photons, extract hydrogen from the material constituting the microporous hollow fiber membrane that is the base material, and form radical active sites on the base material. Examples of such photosensitizers include benzophenone, 3°3', 4,4'-benzophenone tetracarboxylic anhydride, 4,4'-dimethoxybenzophenone, 4-chlorobenzophenone, and 2,4-dichlorobenzophenone. , 4,4'-dichlorobenzophenone, 4-
Fluorobenzophenone, 4-trifluoromethylbenzophenone, 4-methoxybenzophenone, 4-methylbenzophenone, 4.4'-dimethylbenzophenone, 4
- benzophenone photosensitizers such as cyanobenzophenone and Q-pensoylbenzophenone, benzyl photosensitizers such as benzyl and dibenzyl ketone, 2-methylthioxanthone, 2-ethylthioxanthone, thioxanthone,
Thioxanthone photosensitizers such as 2-isopropylthioxanthone, anthraquinone photosensitizers such as anthraquinone, 2-ditylanthraquinone, 2-chloroanthraquinone, 2-t-butylanthraquinone, benzaldehyde, 4-methoxybenzaldehyde, Benzaldehyde photosensitizers such as 4-methylbenzaldehyde and 1-nataldehyde, diion photosensitizers such as 2,3-butanedione and 2,3-pentanedione, dibenzosuberone, methyl-〇-pensoylbenzoate , 9-fluorenone, 3,4-benzofluorene, l-acetylnaphthalene, benzanthrone, 9,10-phenanthrenequinone, 2-benzoylnaphthalene, 3,5-dimethylacetophenone, 4-bromoacetophenone, and the like.

従来より光重合開始剤としてベンゾフェノン、ベンジル
や2−メチルチオキサントン等の光増感剤とジェタノー
ルアミン、ジエチルアミン等の水素を放出し易い化合物
との組合せが用いられており、このような組合せは重合
を開始するためのラジカルを容易に発生させるが、この
ような組合せを光で励起して発生したラジカルは水素引
き抜き能力が低く、このような組合せを本願発明の光増
感剤として用いても微多孔質中杢糸膜にラジカル活性点
を形成することができず、機能性モノマーを系に共存さ
せても機能性上ツマ−からのホモポリマーが生成するだ
けで多孔質中空糸膜を機能化処理できない。従って本願
発明の光増感剤としてはアミンのような水素を引抜かれ
易い化合物を共存させないで用いる。
Conventionally, a combination of a photosensitizer such as benzophenone, benzyl, or 2-methylthioxanthone and a compound that easily releases hydrogen such as jetanolamine or diethylamine has been used as a photopolymerization initiator. However, the radicals generated by exciting such a combination with light have a low hydrogen abstraction ability, and even if such a combination is used as a photosensitizer of the present invention, it will have a very low hydrogen abstraction ability. It is not possible to form radical active sites in the porous hollow fiber membrane, and even if a functional monomer coexists in the system, only a homopolymer from the functional monomer is generated, making the porous hollow fiber membrane functional. I can't process it. Therefore, the photosensitizer of the present invention is used without the coexistence of a compound that easily abstracts hydrogen, such as an amine.

本発明において機能化処理の対象となる微多孔質中空糸
膜の素材罠ついては特に制限はなく限外1過膜、精密V
過膜、ポリエチレンやポリプロピレン等のポリオレフィ
ンが比較的安価な素材であり、加工が容易で、耐薬品性
に優れる点で好ましい。
In the present invention, the material of the microporous hollow fiber membrane to be functionalized is not particularly limited;
Polyolefins such as polyethylene and polypropylene are preferred because they are relatively inexpensive materials, easy to process, and have excellent chemical resistance.

また、微多孔質中空糸膜の構造が、その微小空孔が中空
糸内壁面から外壁面にかけて幾重にも積層したフィブリ
ルとフィブリルの両端を固定する節部とによりできるフ
ィブリル間の空間で形成された微小空孔がそのフィブリ
ル間の空間として相互につながって中空糸内壁面から外
壁面まで貫通したものであると、比較的小さい粒径を阻
止できてかつ1過量が大きくなるので好ましく、さらに
放射線による処理では他の構造の膜に較べて損傷をうけ
易い傾向にあるにもかかわらず、本発明の方法では損傷
が少ないこと、水素引抜き型光増感剤により容易に中空
糸膜かも水素が引抜かれ、機能性モノマーがグラフトし
得るラジカル活性部を容易に形成できるので好適である
In addition, the structure of the microporous hollow fiber membrane is such that the micropores are formed in the spaces between the fibrils, which are formed by the fibrils laminated in multiple layers from the inner wall surface to the outer wall surface of the hollow fibers, and the knots that fix both ends of the fibrils. It is preferable that the micropores are connected to each other as spaces between the fibrils and penetrate from the inner wall surface to the outer wall surface of the hollow fiber, since it is possible to prevent relatively small particle diameters and increase the 1 excess amount. However, the method of the present invention causes less damage, and the hydrogen-drawing photosensitizer allows hydrogen to be easily drawn from hollow fiber membranes. This is suitable because it can easily form a radically active part that can be extracted and grafted with a functional monomer.

