JPS62104911A - Production of drawn yarn of ultra-high-molecular-weight polyethylene and production unit for undrawn yarn thereof - Google Patents

Production of drawn yarn of ultra-high-molecular-weight polyethylene and production unit for undrawn yarn thereof

Info

Publication number
JPS62104911A
JPS62104911A JP23955785A JP23955785A JPS62104911A JP S62104911 A JPS62104911 A JP S62104911A JP 23955785 A JP23955785 A JP 23955785A JP 23955785 A JP23955785 A JP 23955785A JP S62104911 A JPS62104911 A JP S62104911A
Authority
JP
Japan
Prior art keywords
tube
screw
ultra
yarn
weight polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23955785A
Other languages
Japanese (ja)
Other versions
JPH0637723B2 (en
Inventor
Takeshi Shiraki
白木 武
Koji Nakajima
康二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP23955785A priority Critical patent/JPH0637723B2/en
Publication of JPS62104911A publication Critical patent/JPS62104911A/en
Publication of JPH0637723B2 publication Critical patent/JPH0637723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To make it possible to continuously produce undrawn yarn of ultra- high-molecular-weight polyethylene having >=1mm outer diameter, by using a molding machine having a die with large L/D attached to the tip of an extruder equipped with a slotted cylinder and a low compression screw. CONSTITUTION:An ultra-high-molecular-weight polyethylene having >=5dl/g intrinsic viscosity [eta] is fed to a molding machine having a tube die 7 which has a mandrel 5 rotates with revolution of screw and >=5 (preferably 30-70) L/D attached to the tip of an extruder equipped with a slotted cylinder 2 and a screw 3 having 1-2.5 compression ratio, melted by the screw, extruded from the tube die, cooled, divided in the direction of flow of the tube and drawn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は引張強度に優れた超高分子量ポリエチレン延伸
糸の製造方法及びその原糸の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a drawn ultra-high molecular weight polyethylene yarn having excellent tensile strength, and an apparatus for producing the raw yarn.

〔従来の技術〕[Conventional technology]

超高分子量ポリエチレンは汎用のポリエチレンに比べ耐
衝撃性、耐摩耗性、耐薬品性、引張強度等に優れており
、エンジニアリングプラスチックとしてその用途が拡が
りつつある。しかしながら汎用のポリエチレンに比較し
て溶融粘度が極めて高く流動性が悪いため、押出成形や
射出成形によって成形することは非常に難しく、その殆
どは圧縮成形によって成形されており、一部ロッド等が
極めて低速で押出成形されているのが現状であった。
Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, the melt viscosity is extremely high and the fluidity is poor, so it is very difficult to mold by extrusion molding or injection molding.Most of the polyethylene is molded by compression molding, and some rods etc. Currently, extrusion molding is performed at low speed.

一方、高密度ポリエチレンのモノフィラメントを高倍率
で延伸する方法として、ポリエチレンの融点より高い高
沸点の添加剤をポリエチレンの重量に対し20〜150
%の範囲内で共存せしめ、得られた高濃度分散体から第
1次繊維状物を形成させ、次いでこの紡出糸中にその5
〜25%相当量の添加剤を残存せしめたまま元の長さの
3〜15倍に熱延伸する方法(特公昭37−9765号
公報)あるいは分子量が400 、000以上の線状ポ
リエチレンの溶液を紡糸して、少な(とも20GPaに
なるような温度で延伸する方法(特開昭56−1540
8号公報)が提案されている。しかしながらこれらの方
法は高弾性、高強度の延伸糸は得られるもののいずれも
多量の溶媒で超高分子量ポリエチレン等を希釈した極め
て粘度が低し・溶液を押出加工するため、径が1鶴φを
越える原糸を得ることが極めて難しい。従って延伸糸も
通常10デニール以下(径:  0.03B11φ以下
)、太くても50デニ一ル程度であるので、かかる細デ
ニール糸を高強度大物ロープやネットあるいは絶縁性が
要求されるプラスチックワイヤー等に用いるには多量の
延伸糸を撚り合わせることが必要であることから、作業
が煩雑でしかも得られたローブやネットは剛性が高く、
可撓性が不充分であるばかりでなく、外観的にもケバ立
ちを生じ易い欠点がある。
On the other hand, as a method for drawing high-density polyethylene monofilaments at a high magnification, additives with a high boiling point higher than the melting point of polyethylene are added at 20 to 150% by weight based on the weight of polyethylene.
%, a primary fibrous material is formed from the obtained high concentration dispersion, and then the 5
A method of hot stretching to 3 to 15 times the original length while leaving an amount equivalent to ~25% of the additive (Japanese Patent Publication No. 37-9765) or a solution of linear polyethylene with a molecular weight of 400,000 or more. A method of spinning and drawing at a temperature of 20 GPa (Japanese Patent Application Laid-Open No. 1540-154
Publication No. 8) has been proposed. However, although these methods can obtain drawn yarns with high elasticity and high strength, they are made by diluting ultra-high molecular weight polyethylene with a large amount of solvent and have extremely low viscosity. It is extremely difficult to obtain yarn that can exceed this level. Therefore, the drawn yarn is usually 10 denier or less (diameter: 0.03B11φ or less), and the thickest is about 50 denier, so such thin denier yarn can be used for high-strength large ropes, nets, plastic wires that require insulation, etc. To use it, it is necessary to twist a large amount of drawn yarn, which is a complicated process, and the resulting lobes and nets are highly rigid.
Not only does it have insufficient flexibility, but it also has the disadvantage of easily becoming fluffy in appearance.

