JPS62104122A - Electron-beam transfer apparatus - Google Patents

Electron-beam transfer apparatus

Info

Publication number
JPS62104122A
JPS62104122A JP24441585A JP24441585A JPS62104122A JP S62104122 A JPS62104122 A JP S62104122A JP 24441585 A JP24441585 A JP 24441585A JP 24441585 A JP24441585 A JP 24441585A JP S62104122 A JPS62104122 A JP S62104122A
Authority
JP
Japan
Prior art keywords
pole
mask
coil
permalloy
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24441585A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24441585A priority Critical patent/JPS62104122A/en
Publication of JPS62104122A publication Critical patent/JPS62104122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify an apparatus and to implement a compact device and a low cost, by using permanent magnets as magnetic poles, sticking a high permeability material to the inner surface of each permanent magnet, and providing recessed shapes on the facing surfaces. CONSTITUTION:An N pole 11 and an S pole 12 face to each other. They are made of lanthanide rare earth magnet. A mask holder 18 is arranged on the side of the N pole and a mask 19 is held. A voltage of -80kV is applied to the N pole 11, and the mask is held at a negative potential. Permalloy 13, which provides a recessed surface 14 in the facing direction, is stuck to each of the N pole 11 and the S pole 12. By forming the recess surface 14, a protruded part 13a is formed around the Permalloy 13. A stage 21 is arranged over the S pole 12. A wafer 22 is mounted on the stage. At least one coil 15 and two Permally rings 16 are arranged between the N pole 11 and the S pole 12. Ultraviolet rays 23 are applied on a mirror 24. The rays reflected by the mirror 24 are projected on the mask 19. Electrons are discharged from the mask and converged, and the electron beam is projected on the wafer 22.

Description

【発明の詳細な説明】 〔概要〕 電子ビーム転写装置の磁極として永久磁石を用い、永久
磁石の内面に高透磁率材料を貼り付け、相対向する面を
凹型にする。
[Detailed Description of the Invention] [Summary] A permanent magnet is used as the magnetic pole of an electron beam transfer device, and a high magnetic permeability material is pasted on the inner surface of the permanent magnet, so that the opposing surfaces are made concave.

〔産業上の利用分野〕[Industrial application field]

本発明は電子ビーム転写装置に関するもので、さらに詳
しく言えば、当該装置の磁極の改良に関するものである
TECHNICAL FIELD This invention relates to electron beam transfer devices and, more particularly, to improvements in the magnetic poles of such devices.

〔従来の技術〕[Conventional technology]

電子ビームによるl:1 (等倍)転写技術はマスク像
を電子ビームで試料上に転写するもので、その原理は第
4図に示す。焦点コイル(ヘルムホルツコイル)31の
作る平行磁場(同図で上下方向)の中に磁場と直角にフ
ォトカソードマスク32と試料(例えば表面に電子レジ
スト36が塗布されたシリコンウェハ37)が並行に向
い合って配置され、マスクが負、試料が正になるような
電圧がかかっている。マスク32は石英板33の上に紫
外線の吸収体34からなる転写すべきパターンを作り、
その上に紫外線の照射によって電子の出る光電物質(パ
ラジウム)を塗ってパラジウムカソード35を作る。
The 1:1 (equal magnification) transfer technique using an electron beam transfers a mask image onto a sample using an electron beam, and its principle is shown in FIG. A photocathode mask 32 and a sample (for example, a silicon wafer 37 whose surface is coated with an electronic resist 36) are oriented perpendicularly to the parallel magnetic field (in the vertical direction in the figure) created by a focusing coil (Helmholtz coil) 31. A voltage is applied such that the mask is negative and the sample is positive. The mask 32 creates a pattern to be transferred consisting of an ultraviolet absorber 34 on a quartz plate 33,
A palladium cathode 35 is made by applying a photoelectric substance (palladium) that emits electrons when irradiated with ultraviolet rays.

石英板33の上から紫外線源38から出される紫外線3
9で照射すると、パターンのないところ(紫外線吸収体
34のない所)にある光電物質に紫外線が当り、その部
分から電子40が矢印のように出る。
Ultraviolet light 3 emitted from the ultraviolet source 38 from above the quartz plate 33
When irradiated at step 9, the ultraviolet rays hit the photoelectric material in areas where there is no pattern (where there is no ultraviolet absorber 34), and electrons 40 are emitted from those areas as shown by the arrow.