このような中空糸膜としては上記の構造を有し、 ビ)該フィブリルの平均的な太さ(dM)  と平均的
な長さく A’M ) が ctM=0.02〜0.3μ JM=0.5〜3.0μ であり、 (ロ) 該節部の繊維長方向への平均的長さくA’K)
が Jx=0.1〜1.0 μ であり、 (/−1フィブリル間に形成される空孔の平均的な巾(
己V)と平均的な長さく Jv )  が1vldv 
=  3〜50 であり、dvとctMの関係が dv/九=0.3〜5 である ような空孔率30〜90 mo1%のポリエチレン中空
糸がその好ましい例として示される。
Such a hollow fiber membrane has the above-mentioned structure, and (b) the average thickness (dM) and average length (A'M) of the fibrils are ctM=0.02-0.3μ JM= 0.5 to 3.0μ, and (b) the average length of the knot in the fiber length direction A'K)
is Jx = 0.1 to 1.0 μ, and (/-1 average width of pores formed between fibrils (
Self V) and average length Jv) are 1vldv
A preferable example is a polyethylene hollow fiber having a porosity of 30 to 90 mo1%, in which the relationship between dv and ctM is dv/9=0.3 to 5.

また、特公昭56−52123号に示されるようなポリ
プロピレン中空糸も好ましく用いられる。
Polypropylene hollow fibers as shown in Japanese Patent Publication No. 56-52123 are also preferably used.

本発明の方法においては微多孔質中空糸膜に上述のよう
な機能性モノマーと光増感剤とを含有する反応液を含浸
させるが、機能性モノマーが常温で液体であり、光増感
剤が機能性モノマーに溶解するものである場合はこの両
者のみを反応液とすることもできるが、この系が常温で
高粘度の時、光増感剤の溶解性が充分でない場合あるい
は固体の場合は機能性モノマーと光増感剤の両者を溶解
できる溶剤にこの両者を溶解したものを反応液として用
いる。このような溶剤の例としてはアセトン、メチルエ
チルケトン、酢酸エチル等を挙げることができる。
In the method of the present invention, a microporous hollow fiber membrane is impregnated with a reaction solution containing a functional monomer and a photosensitizer as described above. If the sensitizer is soluble in the functional monomer, only the two can be used as the reaction solution, but if the system has high viscosity at room temperature, the photosensitizer is not sufficiently soluble, or is solid. In this method, a reaction solution prepared by dissolving both a functional monomer and a photosensitizer in a solvent capable of dissolving them is used. Examples of such solvents include acetone, methyl ethyl ketone, ethyl acetate, and the like.

機能性モノマーと光増感剤の配合割合は両者のモル比が
1000−1/1であることが好ましく、100〜1.
5 / 1であることがより好ましい。両者のモル比が
1000/1より大きくなると機能性は発現されろもの
の、濾過速度が低下する傾向にあり、モル比が1/1未
満の場合は光増感剤の使用効率が悪くなると共に、グラ
フトされた機能性モノマーの重合度が充分高まらず、機
能性が充分発揮できない傾向にある。
The molar ratio of the functional monomer and photosensitizer is preferably 1000-1/1, preferably 100-1.
More preferably, it is 5/1. If the molar ratio of the two is greater than 1000/1, the functionality will be expressed, but the filtration rate will tend to decrease, and if the molar ratio is less than 1/1, the usage efficiency of the photosensitizer will deteriorate, The degree of polymerization of the grafted functional monomer does not increase sufficiently, and functionality tends to be insufficient.

微多孔質中空糸膜への反応液の含浸は中空糸へ反応液を
シャワー状、カーテン状にして塗布し、含浸させること
も出来るが、浸漬法で行なった方が均一に反応液を含浸
させることが出来る点で好ましい。又、浸漬法で行なう
場合は中空糸が通過する反応液含浸槽の口を小さくすれ
ば、加圧下又は減圧下で中空糸に反応液を含浸させるこ
とが可能である。
The microporous hollow fiber membrane can be impregnated with the reaction liquid by applying the reaction liquid to the hollow fibers in a shower or curtain form, but it is better to use the dipping method, which allows the reaction liquid to be impregnated more uniformly. It is preferable because it can be done. Furthermore, when using the dipping method, by making the opening of the reaction liquid impregnating tank through which the hollow fibers pass small, it is possible to impregnate the hollow fibers with the reaction liquid under pressure or reduced pressure.