一方、重量平均分子量が150,000以上のポリマー
を温度約75〜140℃、変形比約18以上の条件下に
細長化して配向性正合体を製造する方法(特開昭52−
74682号公報)が提案されている。しかしながら該
公報にも「延伸前の繊維の直径またはフィルムもしくは
テープの厚さは約1m1以下であるのが好ましい。」と
記載され、その実施例も分子量が300,000程度の
ポリエチレンについては、直径1龍の円形オリフィスか
ら直径0.7龍以下の細いフィラメント(原糸)を紡糸
する例が記載されているだけである。そして分子量がs
oo、oooのポリエチレンについては、圧縮成形され
た0、5n厚シートからゲージ寸法1clIX0,2C
11のダンベル状試料を原糸として延伸している例のみ
で原糸の製造方法については全く記載されていないこと
からも明らかなように分子量が極めて大きい超高分子量
ポリエチレンから50デニールを越える原糸を工業的に
製造する技術は未だ確立されていないのが現状であった
On the other hand, a method for producing an oriented polymer by elongating a polymer having a weight average molecular weight of 150,000 or more at a temperature of about 75 to 140°C and a deformation ratio of about 18 or more (Japanese Unexamined Patent Publication No. 52-197)
74682) has been proposed. However, the publication also states that "the diameter of the fiber or the thickness of the film or tape before stretching is preferably about 1 m1 or less," and the example also states that for polyethylene with a molecular weight of about 300,000, the diameter There is only an example described in which a thin filament (original thread) with a diameter of 0.7 or less is spun from a circular orifice of 1 orifice. And the molecular weight is s
For polyethylene of oo, ooo, gauge size 1clIX0,2C from compression molded 0,5n thick sheet
As is clear from the fact that there is only an example of drawing a dumbbell-shaped sample in No. 11 as a raw yarn, and there is no description of the method for manufacturing the yarn, the yarn is made from ultra-high molecular weight polyethylene with an extremely high molecular weight and has a diameter exceeding 50 denier. At present, the technology for industrially producing it has not yet been established.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる状況に鑑み、本発明者らは超高分子量ポリエチレ
ンからなる外径が1nφを越える原糸を連続して製造す
る方法を開発すべく種々検討した結果、溝付きシリンダ
ー、低圧縮スクリューを具備した押出機の先端にL/D
が10以上のダイを連結し、且つダイの下流に徐冷筒を
具備した成形機を用い、成形条件を特定することにより
、外径がl龍φを越える超高分子量ポリエチレン原糸を
製造し得ることが分かり、又、該原糸を特定の条件下で
延伸することにより、延伸糸の外径が0.1■麿φ以上
で且つ引張強度が10kg/l、2以上の超高分子量ポ
リエチレン延伸糸が得られることを見出し、先に特願昭
60−13624号として出願した。
In view of this situation, the present inventors conducted various studies to develop a method for continuously producing yarn made of ultra-high molecular weight polyethylene and having an outer diameter exceeding 1nφ, and as a result, they developed a method equipped with a grooved cylinder and a low compression screw. L/D at the tip of the extruder
By using a molding machine that connects 10 or more dies and is equipped with an annealing cylinder downstream of the die, and by specifying molding conditions, ultra-high molecular weight polyethylene yarn with an outer diameter exceeding 1 φ can be manufactured. Furthermore, by drawing the raw yarn under specific conditions, ultra-high molecular weight polyethylene with an outer diameter of 0.1 mm or more and a tensile strength of 10 kg/l or more can be obtained. It was discovered that a drawn yarn could be obtained, and an application was previously filed as Japanese Patent Application No. 13624/1983.