マスク32上の1点から出た電子40は、そこにある電
場と焦点コイル31の作る平行磁場によって’II!旋
を画いて試料の方向に進み、ある所で再び1点に集まる
、すなわち焦点を結ぶ。
The electron 40 emitted from one point on the mask 32 is moved to 'II!' due to the electric field there and the parallel magnetic field created by the focusing coil 31. It moves in a circular motion toward the sample, and at a certain point it converges again at one point, that is, it focuses.

第5図は装置構造の一部を示し、同図の中心右側に光電
マスク32が、同左側にシリコンウェハ37が向い合っ
て立っている。ウェハ左側のX線検出器40は、マスク
の合せマークから出た電子がウェハ上の重金属マークに
当るときの線を検出して位置合せを行うに用いる。偏向
コイル41はマスクから出た電子ビームを偏向し、マス
クパターンとウェハ上のパターンの位置合せをするとき
に用いる。
FIG. 5 shows a part of the device structure, with a photoelectric mask 32 facing each other on the right side of the center of the figure, and a silicon wafer 37 on the left side of the center. The X-ray detector 40 on the left side of the wafer is used to perform alignment by detecting a line when electrons emitted from the alignment mark on the mask hit a heavy metal mark on the wafer. The deflection coil 41 deflects the electron beam emitted from the mask and is used to align the mask pattern with the pattern on the wafer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ヘルムホルツコイルの半径をa1同コイル間の間隔をb
としたときに、a=2bになるようコイルを配置したと
きに均一磁場(一様性をもった磁場)が作られ電子を集
束する。aを20cmとしたとき、IKガウスの磁場を
作るには各コイルに3万アンペアターンの大電流が必要
なことが知られている。
The radius of the Helmholtz coil is a1 The distance between the coils is b
When the coils are arranged so that a=2b, a uniform magnetic field (uniform magnetic field) is created and electrons are focused. It is known that when a is 20 cm, a large current of 30,000 ampere turns is required in each coil to create an IK Gauss magnetic field.

また、ヘルムホルツコイルは前記したアンペアターンの
強度が必要であっ゛C1超伝導コイルとし、液体ヘリウ
ム温度に冷却する必要がある。そのために装置が大がか
りになり、高価となるばかりでなく、試料を搭載するス
テージを組み込むことが難しい。さらに、ヘルムホルツ
コイルの近くに磁性体をシールドやステージ材料として
配置するについても、十分に注意しないと近くに設置で
きない問題がある。
Further, the Helmholtz coil needs to have the above-mentioned ampere-turn strength, so it needs to be a C1 superconducting coil and cooled to liquid helium temperature. This not only makes the device large and expensive, but also makes it difficult to incorporate a stage for mounting the sample. Furthermore, when placing a magnetic material near the Helmholtz coil as a shield or stage material, there is a problem in that it cannot be placed near the Helmholtz coil unless sufficient care is taken.

本発明はこのような点に鑑みて創作されたもので、電子
ビーム転写装置の磁極に永久磁石を用い当該装置を簡略
にし、装置の小型化、コスI・低減を実現することを目
的とする。
The present invention was created in view of these points, and aims to simplify the electron beam transfer device by using permanent magnets as magnetic poles, thereby realizing miniaturization and cost reduction of the device. .

〔問題点を解決するための手段〕[Means for solving problems]

第1図(alとfb)は本発明実施例の断面図である。 FIG. 1 (al and fb) is a sectional view of an embodiment of the present invention.

本発明の電子ビーム転写装置においては、N極(11)
とS極(12)としてランタネット系希土類磁石を用い
、対向する磁石の一方または双方の面には高透磁率材料
(パーマロイ) 13を貼り、パーマロイ表面は凹面(
14)とし、磁力線の微調用に少なくとも1個のコイル
15を配置し、必要とあればパーマロイ16を更に配置
する。また、N極11とS極12とは同図(blに示さ
れる如く0リング17を用いて真空パンクにする。
In the electron beam transfer device of the present invention, the N pole (11)
Lanthanet rare earth magnets are used as the and S poles (12), and a high permeability material (permalloy) 13 is pasted on one or both surfaces of the opposing magnets, and the permalloy surface has a concave surface (
14), and at least one coil 15 is arranged for fine adjustment of the lines of magnetic force, and if necessary, a permalloy 16 is further arranged. Further, the north pole 11 and the south pole 12 are vacuum punctured using an O ring 17 as shown in the same figure (bl).