本発明においては前記反応液を含浸した微多孔質中空糸
膜に紫外線を照射してグラフト重合を行うが、機能性モ
ノマーの中空糸膜に対するグラフト率即ち中空糸膜、重
量に対するグラフト重合した機能性モノマ〜X童の割合
を0.1〜1001it%とすることが好ましく、0.
5〜50重量%であることがより好ましい。グラフト率
が100重量%をこえても機能性の向上はなくむしろf
過速度の低下をもたらし、グラフト率がo、1!t%未
満では充分な機能性を得るのが難しい。
In the present invention, the microporous hollow fiber membrane impregnated with the reaction solution is irradiated with ultraviolet rays to carry out graft polymerization. It is preferable that the proportion of monomer to X child is 0.1 to 1001 it%, and 0.
More preferably, it is 5 to 50% by weight. Even if the grafting rate exceeds 100% by weight, there is no improvement in functionality;
This results in a reduction in overspeed and a grafting rate of o,1! If it is less than t%, it is difficult to obtain sufficient functionality.

グラフト率を好ましい範囲に設定するだめの方法として
は中空糸膜に含浸させる機能性モノマー量、紫外線照射
エネルギー等を調節する。
Another way to set the grafting ratio within a preferable range is to adjust the amount of functional monomer with which the hollow fiber membrane is impregnated, the energy of ultraviolet irradiation, etc.

機能性モノマー含浸量は中空糸重量に対し0.1〜50
0重量%とするのが好ましく、紫外線照射エネルギーは
365 nm近傍の波長で測定してI X 10 〜1
0 Joule/cm”とするのが好ましく、5 X 
10 〜1 joule/crrL’とするのがより好
ましい。
The amount of functional monomer impregnated is 0.1 to 50% based on the weight of the hollow fiber.
It is preferable to set it to 0% by weight, and the ultraviolet irradiation energy is measured at a wavelength of around 365 nm, and I
0 Joule/cm” is preferable, and 5
More preferably, it is 10 to 1 joule/crrL'.

紫外線照射時の雰囲気は酸素による重合阻害作用を考慮
すると炭酸ガス、窒素、ヘリウム等の不活性ガスである
ことが好ましい。
Considering the polymerization inhibiting effect of oxygen, the atmosphere during ultraviolet irradiation is preferably an inert gas such as carbon dioxide, nitrogen, or helium.

紫外線照射はキセノンランプ、低圧水銀燈、高圧水銀燈
、超高圧水銀燈などから発せられる紫外線を利用するこ
とが出来るが、生産性を考慮すると出来るだけ照射効率
がよくかつ発熱量の少ないものがよい。この点から電気
入力が10W/cwt 〜300 W/cm程度の高圧
水銀燈が好ましく用いられる。
For ultraviolet irradiation, ultraviolet rays emitted from xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, etc. can be used, but in consideration of productivity, it is preferable to use ultraviolet rays that have as high irradiation efficiency as possible and generate as little heat as possible. From this point of view, a high-pressure mercury lamp with an electrical input of about 10 W/cwt to 300 W/cm is preferably used.

反応液が含浸された中空糸膜の紫外線照射までの時間は
、中空糸膜に対する付着性の良い機能性モノマーの場合
は、長時間放置しておいてもかまわないが、付着性不良
の機能性七ツマ−を用いる場合は、基材の中空糸膜が機
能性モノマーをはじき所望の性能を得ることが出来ない
The time until the hollow fiber membrane impregnated with the reaction solution is irradiated with ultraviolet rays can be left for a long time if the functional monomer has good adhesion to the hollow fiber membrane, but if the functional monomer has poor adhesion, When using a 7-mer, the hollow fiber membrane of the base material repels the functional monomer, making it impossible to obtain the desired performance.

特に中空糸膜の素材にポリエチレンやポリプロピレンの
ようなポリオレフィン系材料を用いる場合は機能性七ツ
マ−をはじき易いため、中空糸に反応液を含浸後、好ま
しくは30分以内、より好ましくは10分以内に紫外線
を照射する。
In particular, when using a polyolefin material such as polyethylene or polypropylene as the material for the hollow fiber membrane, it is easy to repel functional nitrates, so it is preferably within 30 minutes, more preferably 10 minutes after impregnating the hollow fiber with the reaction solution. irradiate with ultraviolet light within

紫外線照射された微多孔質膜を次いで洗浄処理して副生
じたホモポリマーや光増感剤等を除去する。洗浄は洗浄
溶液として機能性モノマーのホモポリマー、光増感剤、
その分解物を溶解又は分散することができ、中空糸を実
質的に傷めない液体を用いる。該液体としては機能性モ
ノマー、光増感剤の種類に応じて水や有機溶剤等各種浴
剤を使用でき、洗浄効果向上のため界面活性剤、浸潤剤
等を添加し又もよい。
The microporous membrane irradiated with ultraviolet rays is then washed to remove by-products such as homopolymers and photosensitizers. For cleaning, a homopolymer of functional monomers, a photosensitizer,
A liquid is used that can dissolve or disperse the decomposed products and does not substantially damage the hollow fibers. As the liquid, various bath agents such as water and organic solvents can be used depending on the type of functional monomer and photosensitizer, and surfactants, wetting agents, etc. may be added to improve the cleaning effect.