そして本発明者らは更に引張強度に優れた超高分子量ポ
リエチレン延伸糸の製造方法を開発すべく検討を行った
結果、特定の方法で製造した超高分子量ポリエチレンチ
ューブを分割した原糸を延伸することにより、50デニ
一ル以上で且つ引張強度が50 kg / am 2以
上の延伸糸が得られることが分かり本発明に到達した。
The present inventors further investigated to develop a method for producing drawn ultra-high molecular weight polyethylene yarn with excellent tensile strength, and as a result, they drew a raw yarn obtained by dividing an ultra-high molecular weight polyethylene tube produced by a specific method. By doing so, it was found that a drawn yarn having a denier of 50 denier or more and a tensile strength of 50 kg/am 2 or more could be obtained, and the present invention was achieved.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は極限粘度〔η〕が5d!/g以上の超
高分子量ポリエチレンをスクリュー押出機で溶融し、次
いでマンドレルがスクリューの回転に伴って回転する少
なくともL/Dが5のチューブダイから押出して冷却し
、得られたチューブを流れ方向に分割した後、延伸する
ことを特徴とする超高分子量ポリエチレン延伸系の製造
方法及び押出機側から、溝付きシリンダーと圧縮比が1
ないし2.5の範囲であるスクリューからなる押出機、
スクリュー先端に連結されてスクリューの回転とともに
回転するマンドレル及びアウターダイとからなる少なく
ともL/Dが5、チューブダイ入口部の樹脂流路断面積
S1とチューブダイ中間部の樹脂流路断面積S2との比
(31/32)が0.5ないし3.0の範囲及びチュー
ブダイ中間部の樹脂流路断面積S2とチューブダイ出口
の樹脂流路の断面積S3との比(32/33)が1.0
ないし3.0の範囲にあるチューブダイ及びチューブ分
割装置とから構成されることを特徴とする超高分子量ポ
リエチレン延伸糸用原糸の製造装置を提供するものであ
る。
In other words, the limiting viscosity [η] of the present invention is 5d! /g or more of ultra-high molecular weight polyethylene is melted in a screw extruder, then extruded through a tube die with a mandrel rotating with the rotation of the screw and having an L/D of at least 5, cooled, and the resulting tube is A method for producing an ultra-high molecular weight polyethylene drawing system characterized by dividing and then drawing, and from the extruder side, a grooved cylinder and a compression ratio of 1.
an extruder consisting of a screw ranging from 2.5 to 2.5;
At least L/D consisting of a mandrel connected to the tip of the screw and rotating with the rotation of the screw and an outer die is 5, and a cross-sectional area S1 of the resin flow path at the inlet of the tube die and a cross-sectional area S2 of the resin flow path at the intermediate portion of the tube die. The ratio (31/32) is in the range of 0.5 to 3.0, and the ratio (32/33) of the cross-sectional area S2 of the resin flow path at the middle part of the tube die and the cross-sectional area S3 of the resin flow path at the outlet of the tube die is 1.0
The present invention provides an apparatus for producing raw yarn for drawn ultra-high molecular weight polyethylene yarn, characterized in that it is comprised of a tube die and a tube dividing device in the range of 3.0 to 3.0.

〔作 用〕[For production]

本発明に用いる超高分子量ポリエチレンとは、デカリン
溶媒中135℃で測定した極限粘度(η〕が5d1/g
以上、好適には8ないし21/gで且つメルトフローレ
ート (MFR: ASTM D 1238.F ’)
が0.01 g / 10m1n以下のエチレンの単独
重合体もしくはエチレンと他のα−オレフィン、例えば
プロピレン、1−ブテン、1−ヘキセン、1−オクテン
、4−メチル−1−ペンテン等とのエチレンを主体とし
た共重合体で結晶性のものである。
The ultra-high molecular weight polyethylene used in the present invention has an intrinsic viscosity (η) of 5 d1/g as measured at 135°C in a decalin solvent.
Above, preferably 8 to 21/g and melt flow rate (MFR: ASTM D 1238.F')
Homopolymer of ethylene or ethylene with other α-olefins such as propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc. It is mainly a copolymer and is crystalline.

極限粘度〔η〕が5d!/g未満のものは平均的な分子
鎖が短く延伸比を太き(しても引張強度が大きな延伸糸
が得られない欠点がある。
Intrinsic viscosity [η] is 5d! If it is less than /g, the average molecular chain is short and a drawn yarn with high tensile strength cannot be obtained even if the drawing ratio is increased.

本発明の超高分子量ポリエチレン延伸糸を製造する方法
は、前記超高分子量ポリエチレンをスクリュー押出機、
好ましくは溝付シリンダー(バレル)を具備するスクリ
ュー押出機で熔融し、次いでマンドレルがスクリューの
回転に伴って回転する少なくともL/Dが5、好ましく
は10以上、更に好ましくは30ないし70のチューブ
ダイから押出して冷却し、得られたチューブを流れ方向
(縦方向)に分割した後延伸することを特徴とする方法
である。
The method for producing the ultra-high molecular weight polyethylene drawn yarn of the present invention includes the method of manufacturing the ultra-high molecular weight polyethylene using a screw extruder,
A tube die with an L/D of at least 5, preferably 10 or more, more preferably 30 to 70, preferably melted in a screw extruder equipped with a grooved cylinder (barrel), and then the mandrel rotates with the rotation of the screw. This method is characterized by extruding the tube from a tube, cooling it, dividing the obtained tube in the machine direction (longitudinal direction), and then stretching it.

本発明に用いる超高分子量ポリエチレンの熔融物は汎用
のポリエチレンと異なり流動性が悪くゴム的な塊状物で
あるため、L/Dが5未満のチューブダイではダイより
押出される前に溶融物が完全に均一融合されず得られた
チューブを延伸しても睡伸時に糸切れ等を起こし充分な
強度を有する延伸糸が得ら′れない。一方L/Dの上限
はとくに限定はされないが、実用上70以下が好ましい
。尚、チューブダイのL/Dは生産性と相関があり、L
/Dが大きい方が生産速度を上げることができる。
Unlike general-purpose polyethylene, the melt of ultra-high molecular weight polyethylene used in the present invention is a rubbery lump with poor fluidity. Therefore, in a tube die with an L/D of less than 5, the melt is Even if a tube obtained without completely uniform fusion is drawn, thread breakage occurs during sleep-stretching, and a drawn thread with sufficient strength cannot be obtained. On the other hand, the upper limit of L/D is not particularly limited, but is preferably 70 or less in practical terms. In addition, L/D of tube die is correlated with productivity, and L
The larger /D is, the higher the production speed can be.