〔作用〕[Effect]

上記の磁極構造においては、N極11.!: S極12
の間隔を4cmとしN極に−80にν印加するとIKガ
ウスの磁場が作られ、また磁力線の一様性(均一性)は
、パーマロイ13が凹面になっていることに加え、コイ
ル15によって?lI調整され、必要とあればパーマロ
イをコイル15の近くに配置して加工精度、計算誤差な
どによる非一様性を微1!1整する。
In the above magnetic pole structure, the N pole 11. ! : S pole 12
By setting the interval between 4 cm and applying ν to -80 to the N pole, an IK Gauss magnetic field is created, and the uniformity (uniformity) of the magnetic field lines is due to the concave surface of the permalloy 13 and the coil 15. lI is adjusted, and if necessary, permalloy is placed near the coil 15 to finely correct non-uniformity due to processing accuracy, calculation error, etc.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

再び第1図を参照すると、N極11とS極12とは相対
向して配置するが、それらはランタネット系希土類磁石
で作る。必要とあれば第1図(b)に示される如くOリ
ング17を用いて磁石を真空パックにする。
Referring again to FIG. 1, the north pole 11 and the south pole 12 are arranged facing each other, and are made of lanthanet-based rare earth magnets. If necessary, the magnet is vacuum packed using an O-ring 17 as shown in FIG. 1(b).

第1図(a)に示す構造においては、N極側にマスクホ
ルダ18を配置して従来例と同じマスク19を保持し、
N極11に−80にνの電圧を印加しマスクを負電位に
保つ。
In the structure shown in FIG. 1(a), a mask holder 18 is placed on the N pole side to hold the same mask 19 as in the conventional example,
A voltage of -80 to ν is applied to the N-pole 11 to maintain the mask at a negative potential.

N極11とS極12にはS極側によく示されるように相
手方に向けて凹面14を提供するパーマロイ13を貼る
。凹面14を作ることによってパーマロイ13の回りに
は凸部13aが形成される。N極11はセラミック支材
20によって支持される。
A permalloy 13 is attached to the N pole 11 and the S pole 12, which provides a concave surface 14 toward the opposite side, as clearly shown on the S pole side. By creating the concave surface 14, a convex portion 13a is formed around the permalloy 13. The north pole 11 is supported by a ceramic support 20 .

S極12の図に見て上方にはステージ21を配置し、そ
の上にウェハ22を搭載する。N極11とS極12の間
には、少なくとも1個のコイル15と2(IIのパーマ
ロイリング16を配置する。
A stage 21 is arranged above the S pole 12 as seen in the figure, and a wafer 22 is mounted on it. Between the north pole 11 and the south pole 12, at least one coil 15 and a permalloy ring 16 of 2 (II) are arranged.

操作においては、紫外線23をミラー24に当て、ミラ
ー24によって反射された光をマスク19に照射し、従
来例の場合と同様にマスクから電子を飛び出させ、それ
を集束してウェハ22に照射する。
In operation, the ultraviolet light 23 is applied to the mirror 24, the light reflected by the mirror 24 is irradiated to the mask 19, electrons are ejected from the mask as in the conventional example, and the electrons are focused and irradiated onto the wafer 22. .

電子ビーム転写においては、前記した電子ビームの集束
が重要で、そのためにはN極、S極間の磁力線の一様性
(均一性)が要求される。
In electron beam transfer, the above-mentioned focusing of the electron beam is important, and for this purpose, uniformity (uniformity) of the lines of magnetic force between the north pole and the south pole is required.

第2図は永久磁石の形成する磁力線の一様性を説明する
ための模式的な図で、磁力性の不均一性は説明のため誇
張して示される。同図(a) 、 (bl 、 (0)
において、N極11とS極12とは100mmの間隔を
おいて配置され、各磁石とも直径160mmのものであ
る。
FIG. 2 is a schematic diagram for explaining the uniformity of magnetic lines of force formed by a permanent magnet, and the non-uniformity of magnetic force is exaggerated for the sake of explanation. Same figure (a), (bl, (0)
In this example, the north pole 11 and the south pole 12 are arranged at an interval of 100 mm, and each magnet has a diameter of 160 mm.

同図(alは永久磁石のみを用いた場合に形成される磁
力線を示し、この例で一様性は磁石の中心から1 cm
離れたところで10%であり、電子ビーム転写装置に用
いることはできない。
The same figure (al shows the magnetic field lines formed when only permanent magnets are used, and in this example, the uniformity is 1 cm from the center of the magnet.
10% at a distance and cannot be used in electron beam transfer equipment.