洗浄は上記洗浄溶液による抽出洗浄でもよいが、洗浄効
率の向上、洗浄時間短縮のため洗浄時に超音波を作用さ
せることが好ましい。
Although the cleaning may be carried out by extraction using the above-mentioned cleaning solution, it is preferable to use ultrasonic waves during cleaning to improve cleaning efficiency and shorten cleaning time.

超音波の強さは0.01〜2. O気圧の超音波が中空
糸にあたるように調節することが好ましく0.05〜1
.0気圧の強さであることがより好ましい。超音波の強
さが下限未満では洗浄効率の向上が少なく、上限をこえ
ろと中空糸の劣化の惧れが生ずるようになる。
The strength of the ultrasound is 0.01 to 2. It is preferable to adjust the ultrasonic wave at O atmospheric pressure to hit the hollow fibers from 0.05 to 1.
.. More preferably, the strength is 0 atmospheres. If the strength of the ultrasonic waves is less than the lower limit, there will be little improvement in cleaning efficiency, and if it exceeds the upper limit, there is a risk of deterioration of the hollow fibers.

紫外線照射終了後洗浄に至るまでの時間は30分をこえ
ないことが好ましく、10分以内であることかより好ま
しい。この時間が30分を越えると効果的に洗浄ができ
ず、その結果洗浄不充分で中空糸膜のC過速度が低下し
たり、洗浄に長時間かかるようになる。
It is preferable that the time from the end of ultraviolet irradiation to washing is not more than 30 minutes, and more preferably less than 10 minutes. If this time exceeds 30 minutes, effective cleaning cannot be performed, and as a result, the C overrate of the hollow fiber membrane decreases due to insufficient cleaning, and cleaning takes a long time.

〔実施例〕〔Example〕

以下に本発明を実施例を用い℃さらに詳しく説明する。 The present invention will be explained in more detail below using Examples.

なお、機能性の一つとしての親水性は下記の透水圧を用
いて評価した。
In addition, hydrophilicity as one of the functionalities was evaluated using the water permeability pressure described below.

透水圧測定法 一端を封鎖状体で集束固定し、他端は中空糸端の開口部
を開口状態のまま集束固定した中空糸束を作°成し、こ
れを透水圧の試験検体とした。
Hydraulic pressure measurement method A hollow fiber bundle was prepared in which one end was focused and fixed with a sealing member, and the other end was focused and fixed with the opening of the hollow fiber end left open, and this was used as a test specimen for hydraulic pressure.

この中空糸束にOゆ/crrL”から30秒毎に0.2
5に9/an’ずつ圧力が上昇するように水を該中空糸
の開口端から圧入しながら中空糸束を目視観察する。こ
の圧力が低い間は水は中空糸東側面から出工こないが、
ある圧力を越えると水が浸出しはじめ、さらに圧力を上
げるとある圧力以上で中空糸全体から水が浸出するよう
になる。この中空糸全体から水が浸出し始める時の圧力
をこの中空糸の透水圧とする。
0.2 every 30 seconds from Oyu/crrL” to this hollow fiber bundle.
The hollow fiber bundle was visually observed while water was injected from the open end of the hollow fibers so that the pressure increased by 9/an'. While this pressure is low, water does not come out from the east side of the hollow fiber, but
When the pressure exceeds a certain level, water begins to seep out, and when the pressure is increased further, water starts to seep out from the entire hollow fiber above a certain pressure. The pressure at which water begins to seep out from the entire hollow fiber is defined as the water permeability pressure of the hollow fiber.

中空糸の親水性が高い程透水圧は低くなるため、この透
水圧を親水性の尺度とすることができる。
Since the higher the hydrophilicity of the hollow fiber, the lower the water permeability pressure, this water permeability pressure can be used as a measure of hydrophilicity.

超音波強度 超音波メーターUTK−30型(日本特殊工業(株)#
)を用いて測定した。
Ultrasonic intensity ultrasonic meter UTK-30 type (Nippon Tokushu Kogyo Co., Ltd.) #
).

水フラックス 中空糸を用いて膜面積20crIL!  のミニモジュ
ールを作成し、このモジュールにエテルアルコールを充
填して中空糸を親水化した後、そのエチルアルコールを
水に置換した後0.01〜0.2ゆ/α8の水圧をかけ
て水をf過させて単位圧力下単位面積、単位時間の透過
水量で求めた。
Membrane area 20crIL using water flux hollow fiber! After creating a mini-module and filling this module with ethyl alcohol to make the hollow fibers hydrophilic, the ethyl alcohol was replaced with water, and then water was removed by applying a water pressure of 0.01 to 0.2 Y/α8. It was determined by the amount of permeated water per unit area under unit pressure and unit time.