また、チューブダイのマンドレルは、押出機のスクリュ
ーの回転に伴って回転させる必要がある。
Further, the mandrel of the tube die needs to be rotated as the screw of the extruder rotates.

マンドレルの回転数は必ずしもスクリューの回転数と同
じである必要はなく、回転さえすれば本発明の目的を達
成できる。マンドレルが回転しないとマンドレルが偏心
し、均一な厚さのチューブが得られず、延いては延伸性
の劣ったチューブとなる。スクリュー先端にマンドレル
を取付ける方法としては直接スクリュー先端にマンドレ
ルを固着、螺着、嵌着あるいは挿着する方法、継手等を
介在させて取付ける方法等が挙げられるが、直接スクリ
ュー先端にマンドレルを螺着させる方法が簡便でしかも
取りはずしかできるので押出機、チューブダイの分解掃
除や、内径サイズの変更が行い易い等の利点がある。
The rotation speed of the mandrel does not necessarily have to be the same as the rotation speed of the screw, and the object of the present invention can be achieved as long as the mandrel rotates. If the mandrel does not rotate, the mandrel will be eccentric, making it impossible to obtain a tube of uniform thickness, resulting in a tube with poor stretchability. Methods for attaching a mandrel to the screw tip include fixing, screwing, fitting, or inserting the mandrel directly to the screw tip, and attaching with a joint, etc.; The method of disassembly is simple, and since it can only be removed, there are advantages such as easy disassembly and cleaning of the extruder and tube die, and easy change of the inner diameter size.

本発明の方法において、超高分子量ポリエチレンの押出
成形温度は、該樹脂の融点より高山A温度で且つ該樹脂
の分解温度よりも低い温度である限り特に制限はない。
In the method of the present invention, the extrusion temperature of the ultra-high molecular weight polyethylene is not particularly limited as long as it is Takayama A temperature below the melting point of the resin and lower than the decomposition temperature of the resin.

尚超高分子量ポリエチレンの押出成形温度の好適な条件
は、押出機の温度を200〜330°C、チューブダイ
入口部〜中間部の温度を180〜310℃及びチューブ
ダイ中間部〜出口部の温度を136〜170℃の範囲に
すると、チューブダイ内でのランドメルトフラクチアー
が生じないので好ましい。尚本発明の延伸糸の原反とな
るチューブの製造方法は特願昭59−101712号に
詳しい。
The preferred extrusion temperature conditions for ultra-high molecular weight polyethylene are: extruder temperature of 200 to 330°C, temperature of tube die inlet to middle part of 180 to 310°C, and tube die middle part to outlet temperature. It is preferable to set the temperature to be in the range of 136 to 170°C because randmelt fracture does not occur in the tube die. The method for manufacturing the tube which is the raw material for the drawn yarn of the present invention is detailed in Japanese Patent Application No. 101712/1983.

チューブダイから押出されたチューブは冷却後、流れ方
向に分割して原糸とするが、チューブの冷却は空冷、水
冷等いずれの冷却手段を採用してもよい。
After the tube extruded from the tube die is cooled, it is divided in the flow direction to form yarn, and the tube may be cooled by any cooling means such as air cooling or water cooling.

チューブの分割はチューブダイから押出されたチューブ
を冷却後引続き連続して行っても、又一旦チューブとし
て引き取った後、別途分割してもよい。又チューブの分
割はチューブに刃を当てて行うが、かかる刃は固定式の
ものでも、回転式のものでもよい。中でも切れ味を持続
させる点で回転式のものが好ましい。又、チューブの分
割は二分割、四分割もしくはそれ以上と適宜行い得る。
The tube may be divided continuously after cooling the tube extruded from the tube die, or it may be separately divided after being taken out as a tube. Further, the tube is divided by applying a blade to the tube, but such a blade may be a fixed type or a rotary type. Among these, a rotary type is preferable because it maintains its sharpness. Further, the tube can be divided into two, four or more parts as appropriate.

分割されたチューブからなる原糸から引張強度に優れた
延伸糸を得るには少なくとも5倍、好ましくは10倍以
上、更に好ましくは14倍以上延伸する必要がある。延
伸糸を得る方法としては、乾式延伸、湿式延伸いずれの
方法でも可能であるが、熱伝達効率、温度管理精度の点
で湿式が好ましい。
In order to obtain a drawn yarn with excellent tensile strength from a raw yarn made of divided tubes, it is necessary to draw the yarn by at least 5 times, preferably 10 times or more, and more preferably 14 times or more. The drawn yarn may be obtained by either dry drawing or wet drawing, but wet drawing is preferable in terms of heat transfer efficiency and temperature control accuracy.