同図山)に示される例ではN極11とS極12にパーマ
ロイを貼っであるが、この場合の一様性は2〜3%と改
善されるが、それでもやはり電子ビーム転写装置に用い
ることができない。
In the example shown in Figure 1), permalloy is pasted on the north pole 11 and the south pole 12, and although the uniformity in this case is improved to 2 to 3%, it is still not suitable for use in an electron beam transfer device. I can't.

同図(jlに示される本発明の例ではN極11の直ぐ近
くの磁力線の足の部分はパーマロイの凸部13aによっ
て凸部13aに向は引き寄せられ(引っ張られ)、他方
磁力線の中央のコイル15に向けて凸状になった部分は
、矢印Iで示すコイル15の磁場によってコイル15か
ら排斥され、10−5のオーダーの一様性が得られ磁力
線は真直ぐになる。
In the example of the present invention shown in FIG. The convex portion toward 15 is repelled from the coil 15 by the magnetic field of the coil 15 shown by arrow I, and uniformity on the order of 10-5 is obtained, and the lines of magnetic force become straight.

しかし、磁力線は、工作精度、計算誤差などによって第
2図に示される如き状態に加え、第3図に示される如き
複雑な形状をとることがある。それを微調整するには、
コイル15に加えパーマロイ16を配置する。なお、コ
イルが1個のときは大電力を必要とするが、第3図に示
される配置は1本当り大電力を必要としないので、その
問題を解決する。このように磁力線を斥けたり引いたり
するコイルと、磁力線を引き寄せる強磁性体(パーマロ
イ、鉄)とを用いて最外側の磁力線を真直ぐにすると、
内側の他の磁力線はすべて真直ぐになり磁力線の一様性
が確保される。
However, depending on machining accuracy, calculation errors, etc., the magnetic lines of force may take a complicated shape as shown in FIG. 3 in addition to the state shown in FIG. 2. To fine tune it,
In addition to the coil 15, permalloy 16 is arranged. Incidentally, when there is only one coil, a large amount of power is required, but the arrangement shown in FIG. 3 solves this problem because it does not require a large amount of power per coil. By using a coil that repels or pulls magnetic lines of force and a ferromagnetic material (permalloy, iron) that attracts lines of magnetic force to straighten the outermost lines of magnetic force,
All other magnetic lines of force inside are straight, ensuring uniformity of the lines of magnetic force.

ランタネット系希土類磁石は、最高磁化でほぼ1年経過
すると疲労して磁力が1〜2%劣化する。
Lanthanet rare earth magnets become fatigued and their magnetic force deteriorates by 1 to 2% after approximately one year at maximum magnetization.