実施例1 その微小空孔が中空糸内壁面から外壁面にかけて幾重に
も積層したフィブリルとフィブリルの両端を固定二、る
節部とによりできるフィブリル間の空間で形成された微
小空孔がそのフィブリル間の空間として相互につながっ
て中空糸内壁面から外壁面まで貫通したものであり、か
つ第1表実施例1の欄に示した特性を有する微多孔質ポ
リエチレン中空糸をアクリルアミド1421、ベンゾフ
ェノン73ノ及びアセトン10001からなる反応液に
ゆっくり浸漬し、4〜5cIIL/ 81!eの速度で
引き上げ、反応液を中空糸に含浸させた。中空糸へのア
クリルアミド付着量は60重量%であった。これを3分
間風乾後、2KWの標準高圧水銀燈を用い、窒素雰囲気
下で紫外線を2秒間照射した。紫外線照射量は0.09
joul@/ CIL”であった。次いで紫外線照射後
10分をこえないうちに超音波を強度0.4気圧で作用
させながら、この中空糸な酪酸/水=1/1重量比の洗
浄液で3分ずつ新鮮な洗浄液にかえながら4回洗浄した
Example 1 The micropores are formed in the spaces between the fibrils, which are formed by the fibrils laminated in multiple layers from the inner wall surface to the outer wall surface of the hollow fiber and the knots that fix both ends of the fibrils. A microporous polyethylene hollow fiber having the characteristics shown in the column of Example 1 of Table 1, which is interconnected as a space between the hollow fibers and penetrates from the inner wall surface to the outer wall surface, is made of acrylamide 1421 and benzophenone 73. and acetone 10001, and slowly immersed in a reaction solution consisting of 4 to 5 cIIL/81! The hollow fibers were pulled up at a speed of 100 m to impregnate the hollow fibers with the reaction solution. The amount of acrylamide attached to the hollow fibers was 60% by weight. After air-drying this for 3 minutes, it was irradiated with ultraviolet rays for 2 seconds in a nitrogen atmosphere using a 2KW standard high-pressure mercury lamp. The amount of UV irradiation is 0.09
Then, within 10 minutes after UV irradiation, while applying ultrasonic waves at an intensity of 0.4 atm, the hollow fibers were washed with a cleaning solution of butyric acid/water = 1/1 weight ratio. Washed 4 times, changing to fresh washing solution every minute.

洗浄後の中空糸を1晩風乾後、その性能を調べた結果を
第1表に示す。
Table 1 shows the results of examining the performance of the washed hollow fibers after air-drying them overnight.

ちなみに該処理前の中空糸の性能を第1表参考例1に示
す。
Incidentally, the performance of the hollow fiber before the treatment is shown in Reference Example 1 in Table 1.

実施例2,3 第1表実施例2及び実施例3の欄に示した特性を有する
他は同様の構造を有するポリエチレン中空糸を各々用い
た以外は実施例1と同様にした。
Examples 2 and 3 The procedure was the same as in Example 1, except that polyethylene hollow fibers having the same structure and having the properties shown in the columns of Example 2 and Example 3 in Table 1 were used.

得られた中空糸の性能を第1表に示し、処理前の中空糸
の性能を第1表参考例2及び3に示す。
The performance of the obtained hollow fibers is shown in Table 1, and the performance of the hollow fibers before treatment is shown in Reference Examples 2 and 3 of Table 1.

なお、アクリルアミド付着量は実施例2が20重量%、
実施例3が5重量%であった。
In addition, the amount of acrylamide attached was 20% by weight in Example 2,
Example 3 had a content of 5% by weight.

第  1  表 !1 σ 第1表から明らかなように本発明の処理により透水圧が
低下していることがわかる。特に実施例1の膜では透水
圧の低下が大きく、水フラックスもかえって向上してい
ることがわかる。
Table 1! 1 σ As is clear from Table 1, the water permeability pressure is reduced by the treatment of the present invention. In particular, it can be seen that in the membrane of Example 1, the water permeability pressure decreased significantly, and the water flux also improved.

実施例4〜6 平均内88−270tt、平均膜厚70 am、空孔率
63%であり、その微小空孔が中空糸内壁面から外壁面
にかけて幾1にも′!R層したフィブリルとフィブリル
の両端を固定する節部とによりできるフィブリル間の空
間で形成された微小空孔がそのフィブリル間の空間とし
て相互につながって中空糸内壁面から外壁面まで貫通し
たものであり、”/cLm = 0.8及びJv/ d
v = 5 (7)特性を有する微多孔質ポリエチレン
中空糸を用い、反応液として第2表に示した組成のもの
を用い、超音波強度を0.5気圧とした以外は実施例1
と同様にした。
Examples 4 to 6 The average inner diameter is 88-270 tt, the average film thickness is 70 am, and the porosity is 63%, and the micropores are numerous from the inner wall surface to the outer wall surface of the hollow fiber. The micropores formed in the spaces between the fibrils created by the R-layered fibrils and the knots that fix both ends of the fibrils are interconnected as spaces between the fibrils and penetrate from the inner wall surface to the outer wall surface of the hollow fiber. Yes, "/cLm = 0.8 and Jv/d
Example 1 except that a microporous polyethylene hollow fiber having the characteristics v = 5 (7) was used, a reaction solution having the composition shown in Table 2 was used, and the ultrasonic intensity was 0.5 atm.
I did the same thing.