又、一段延伸よりも多段延伸方式が延伸比を大きくする
ことが出来、高強度及び高弾性率の延伸糸が得られるの
で好ましい。原糸の延伸温度は通常95℃〜融点+5℃
、好ましくは130〜145℃の範囲である。95℃未
満の延伸温度では、延伸倍率が大きくならず高強度延伸
糸が得られない恐れがある。一方145℃以上の延伸温
度では、原糸が溶融して切れ易(なり、延伸性が安定し
ない恐れがある。
Further, a multi-stage drawing method is preferable to a single-stage drawing method because it allows the drawing ratio to be increased and a drawn yarn with high strength and high elastic modulus can be obtained. The drawing temperature of the raw yarn is usually 95℃ to melting point +5℃
, preferably in the range of 130 to 145°C. If the drawing temperature is lower than 95° C., the drawing ratio may not be large and a high-strength drawn yarn may not be obtained. On the other hand, at a drawing temperature of 145° C. or higher, the raw yarn may melt and break easily (and the drawing properties may not be stable).

本発明の超高分子量ポリエチレン延伸糸川原糸の製造装
置は第1図に示す如く押出機1側から、溝付シリンダー
2と通常圧縮比が1ないし2.5、好ましくは1.3な
いし1.8の範囲のスクリュー3からなる押出機1、ス
クリュー先端4に連結されてスクリューの回転とともに
回転するマンドレル5及びアウターダイ6とからなる少
なくともL/Dが5、好ましくは10、更に好ましくは
30ないし70、チューブダイ入口部71の樹脂流路の
断面積Sz とチューブダイ中間部72の樹脂流路の断
面積S2との比(Sl/S2)が0.5ないし3.0、
好ましくは1.0ないし2.0及び前記S2とチューブ
ダイ出ロア3の樹脂流路の断面積S3との比(32/S
3)が1.0ないし3.0、好ましくは1.1ないし2
.0の範囲にあるチューブダイア及びチューブ分割装置
8とから構成される。
As shown in FIG. 1, the apparatus for producing drawn ultra-high molecular weight polyethylene Itokawa yarn of the present invention has a grooved cylinder 2 and a compression ratio of usually 1 to 2.5, preferably 1.3 to 1. An extruder 1 consisting of a screw 3 with a diameter in the range of 8, a mandrel 5 connected to the screw tip 4 and rotating with the rotation of the screw, and an outer die 6 with an L/D of at least 5, preferably 10, more preferably 30 to 30. 70, the ratio (Sl/S2) of the cross-sectional area Sz of the resin flow path in the tube die inlet portion 71 to the cross-sectional area S2 of the resin flow path in the tube die intermediate portion 72 is 0.5 to 3.0;
Preferably 1.0 to 2.0 and the ratio of S2 to the cross-sectional area S3 of the resin flow path of the tube die exit lower 3 (32/S
3) is 1.0 to 3.0, preferably 1.1 to 2
.. It consists of a tube diameter in the range of 0 and a tube splitting device 8.

溝付シリンダー2の溝部21は、超高分子量ポリエチレ
ン粉末を圧縮部22へ安定して供給させる。
The groove portion 21 of the grooved cylinder 2 allows the ultra-high molecular weight polyethylene powder to be stably supplied to the compression section 22.

またスクリュー3の圧縮比が1.0未満ではシリンダー
壁面に対する樹脂の圧着応力が小さく押出量が不安定に
なり、サージング現象や脱気不良による製品の外観不良
を生じ易い。一方2.5を越えると、圧縮部22におけ
る閉塞現象や摩擦熱によって樹脂温度が異常上昇し、熱
分解による樹脂の分子量低下が著しくなり、製品物性の
摩擦係数、耐摩耗性を損なう等の問題が生じるので好ま
しくない。
Further, if the compression ratio of the screw 3 is less than 1.0, the compression stress of the resin against the cylinder wall surface is small and the extrusion amount becomes unstable, which tends to cause a surging phenomenon or poor degassing of the product, resulting in poor appearance of the product. On the other hand, if it exceeds 2.5, the resin temperature will abnormally rise due to clogging phenomenon and frictional heat in the compression part 22, and the molecular weight of the resin will decrease significantly due to thermal decomposition, resulting in problems such as loss of product physical properties such as friction coefficient and wear resistance. This is not preferable because it causes

マンドレル5はスクリュー3の先端に螺着されている。The mandrel 5 is screwed onto the tip of the screw 3.

チューブダイのL/Dが5未満では、溶融樹脂が完全に
融着されず、良好なフレキシブルチューブが得られない
。尚、チューブダイのL/Dはチューブダイ入口部71
からチューブダイ出ロア3迄の長さとチューブダイ出ロ
ア3のアウターダイ6の内径との比である。またSl/
S2は0.5ないし3.0の範囲であればとくに問題な
いが、S2/S3の比が1.0未満では溶融樹脂が完全
に融着されず、一方3.0を越えると樹脂圧が過大にな
り、チューブの押出成形が困難となる。
If the L/D of the tube die is less than 5, the molten resin will not be completely fused and a good flexible tube will not be obtained. In addition, the L/D of the tube die is the tube die inlet part 71.
This is the ratio of the length from the tube die exit lower 3 to the inner diameter of the outer die 6 of the tube die exit lower 3. Also Sl/
There is no particular problem if S2 is in the range of 0.5 to 3.0, but if the S2/S3 ratio is less than 1.0, the molten resin will not be completely fused, while if it exceeds 3.0, the resin pressure will decrease. This makes it difficult to extrude the tube.