そこで、98%磁化することによって半永久的に疲労の
ない永久磁石が得られるようにするとよい。
Therefore, it is preferable to obtain a semi-permanently fatigue-free permanent magnet by magnetizing it to 98%.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、簡便で、小型化
され、安価で、電源が不要であり、ステージの組込みが
容易な電子ビーム転写装置の磁極が得られる効果がある
As described above, according to the present invention, it is possible to obtain a magnetic pole for an electron beam transfer device that is simple, compact, inexpensive, does not require a power source, and can be easily incorporated into a stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは本発明実施例の断面図、同図(b)はそ
の(alの磁極の変型例の断面図、 第2図[a) 、 (b) 、 (C)は磁力線の一様
性を説明する図で、 同図Ta)は永久磁石のみの場合、同図(blは永久磁
石にパーマロイを貼った場合、同図(C)は本発明実施
例の場合を示す図、 第3図は本発明による磁力線の微調整を示す図、第4図
と第5図は従来例断面図である。 第1図ないし第3図において、 11はN極、 12はS極、 13はパーマロイ、 13aはパーマロイの凸部、 14は凹面、 15はコイル、 16はパーマロイ、 17はOリング、 18はマスクホルダ、 19はマスク、 20はセラミック支材、 21はステージ、 22はウェハ、 23は紫外線、 24はミラーである。 志J発明実売例 第1図 本号ε=明 リ?タセiイ列 第1図 口7フZZ] 口ZZZZ 石α力it^−木hat亀知Q月寄3図第2図 蒸発”@ t;7a 3 鼻〃4m tnf&瑚翻11
atイfコIII′rI!1ε凸 s4図
Figure 1 (al is a cross-sectional view of the embodiment of the present invention, Figure (b) is a cross-sectional view of a modified example of the magnetic pole of (al), Figures 2 [a), (b), and (C) are one of the lines of magnetic force. The figure (Ta) shows the case of only a permanent magnet, the figure (BL) shows the case where permalloy is pasted on the permanent magnet, and the figure (C) shows the case of the embodiment of the present invention. Figure 3 is a diagram showing fine adjustment of magnetic lines of force according to the present invention, and Figures 4 and 5 are cross-sectional views of conventional examples.In Figures 1 to 3, 11 is an N pole, 12 is an S pole, and 13 is a S pole. Permalloy, 13a is a protrusion of permalloy, 14 is a concave surface, 15 is a coil, 16 is permalloy, 17 is an O-ring, 18 is a mask holder, 19 is a mask, 20 is a ceramic support, 21 is a stage, 22 is a wafer, 23 is ultraviolet light, and 24 is a mirror. Shi J Invention Commercial Example Figure 1 This issue ε = Light Li? Tsukiyori 3 figure 2 evaporation”@t;7a 3 nose〃4m tnf&gotan11
at if co III'rI! 1ε convex s4 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)対向して配置される電子ビーム転写装置のN極(
11)とS極(12)をランタネット系希土類磁石で構
成し、 対向するN極(11)とS極(12)の少なくとも1つ
の面には高透磁率材料(13)を貼り、前記材料(13
)の表面は凹面(14)とし、N極(11)、S極(1
2)間には試料(22)を載置するステージ(21)と
少なくとも1個のコイル(15)を配置したことを特徴
とする電子ビーム転写装置。
(1) N pole (
11) and S pole (12) are composed of Lanthanet-based rare earth magnets, and a high magnetic permeability material (13) is pasted on at least one surface of the opposing N pole (11) and S pole (12). (13
) has a concave surface (14), with N pole (11) and S pole (1
2) An electron beam transfer apparatus characterized in that a stage (21) on which a sample (22) is placed and at least one coil (15) are arranged between them.
(2)コイル(15)に加え少なくとも1個の高透磁率
材料(16)を配置した特許請求の範囲第1項記載の装
置。
2. Device according to claim 1, characterized in that in addition to the coil (15) at least one high permeability material (16) is arranged.
(3)N極(11)とS極(12)とを真空パックにし
た特許請求の範囲第1項記載の装置。
(3) The device according to claim 1, wherein the north pole (11) and the south pole (12) are vacuum packed.
JP24441585A 1985-10-31 1985-10-31 Electron-beam transfer apparatus Pending JPS62104122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24441585A JPS62104122A (en) 1985-10-31 1985-10-31 Electron-beam transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24441585A JPS62104122A (en) 1985-10-31 1985-10-31 Electron-beam transfer apparatus

Publications (1)

Publication Number Publication Date
JPS62104122A true JPS62104122A (en) 1987-05-14

Family

ID=17118322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24441585A Pending JPS62104122A (en) 1985-10-31 1985-10-31 Electron-beam transfer apparatus

Country Status (1)

Country Link
JP (1) JPS62104122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951729B1 (en) 2003-03-07 2010-04-07 삼성전자주식회사 Electron-beam focusing apparatus and electron-beam projection lithography system employing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951729B1 (en) 2003-03-07 2010-04-07 삼성전자주식회사 Electron-beam focusing apparatus and electron-beam projection lithography system employing it

Similar Documents

Publication Publication Date Title
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
Halbach Application of permanent magnets in accelerators and electron storage rings
US4740758A (en) Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern
US4465934A (en) Parallel charged particle beam exposure system
Duden et al. A compact electron‐spin‐polarization manipulator
US4705956A (en) Electron image projector
GB1514095A (en) Electron beam apparatus
JP4021982B2 (en) Hybrid wiggler
US7576341B2 (en) Lithography systems and methods for operating the same
JPS62104122A (en) Electron-beam transfer apparatus
GB1467487A (en) X-ray tubes
JPH0313702B2 (en)
JPH05303000A (en) Magnetism generator for insertion light source for obtaining radiation light having circular polarization and vertical linear polarization characteristic
JP3490469B2 (en) Electron beam focusing magnetic field generator
JPH07233473A (en) Magnetron sputtering device
JPH09102291A (en) Objective lens and charge particle beam device
O'Keeffe et al. A high-resolution image tube for integrated circuit fabrication
JP3957844B2 (en) Magnetic field generator for magnetron plasma
JPH0515305U (en) Iron core structure of laminated bending magnet
JPS5539121A (en) Electromagnetic focus cathode ray tube
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JP4374400B6 (en) Magnetic ion beam scanner
JPS61294442A (en) Mask holder
JPS6048858B2 (en) cathode ray tube electron gun