反応液を含浸させた後の機能性モノマー(アクリルアミ
ド、アクリル酸又は2−ヒドロキシエチルアクリレート
)の付着量は各々30fUm%、30重量%、40重i
%であった。
The amount of functional monomer (acrylamide, acrylic acid, or 2-hydroxyethyl acrylate) adhered after impregnating with the reaction solution was 30 fUm%, 30 weight%, and 40 weight percent, respectively.
%Met.

処理後の中空糸の性能を未処理中空糸の性能(参考例4
)とともに第2表に示す。
The performance of the treated hollow fiber is compared with that of the untreated hollow fiber (Reference Example 4)
) are shown in Table 2.

第2表 実施例7 1100Aに微小空孔の孔半径の極太分布を有し、平均
内径200μ、平均膜厚22μ、空孔率45%の特性を
有する微多孔質ポリプロピレン中空糸を、アクリルアミ
ド71t、ベンゾフェノン73J’及びアセトン100
OJ’からなる反応液を用いた以外は実施例1と同様に
して実験を行なった。アクリルアミドの付着量は20重
量%であった。又、アクリルアミドのグラフト率は5重
量%であった。
Table 2 Example 7 A microporous polypropylene hollow fiber having an extremely thick distribution of micropore radii of 1100A, an average inner diameter of 200μ, an average membrane thickness of 22μ, and a porosity of 45% was prepared using acrylamide 71T, Benzophenone 73J' and acetone 100
An experiment was conducted in the same manner as in Example 1 except that a reaction solution consisting of OJ' was used. The amount of acrylamide deposited was 20% by weight. Further, the grafting rate of acrylamide was 5% by weight.

未処理のポリプロピレン中空糸の透水圧及び水フラック
スはそれぞれ20kg/crn’以上及び0.21 /
hr、rn’ 、+smHgであったが、アクリルアミ
ドが光グラフトされたちの透水圧が18.5kg/cr
n’に改良され、水フラックスは0.22文/hr、r
n’、msHgを示した。
The permeability pressure and water flux of untreated polypropylene hollow fibers are 20 kg/crn' or more and 0.21/crn', respectively.
hr, rn', +smHg, but the water permeability pressure of the acrylamide photografted material was 18.5 kg/cr.
n', the water flux is 0.22 sentences/hr, r
n', msHg.

比較例1 実施例1で用いたと同様の中空糸を用い、ベンゾフェノ
ンを用いなかった以外は実施例1と同様にして実験を行
なった。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that the same hollow fibers as used in Example 1 were used and benzophenone was not used.

得られた中空糸は機能性モノマーが全くグラフトされて
おらず、七の性能は参考例1と同様であった。
The obtained hollow fibers were not grafted with any functional monomer, and the performance of Example 7 was the same as that of Reference Example 1.

比較例2 実施例1で用いたと同様の中空糸を用い、ベンゾフェノ
ンを用いず、紫外線照射の代りに窒ぶ雰囲気下で20M
radの電子線を照射した以外は実施例1と同様にした
。得られた中空糸のグラフト率は0.1であり、透過水
圧は5.8と若干低下しているが、破断伸度5%、破断
強度150g/fil であり、実施例1で得られた中
空糸の破断伸度が17%、破断強度が260g/fit
であったのに比べて強伸度が低下していた。
Comparative Example 2 Using the same hollow fiber as used in Example 1, without using benzophenone, in a nitrogen atmosphere instead of ultraviolet irradiation, 20M
The same procedure as in Example 1 was carried out except that rad electron beam was irradiated. The graft ratio of the obtained hollow fiber was 0.1, and the permeation water pressure was slightly lower to 5.8, but the elongation at break was 5% and the strength at break was 150 g/fil, which was the same as that obtained in Example 1. Hollow fiber elongation at break is 17% and strength at break is 260g/fit
The strength and elongation were lower than that of the original.

特許出願人 三菱レイヨン株式会社 代理人  弁理士  吉澤敏夫(:レツ手続補正書 昭和61年2月13日 特許庁長官 宇 賀 道 部 殿 1、事件の表示        悌 %願昭60−243697号 2・発明の名称 中空糸膜の機能化処理方法 3、補正をする者 事件との関係 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長 河 崎 晃 夫 4、代 理 人 東京都中央区京橋二丁目3番19号 (目見補正) 6、補正の対象 (1)  明細書第26員第6行の矢に下記の文章全加
入する。
Patent applicant: Mitsubishi Rayon Co., Ltd. Agent, Patent attorney: Toshio Yoshizawa (Retest procedure amendment filed on February 13, 1986, Director General of the Patent Office, Michibe Uga, 1, Indication of case: 1986-243697, 2, Invention) Name of Hollow Fiber Membrane Functionalization Treatment Method 3, Relationship with the Person Making the Amendment Case 2-3-19 Kyobashi, Chuo-ku, Tokyo (603) Mitsubishi Rayon Co., Ltd. President and Director Akio Kawasaki 4, Representative Tokyo 2-3-19 Kyobashi, Chuo-ku, Tokyo (visual correction) 6. Subject of amendment (1) Add the following sentence in its entirety to the arrow on line 6 of member 26 of the specification.