チューブダイの流路は前述の如く、基本的にはチューブ
ダイ出口に向かつて流路面積が狭くなる。
As mentioned above, the flow path area of the tube die basically becomes narrower toward the tube die outlet.

すなわちテーパーダイであるが、チューブダイ先端部7
4は流路面積が変化しない、いわゆるストレートである
ことが、寸法精度を高度に保持することができるので好
ましい。尚、ストレート部は通常L/Dが5ないし10
程度である。
That is, although it is a tapered die, the tube die tip 7
4 is preferably a so-called straight shape in which the flow path area does not change, since dimensional accuracy can be maintained to a high degree. In addition, the straight part usually has an L/D of 5 to 10.
That's about it.

マンドレル5の先端51はアウターダイ6より外部に出
ている方が、押出された溶融樹脂の蛇行が矯正されるの
で好ましい。
It is preferable for the tip 51 of the mandrel 5 to protrude outside the outer die 6 because the meandering of the extruded molten resin is corrected.

チューブ分割装置8はチューブダイアから押出されたチ
ューブを冷却後チューブの流れ方向(縦方向)に分割す
る装置であり、チューブを分割する刃81、刃81の支
持装置82とから構成される。刃81は固定あるいは回
転可能な状態で支持装置82に取付けられる。チューブ
分割装置8はチューブダイアより押出され冷却されたチ
ューブを連続して分割出来るようにチューブダイアの下
流側に同一系列で設置してもよいし、又チューブ7を一
旦引取機(図示せず)を介して巻取った後別途分割する
為に別系列で設置してもよい。分割後引取られた原糸は
公知の延伸装置で延伸される。
The tube dividing device 8 is a device that divides the tube extruded from the tube dia in the flow direction (vertical direction) of the tube after cooling, and is composed of a blade 81 for dividing the tube and a support device 82 for the blade 81. The blade 81 is fixedly or rotatably attached to a support device 82. The tube dividing device 8 may be installed in the same series on the downstream side of the tube dia so that the tubes extruded from the tube dia and cooled can be continuously divided, or the tube 7 may be temporarily separated by a take-off machine (not shown). It may be installed in a separate series in order to be separately divided after being wound up through a . After the splitting, the yarn taken off is drawn using a known drawing device.

〔発明の効果〕〔Effect of the invention〕

本発明の方法に用いる原糸(未延伸糸)は超高分子量ポ
リエチレンチューブを分割した薄肉の原糸であるので、
太デニールにもかかわらず同じデニールの円形の未延伸
糸に比べて、延伸時に原糸の内部迄均−且つ急速に加熱
されるので、延伸性(均一延伸性、高倍率延伸性)が改
良され引張強度に優れた大デニールの超高分子量ポリエ
チレン延伸糸が得られる。しかもかかる延伸糸は超高分
子量ポリエチレン本来の特徴である耐摩耗性、自己潤滑
性、耐衝撃性、耐水性を備え軽量であるので、従来の超
高分子量ポリエチレンフィラメントではその用途が限ら
れていた船舶係留用の大物ロープやネツ)lあるいは絶
縁性が要求されるプラスチックワイヤー等に好適に用い
ることができる。
Since the raw yarn (undrawn yarn) used in the method of the present invention is a thin raw yarn obtained by dividing an ultra-high molecular weight polyethylene tube,
Despite the thick denier, compared to a circular undrawn yarn of the same denier, the inside of the raw yarn is heated evenly and rapidly during stretching, so the drawability (uniform drawability, high-magnification drawability) is improved. A large denier drawn ultra-high molecular weight polyethylene yarn with excellent tensile strength is obtained. Furthermore, such drawn yarns have the inherent characteristics of ultra-high molecular weight polyethylene, such as abrasion resistance, self-lubricating properties, impact resistance, and water resistance, and are lightweight, so their uses were limited for conventional ultra-high molecular weight polyethylene filaments. It can be suitably used for large ropes and ropes for mooring ships, plastic wires that require insulation, and the like.

実施例1〜5 第1図に示す製造装置において以下の仕様による装置を
用いてフレキシブルチューブを製造した。
Examples 1 to 5 Flexible tubes were manufactured using the manufacturing apparatus shown in FIG. 1 having the following specifications.