「実施例8〜11 実施例1で用い九と同様のポリエチレン中空糸を用い、
反応液として第3表に示した組成のものt用い1反応液
含没後の風乾時間を2分、紫外線照射時間を2秒(紫外
線照射量CL 12 joule/crnz)とし、酢
酸/氷雪171 重量比の洗浄液で3分ずつ4回洗浄す
る代りにアセトン洗浄と水洗浄t−66分間(液温50
℃)で行つ次以外は実施例1と同様にし友。
"Examples 8 to 11 Using the same polyethylene hollow fibers as in Example 1 and 9,
A reaction solution having the composition shown in Table 3 was used. 1 After the reaction solution was impregnated, the air drying time was 2 minutes, the ultraviolet irradiation time was 2 seconds (ultraviolet irradiation amount CL 12 joule/crnz), and the weight ratio of acetic acid/ice and snow was 171. Instead of washing 4 times for 3 minutes each with a cleaning solution of
The procedure was the same as in Example 1 except for the following.

得られた中空糸の性能を第3表に示す。Table 3 shows the performance of the hollow fibers obtained.

第  3  表 実施例12〜15 実施例5で用い友と同様のポリエチレン中空糸を用い、
反応液として第4表に示した組成のものを用い几以外は
実施例8と同様に処理した。得られ友中空糸の性能を第
4表に示す・ 第4表 実施fl116 中空糸として実施例7で用いたと同様のポリプロピレン
中空糸を用いた以外は、実施例5と同様にした。得らn
た中空糸のグラフト軍は&5重′jt俤であり、透水圧
は14.6 K!?/1M” 、水フラックスはα18
 L/ hr−m” ・mmHgであった。」
Table 3 Examples 12 to 15 Using the same polyethylene hollow fibers as those used in Example 5,
The reaction solution was treated in the same manner as in Example 8 except for the reaction solution having the composition shown in Table 4. The performance of the obtained hollow fibers is shown in Table 4.Table 4 Example fl116 The same procedure as in Example 5 was carried out except that the same polypropylene hollow fibers as used in Example 7 were used as the hollow fibers. obtained n
The hollow fiber graft force was &5 fold, and the permeability pressure was 14.6 K! ? /1M”, water flux is α18
L/hr-m"mmHg."

Claims (7)

【特許請求の範囲】[Claims] (1)機能性モノマー及び光増感剤とを含有する反応液
を微多孔質中空糸膜に含浸させ、紫外線照射後洗浄処理
を行う中空糸膜の機能化処理方法。
(1) A method for functionalizing a hollow fiber membrane, in which a microporous hollow fiber membrane is impregnated with a reaction solution containing a functional monomer and a photosensitizer, and a cleaning treatment is performed after irradiation with ultraviolet rays.
(2)微多孔質中空糸膜がポリオレフィンからなること
を特徴とする特許請求の範囲第1項記載の中空糸膜の機
能化処理方法。
(2) The method for functionalizing a hollow fiber membrane according to claim 1, wherein the microporous hollow fiber membrane is made of polyolefin.
(3)微多孔質中空糸膜がその微小空孔が中空糸内壁面
から外壁面にかけて幾重にも積層したフィブリルとフィ
ブリルの両端を固定する節部とによりできるフィブリル
間の空間で形成された微小空孔がそのフィブリル間の空
間として相互につながって中空糸内壁面から外壁面まで
貫通したものであることを特徴とする特許請求の範囲第
1項又は第2項記載の中空糸膜の機能化処理方法。
(3) The microporous hollow fiber membrane has micropores formed in the spaces between the fibrils, which are formed by the fibrils laminated many times from the inner wall surface to the outer wall surface of the hollow fibers and the knots that fix both ends of the fibrils. Functionalization of the hollow fiber membrane according to claim 1 or 2, characterized in that the pores are interconnected as spaces between the fibrils and penetrate from the inner wall surface to the outer wall surface of the hollow fiber. Processing method.
(4)フィブリルの平均的な太さ(@d@_M)と平均
的な長さ(@l@_M)が@d@_M=0.02〜0.
3μm、@l@_M=0.5〜3.0μmであり、節部
の繊維長方向への平均的長さ(@l@_K)が@l@_
K=0.1〜1.0μmであり、フィブリル間に形成さ
れる空孔の平均的な巾(@d@_V)と平均的な長さ(
@l@_V)の関係が@l@_V/@d@_V=3〜5
0であり、@d@_Vと@d@_Mの関係が@d@_V
/@d@_M=0.3〜5であることを特徴とする特許
請求の範囲第3項記載の中空糸膜の機能化処理方法。
(4) The average thickness (@d@_M) and average length (@l@_M) of fibrils are @d@_M=0.02 to 0.
3 μm, @l@_M = 0.5 to 3.0 μm, and the average length of the node in the fiber length direction (@l@_K) is @l@_
K = 0.1 to 1.0 μm, and the average width (@d@_V) and average length (
The relationship of @l@_V) is @l@_V/@d@_V=3~5
0, and the relationship between @d@_V and @d@_M is @d@_V
4. The method for functionalizing a hollow fiber membrane according to claim 3, wherein /@d@_M=0.3 to 5.
(5)機能性モノマーがアクリロイロキシ基、メタクリ
ロイロキシ基又はアクリルアミド基を有するモノマーで
あることを特徴とする特許請求の範囲第1項記載の中空
糸膜の機能化処理方法。
(5) The method for functionalizing a hollow fiber membrane according to claim 1, wherein the functional monomer is a monomer having an acryloyloxy group, a methacryloyloxy group, or an acrylamide group.
(6)光増感剤がベンゾフェノン系化合物であることを
特徴とする特許請求の範囲第1項記載の中空糸膜の機能
化処理方法。
(6) The method for functionalizing a hollow fiber membrane according to claim 1, wherein the photosensitizer is a benzophenone compound.
(7)洗浄処理が超音波を用いる洗浄処理であることを
特徴とする特許請求の範囲第1項記載の中空糸膜の機能
化処理方法。
(7) The method for functionalizing a hollow fiber membrane according to claim 1, wherein the cleaning treatment is a cleaning treatment using ultrasonic waves.
JP24369785A 1985-10-30 1985-10-30 Functionating treatment of hollow yarn membrane Pending JPS62104970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24369785A JPS62104970A (en) 1985-10-30 1985-10-30 Functionating treatment of hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24369785A JPS62104970A (en) 1985-10-30 1985-10-30 Functionating treatment of hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPS62104970A true JPS62104970A (en) 1987-05-15

Family

ID=17107640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24369785A Pending JPS62104970A (en) 1985-10-30 1985-10-30 Functionating treatment of hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS62104970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370750A (en) * 1989-08-10 1991-03-26 Terumo Corp Multifunctional porous membrane
JP2010059395A (en) * 2008-08-06 2010-03-18 Asahi Kasei Medical Co Ltd Grafted hollow fiber film and its preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652123A (en) * 1979-09-28 1981-05-11 Hitachi Ltd Crop disposal from shearing machine
JPS56169864A (en) * 1980-06-03 1981-12-26 Teijin Ltd Treatment of molded article
JPS57210070A (en) * 1981-06-19 1982-12-23 Kanebo Ltd Imparting of hydrophilicity to fiber structure containing synthetic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652123A (en) * 1979-09-28 1981-05-11 Hitachi Ltd Crop disposal from shearing machine
JPS56169864A (en) * 1980-06-03 1981-12-26 Teijin Ltd Treatment of molded article
JPS57210070A (en) * 1981-06-19 1982-12-23 Kanebo Ltd Imparting of hydrophilicity to fiber structure containing synthetic fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370750A (en) * 1989-08-10 1991-03-26 Terumo Corp Multifunctional porous membrane
JP2915932B2 (en) * 1989-08-10 1999-07-05 テルモ株式会社 Composite functional porous membrane
JP2010059395A (en) * 2008-08-06 2010-03-18 Asahi Kasei Medical Co Ltd Grafted hollow fiber film and its preparation

Similar Documents

Publication Publication Date Title
JP5491402B2 (en) Hydrophilic porous substrate
JP3307932B2 (en) Hydrophilic microporous polyolefin membrane
JP2559533B2 (en) Filtration media with low adsorption to proteins
JP2580062B2 (en) Hydrophobic membrane
JP6795650B2 (en) Grafted ultra-high molecular weight polyethylene microporous membrane
JP5014576B2 (en) Porous composite membrane and method for producing the same
JP3772909B1 (en) Blood purifier
JP5580342B2 (en) Hydrophilic porous substrate
JP2011523965A (en) Ligand functionalized substrate
JP2011522090A (en) Method for producing a ligand-functionalized substrate
US4717479A (en) Hydrophilized porous polyolefin membrane and production process thereof
JPWO2009113541A1 (en) Composite separation membrane
JPS62110978A (en) Functional treatment of hollow yarn membrane
JPS62104970A (en) Functionating treatment of hollow yarn membrane
JP2000296318A (en) Polysulfone-base blood treatment module
JPH05131124A (en) Production of hydrophilic fluoroplastic porous membrane
JP2009183804A (en) Manufacturing method of hydrophilic fine porous membrane
JP4079221B2 (en) Method for producing graft membrane
JP2000117077A (en) Semipermeable membrane and its production
JPS63229108A (en) Method for making hydrophilic hollow filament membrane
JPS609460B2 (en) hemodialyzer
JP6316413B2 (en) Hydrophilic fluoroplastic substrate
JPH01313544A (en) Modification of porous fluororesin tube
JPH10337453A (en) Semipermeable membrane and its production
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production