スクリュー外径30鶴φ、スクリュー有効長さく L/
D )32.7−フイドピ’7チ20mm一定、スクリ
ュー圧縮比1.8、チューブダイ長さ750mm、ダイ
出口アウターダイ内径22m+iφ、グイ出口マンドレ
ル外n i’t 龍φ、 超高分子量ポリエチレン〔η)  :15dl/g、M
FR:0.01g/10m1n未満、融点:136℃及
び嵩密度:0.45g/cnlの粉末樹脂(商品名 ハ
イゼックス■ミリオン240M 、三井石油化学工業■
製)を用い、押出機、グイ基部(D、)及びグイ端部(
D2 ) 0)設定温度を各々280℃、270 ’C
及び160℃にし、スクリュー回転数を25 rpmに
設定し、引取taで2 、5 m / m i nの速
度で引取ることにより外径6龍φ、内径411φの超高
分子量ポリエチレン製フレキシブルチューブを製造した
。次いで該チューブを第1図に示す分割装置で8本に分
割し、これをトリエチレングリコール液の延伸槽で10
.12.14.16.18倍(133℃、1段延伸)に
延伸した。
Screw outer diameter 30 φ, effective screw length L/
D) 32.7-Width pi' 7chi 20mm constant, screw compression ratio 1.8, tube die length 750mm, die exit outer die inner diameter 22m + iφ, guide exit outside mandrel n i't dragonφ, ultra high molecular weight polyethylene [η ): 15dl/g, M
Powder resin with FR: less than 0.01 g/10 m1n, melting point: 136°C, and bulk density: 0.45 g/cnl (product name: Hi-ZEX ■Million 240M, Mitsui Petrochemical Industries ■)
using an extruder, Goui base (D) and Goui end (D)
D2) 0) Set temperature to 280°C and 270'C respectively.
and 160°C, the screw rotation speed was set to 25 rpm, and a flexible tube made of ultra-high molecular weight polyethylene with an outer diameter of 6 mm and an inner diameter of 411 mm was obtained by taking it off at a speed of 2.5 m/min. Manufactured. Next, the tube was divided into eight pieces using the dividing device shown in FIG.
.. It was stretched 12, 14, 16, 18 times (133°C, 1 stage stretching).

得られた各延伸糸の物性を以下の方法で測定した。この
結果を表1に示す。
The physical properties of each drawn yarn obtained were measured by the following method. The results are shown in Table 1.

密 度 :^STM D 1505 (アニールなし)
デニール:延伸糸のたるみがなくなるように初荷重をか
けて、900mm長さのものを10本採取し、1本づつ
、感度0.1mmgの精密天秤(島8!製作所)で重量
を測定する。これらの平均値を9000 m当りのg数
に換算する。
Density: ^STM D 1505 (without annealing)
Denier: Apply an initial load so that there is no slack in the drawn yarn, take 10 900 mm long yarns, and measure the weight of each yarn using a precision balance with a sensitivity of 0.1 mmg (Shima 8! Seisakusho). These average values are converted to the number of grams per 9000 m.

引張強度:米倉社製インストロン型万能試験機(CAT
Y−1001ZS ’) 引張速度=200龍/min、 チャック間:200mmの条件で破断点抗張力(kg/
龍2)及び伸び(%)を求めた。
Tensile strength: Yonekura Instron type universal testing machine (CAT
Y-1001ZS') Tensile strength at break (kg/
2) and elongation (%) were determined.

温度:23’C 実施例6〜9 分割した原糸を先ず133℃のトリエチレングリコール
液の延伸槽で8倍に延伸し、更にこれを142℃のトリ
エチレングリコール液の延伸槽で2.0.2.5.2.
75及び3.0倍に延伸した以外は実施例1〜5と同様
に行った。
Temperature: 23'C Examples 6 to 9 The split yarn was first stretched 8 times in a 133°C triethylene glycol liquid drawing tank, and then further stretched to 2.0 times in a 142°C triethylene glycol liquid drawing tank. .2.5.2.
The same procedure as in Examples 1 to 5 was carried out except that the stretching was 75 times and 3.0 times.

結果を表1に示す。The results are shown in Table 1.

比較例1 実施例1で用いた超高分子量ポリエチレンの代ワリニ〔
η)  :  3.5dl/gの高密度ポリエチレンを
用いる以外は実施例1と同様に行った。結果を表1に示
す。
Comparative Example 1 Varini, a substitute for the ultra-high molecular weight polyethylene used in Example 1
η): The same procedure as in Example 1 was performed except that 3.5 dl/g high-density polyethylene was used. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造装置の側断面図である。 1・・・加熱シリンダー 2・・・溝付シリンダー 3・・・スクリュー 5・・・マンドレル 6・・・アウターダイ 8・・・チューブ分割装置 FIG. 1 is a side sectional view of the manufacturing apparatus of the present invention. 1...Heating cylinder 2...Grooved cylinder 3...Screw 5...Mandrel 6...Outer die 8...Tube splitting device

Claims (2)

【特許請求の範囲】[Claims] (1)極限粘度〔η〕が5dl/g以上の超高分子量ポ
リエチレンをスクリュー押出機で溶融し、次いでマンド
レルがスクリューの回転に伴つて回転する少なくともL
/Dが5のチューブダイから押出して冷却し、得られた
チューブを流れ方向に分割した後延伸することを特徴と
する超高分子量ポリエチレン延伸糸の製造方法。
(1) Ultra-high molecular weight polyethylene with an intrinsic viscosity [η] of 5 dl/g or more is melted in a screw extruder, and then the mandrel rotates with the rotation of the screw.
A method for producing a drawn ultra-high molecular weight polyethylene yarn, which comprises extruding it through a tube die with /D of 5, cooling it, dividing the obtained tube in the machine direction, and then drawing it.
(2)押出機側から、溝付シリンダーと圧縮比1ないし
2.5の範囲であるスクリューからなる押出機、スクリ
ュー先端に連結されてスクリューの回転とともに回転す
るマンドレル及びアウターダイとからなる少なくともL
/Dが5、チューブダイ入口部の樹脂流路断面積S_1
とチューブダイ中間部の樹脂流路断面積S_2との比(
S_1/S_2)が0.5ないし3.0の範囲及びチュ
ーブダイ中間部の樹脂流路の断面積S_2とチューブダ
イ出口の樹脂流路の断面積S_3との比(S_2/S_
3)が1.0ないし3.0の範囲にあるチューブダイ及
びチューブ分割装置とから構成されることを特徴とする
超高分子量ポリエチレン延伸糸用原糸の製造装置。
(2) From the extruder side, at least L consists of an extruder consisting of a grooved cylinder and a screw with a compression ratio in the range of 1 to 2.5, a mandrel connected to the tip of the screw and rotating with the rotation of the screw, and an outer die.
/D is 5, resin flow path cross-sectional area S_1 at tube die inlet
and the resin flow path cross-sectional area S_2 at the middle part of the tube die (
S_1/S_2) is in the range of 0.5 to 3.0, and the ratio (S_2/S_
3) An apparatus for producing a raw yarn for drawn ultra-high molecular weight polyethylene yarn, comprising a tube die and a tube dividing device in which the value of 3) is in the range of 1.0 to 3.0.
JP23955785A 1985-10-28 1985-10-28 Ultrahigh molecular weight polyethylene drawn yarn manufacturing method and raw yarn manufacturing apparatus Expired - Fee Related JPH0637723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23955785A JPH0637723B2 (en) 1985-10-28 1985-10-28 Ultrahigh molecular weight polyethylene drawn yarn manufacturing method and raw yarn manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23955785A JPH0637723B2 (en) 1985-10-28 1985-10-28 Ultrahigh molecular weight polyethylene drawn yarn manufacturing method and raw yarn manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS62104911A true JPS62104911A (en) 1987-05-15
JPH0637723B2 JPH0637723B2 (en) 1994-05-18

Family

ID=17046570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23955785A Expired - Fee Related JPH0637723B2 (en) 1985-10-28 1985-10-28 Ultrahigh molecular weight polyethylene drawn yarn manufacturing method and raw yarn manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0637723B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290498A (en) * 1991-04-03 1994-03-01 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of and apparatus for manufacturing the same
US6007760A (en) * 1995-11-01 1999-12-28 Mitsui Chemicals, Inc. Method of producing inflation film, apparatus therefor and molded articles thereof
US6054086A (en) * 1995-03-24 2000-04-25 Nippon Petrochemicals Co., Ltd. Process of making high-strength yarns
US6127293A (en) * 1994-12-16 2000-10-03 Nippon Petrochemicals Co., Ltd. Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290498A (en) * 1991-04-03 1994-03-01 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of and apparatus for manufacturing the same
US5417561A (en) * 1991-04-03 1995-05-23 Mitsui Petrochemical Industries, Ltd. Apparatus for manufacturing of ultra high molecular weight polyethylene thin wall pipe
US5683767A (en) * 1991-04-03 1997-11-04 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of an apparatus for manufacturing the same
US6127293A (en) * 1994-12-16 2000-10-03 Nippon Petrochemicals Co., Ltd. Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst
US6054086A (en) * 1995-03-24 2000-04-25 Nippon Petrochemicals Co., Ltd. Process of making high-strength yarns
US6007760A (en) * 1995-11-01 1999-12-28 Mitsui Chemicals, Inc. Method of producing inflation film, apparatus therefor and molded articles thereof

Also Published As

Publication number Publication date
JPH0637723B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JPH03119105A (en) Preparation of polyethylene filament
FI93865C (en) Melt-spun strong polyethylene fiber
KR100481335B1 (en) Melt Spun Fluoropolymeric Fibers and Process for Producing Them
JPH07102413A (en) Polytetrafluoroethylene filament
US3217074A (en) Process for producing a filament having a fibrous linearly oriented core
KR100310725B1 (en) Multifilament Yarn of Thermoplastic Polymers by Tetrafluoroethylene and Fibers Obtained from the
US3078139A (en) Process for producing polystyrene fibers
JPS62104911A (en) Production of drawn yarn of ultra-high-molecular-weight polyethylene and production unit for undrawn yarn thereof
JP2005179823A (en) Method for producing polyester fiber and spinning cap for melt spinning
US5256358A (en) Method of making stretched filaments of ultra-high-molecular weight polyethylene
EP0401942B1 (en) Whitened wire of ultra-high-molecular-weight polyethylene and production thereof
JP2001172821A (en) Production of polyoxymethylene fiber
US4119693A (en) Process for spinning poly (ethylene oxide) monofilament
JP2689983B2 (en) Ultra-high molecular weight polyethylene stretched product and method for producing the same
JPS61174416A (en) Drawn yarn of ultra-high-molecular-weight polyethylene, method for producing raw yarn thereof, and apparatus therefor
JP2003089917A (en) Method for producing thermoplastic synthetic fiber
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS61282416A (en) Plastic wire and production thereof
CN1515711A (en) High-strength polypropylene fibre and its production method
JPH02446B2 (en)
CN111304759B (en) Stretching method of polyester industrial yarn
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JP2000345428A (en) Production of polyolefin-based fiber
CA1097470A (en) Synthetic polymeric filaments
JPH04370234A (en) Production of split yarn

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees