JPS6210366B2 - - Google Patents

Info

Publication number
JPS6210366B2
JPS6210366B2 JP8322180A JP8322180A JPS6210366B2 JP S6210366 B2 JPS6210366 B2 JP S6210366B2 JP 8322180 A JP8322180 A JP 8322180A JP 8322180 A JP8322180 A JP 8322180A JP S6210366 B2 JPS6210366 B2 JP S6210366B2
Authority
JP
Japan
Prior art keywords
alumina
powder
valve body
granular material
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8322180A
Other languages
Japanese (ja)
Other versions
JPS578417A (en
Inventor
Juzo Seo
Hiroshi Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOKA KEIKINZOKU KOGYO KK
Original Assignee
RYOKA KEIKINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOKA KEIKINZOKU KOGYO KK filed Critical RYOKA KEIKINZOKU KOGYO KK
Priority to JP8322180A priority Critical patent/JPS578417A/en
Publication of JPS578417A publication Critical patent/JPS578417A/en
Publication of JPS6210366B2 publication Critical patent/JPS6210366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/282Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement for fluent solid material not provided for in G01F11/34, G01F11/40, G01F11/46

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Description

【発明の詳細な説明】 本発明は粉粒体の計量装置に関する。本発明の
装置は特にアルミナを計量するための計量装置と
して有用であり、アルミニウム電解製錬において
電解槽へアルミナを定量供給するために用いる計
量装置として好適に用いられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for powder and granular materials. The apparatus of the present invention is particularly useful as a measuring apparatus for measuring alumina, and is suitably used as a measuring apparatus used for quantitatively supplying alumina to an electrolytic cell in aluminum electrolytic smelting.

アルミニウムは、周知の如く、電解槽で氷晶石
を主体とする電解浴中のアルミナを電解還元する
ことにより製造される。電解浴中に溶解している
アルミナは電解反応により消費されるので、定期
的にアルミナを補充する。
As is well known, aluminum is produced by electrolytically reducing alumina in an electrolytic bath mainly composed of cryolite. Alumina dissolved in the electrolytic bath is consumed by electrolytic reactions, so alumina is regularly replenished.

この場合、アルミナの供給量が過多であると電
解浴が飽和状態となり、供給したアルミナの一部
が電解槽底部に堆積していわゆるスラツジが生成
することになる。このスラツジの生成は陰極にお
ける電圧損失の増加や電解槽陰極上のアルミニウ
ムメタルの動揺による電流効率の低下等をもたら
すことになる。他方、アルミナの供給量が過少で
あると、陽極効果が頻発し、電力の損失、作業量
の増加、弗化物の損失等をもたらすことになる。
In this case, if the amount of alumina supplied is too large, the electrolytic bath will become saturated, and a portion of the supplied alumina will accumulate at the bottom of the electrolytic bath, resulting in the formation of so-called sludge. The formation of this sludge results in an increase in voltage loss at the cathode and a decrease in current efficiency due to agitation of the aluminum metal on the cathode of the electrolytic cell. On the other hand, if the amount of alumina supplied is too low, the anodic effect will occur frequently, resulting in loss of power, increased amount of work, loss of fluoride, etc.

このようにスラツジの生成又は陽極効果の頻発
は電解槽運転上好ましくない。従つて電解槽を安
定に運転するためには、アルミナの供給を所要の
量だけ精度良く行なうことが必要である。一般に
アルミニウム電解槽は工場内に多数配列されて運
転されるので、各電解槽に設置する計量装置とし
ては、安価で保守点検が容易でしかも精度の良い
装置が要求される。
As described above, the frequent occurrence of sludge formation or anode effect is unfavorable in terms of electrolyzer operation. Therefore, in order to operate the electrolytic cell stably, it is necessary to accurately supply the required amount of alumina. Generally, a large number of aluminum electrolytic cells are arranged and operated in a factory, and therefore, the measuring device installed in each electrolytic cell is required to be inexpensive, easy to maintain and inspect, and highly accurate.

第1図及び第2図は、従来アルミナ供給のため
に使用されていた計量装置の模式図であり、第1
図は正面断面図、第2図は第1図のA―A′方向
の断面図である。
Figures 1 and 2 are schematic diagrams of a metering device conventionally used for supplying alumina.
The figure is a front sectional view, and FIG. 2 is a sectional view taken along the line AA' in FIG. 1.

該計量装置は内容積既知の計量容器2、貯槽ホ
ツパー1より計量容器2にアルミナを導入充填す
るための流動化機構(エアスライドなど)5、計
量容器2からアルミナを排出するための流動化機
構6、及びアルミナ充填時にアルミナと共に計量
容器2内に流入する気体(空気など)を抜出すた
めの排気経路4により構成されている。アルミナ
の供給に当つては、まず充填用の流動化機構5と
圧縮気体源10とを連絡している圧縮気体配管の
途中に設けられた電磁弁11を開き、流動床8上
のアルミナを流動化させて充填経路7を介して計
量容器2内に導入する。計量容器2内にアルミナ
が充満するのに充分な時間が経過した後、電磁弁
11を閉じ、ついで電磁弁12を開き、流動化機
構6に圧縮気体を送り、流動床9上のアルミナを
流動化させて、排出経路3よりアルミナを排出す
る。排出完了後再び電磁弁12を閉じ、次のアル
ミナ供給まで待機する。
The measuring device includes a measuring container 2 with a known internal volume, a fluidizing mechanism (such as an air slide) 5 for introducing and filling alumina into the measuring container 2 from a storage tank hopper 1, and a fluidizing mechanism for discharging alumina from the measuring container 2. 6, and an exhaust path 4 for extracting gas (such as air) that flows into the measuring container 2 together with alumina during alumina filling. To supply alumina, first open the solenoid valve 11 installed in the middle of the compressed gas piping that connects the fluidization mechanism 5 for filling and the compressed gas source 10, and fluidize the alumina on the fluidized bed 8. and introduced into the measuring container 2 via the filling path 7. After sufficient time has passed for the measuring container 2 to be filled with alumina, the solenoid valve 11 is closed, and then the solenoid valve 12 is opened to send compressed gas to the fluidization mechanism 6 to fluidize the alumina on the fluidized bed 9. The alumina is discharged from the discharge route 3. After the discharge is completed, the solenoid valve 12 is closed again and the system waits until the next supply of alumina.

このような操作によりほぼ一定量のアルミナを
電解槽へ供給することができるが、この計量装置
には次の様な問題があつた。
Although it is possible to supply a substantially constant amount of alumina to the electrolytic cell through such an operation, this metering device has the following problems.

即ち、アルミナ充填時に貯槽ホツパー1からの
アルミナが流動化機構5により流動状態で計量容
器2に導入され、一方アルミナとともに計量容器
2に流入する気体は排気経路4より容器外に排気
されるが、アルミナの充填量の増加に伴い流動状
態のアルミナの粉面も上昇し、最終的には排気経
路4にアルミナが侵入することになる。
That is, during alumina filling, alumina from the storage tank hopper 1 is introduced into the weighing container 2 in a fluidized state by the fluidization mechanism 5, while the gas that flows into the weighing container 2 together with the alumina is exhausted to the outside of the container through the exhaust path 4. As the filling amount of alumina increases, the powder level of fluidized alumina also rises, and alumina eventually enters the exhaust path 4.

排気経路4へのアルミナの侵入量はアルミナの
粒度又は流動状態のアルミナの見掛比重、圧縮気
体の圧力等により異なるが、排気経路4へのアル
ミナの侵入は所要量以外のアルミナを電解槽に供
給することになり、電解槽の運転上好ましくな
い。
The amount of alumina that enters the exhaust route 4 varies depending on the particle size of the alumina, the apparent specific gravity of the alumina in a fluidized state, the pressure of the compressed gas, etc. However, the amount of alumina that enters the exhaust route 4 is determined by the amount of alumina other than the required amount entering the electrolytic tank. This is not preferable for the operation of the electrolytic cell.

本発明者らは、排気経路4へのアルミナの侵入
を防止して、計量装置の精度を向上させ、もつて
電解槽を安定して運転するべく種々検討を重ねた
結果、従来の計量装置の排気口部分を特定の弁機
構とすることにより排気経路へのアルミナの侵入
を有効に阻止し得ることを見出して本発明に到達
した。
The present inventors have conducted various studies to prevent alumina from entering the exhaust path 4, improve the accuracy of the metering device, and operate the electrolytic cell stably. The present invention was achieved by discovering that it is possible to effectively prevent alumina from entering the exhaust path by using a specific valve mechanism in the exhaust port portion.

即ち、本発明の目的は粉粒体の計量装置の計量
精度の向上にあり、この目的は、上面部に排気口
を有する計量容器と、該計量容器の上部に設けら
れた、粉粒体を気体により流動化して該計量容器
に導入するための充填機構と、該計量容器の下部
に設けられた、粉粒体を計量容器から排出するた
めの排出機構とからなる粉粒体の計量装置におい
て、該排気口の下側近傍に、流動状態の粉粒体上
に浮遊し得るような見掛比重及び該排気口に押し
当てられた際にそれを閉塞し得るような上面形状
を有する弁体が、上下動し得るように保持されて
いることを特徴とする粉粒体の計量装置により容
易に達成される。
That is, an object of the present invention is to improve the measurement accuracy of a powder or granular material measuring device, and this purpose is to provide a measuring container having an exhaust port on the upper surface, and a powder or granular material disposed on the upper surface of the measuring container. In a measuring device for powder and granular material, which includes a filling mechanism for fluidizing the powder with gas and introducing it into the measuring container, and a discharge mechanism provided at the lower part of the measuring container for discharging the powder and granular material from the measuring container. , near the lower side of the exhaust port, a valve body having an apparent specific gravity that can float on the powder in a fluid state and an upper surface shape that can block the exhaust port when pressed against it; This can be easily achieved by a powder/grain material measuring device that is held so as to be able to move up and down.

以下に本発明を、その具体的態様の例を示す第
3〜5図を参照しながら、詳細に説明する。
The present invention will be described in detail below with reference to FIGS. 3 to 5, which show examples of specific embodiments thereof.

第3〜5図は本発明の粉粒体の計量装置の一例
を模式的に示す図であり、第3図はその正面断面
図、第4図及び第5図はそれぞれ第3図のB―
B′方向及びC―C′方向の断面図である。
3 to 5 are diagrams schematically showing an example of the measuring device for powder or granular material of the present invention, FIG. 3 is a front sectional view thereof, and FIGS. 4 and 5 are B--B in FIG. 3, respectively.
FIG.

本装置の構成及び操作は基本的には第1〜2図
に示された従来の計量装置と同様である。
The construction and operation of this device are basically the same as the conventional weighing device shown in FIGS. 1-2.

即ち、第3図において貯槽ホツパー1内のアル
ミナは流動化機構5により流動床8上で流動化し
充填経路7を経て計量容器2内に導入される。充
填経路7は、第3〜4図に示されているように、
円筒形の計量容器2の側面の上端近傍に、アルミ
ナが接線方向から導入されるように連絡されてい
るのが好ましく、これにより、アルミナは計量容
器の内壁に沿つて回転するように計量容器2内に
導入されるので、アルミナの充填開始直後にアル
ミナが排気口13から排出経路4に侵入するのを
防止することができる。充填経路7の高さHaは
閉塞の危険のない範囲で小さく絞る方が計量精度
の面で好ましい。アルミナの計量の場合には、充
填経路7の高さHaは1cm以上5cm以下とするこ
とが好ましい。また、充填経路7の区間長さLa
は、高さHaの2倍以上10倍以下とするのが好ま
しい。長さLaが2Haより短いと高さを絞つた効果
が失なわれ、計量精度の悪化を招き、逆に10Ha
より長すぎると、流動化機構5の流動を阻害して
閉塞の危険を招くことになる。
That is, in FIG. 3, the alumina in the storage tank hopper 1 is fluidized on the fluidized bed 8 by the fluidization mechanism 5 and introduced into the measuring container 2 through the filling path 7. The filling path 7, as shown in FIGS. 3-4,
It is preferable that the cylindrical measuring container 2 is connected to the side surface near the upper end so that the alumina is introduced tangentially, so that the alumina rotates along the inner wall of the measuring container 2. Therefore, it is possible to prevent alumina from entering the discharge path 4 from the exhaust port 13 immediately after the start of alumina filling. From the viewpoint of metering accuracy, it is preferable to keep the height Ha of the filling path 7 as small as possible without risk of clogging. In the case of weighing alumina, the height Ha of the filling path 7 is preferably 1 cm or more and 5 cm or less. Also, the section length La of the filling path 7
is preferably at least twice the height Ha and no more than 10 times the height Ha. If the length La is shorter than 2Ha, the effect of narrowing down the height will be lost, leading to deterioration of measurement accuracy;
If it is too long, the flow in the fluidization mechanism 5 will be inhibited, leading to the risk of blockage.

アルミナを流動化させ、かつアルミナとともに
計量容器2内に流入する気体は排気口13より排
気経路4を通つて計量容器2外へ排出される。排
気経路4は、計量容器2の上面部から電解槽を覆
つているカバー内に通じているのが好ましい。該
カバーの内部は電解槽より発生するガスを吸引し
てガス処理設備に導く吸引配管と連通しているの
で、計量容器からの排気気体を該カバー内に導い
ても何ら環境上の問題を生じないからである。
The gas that fluidizes the alumina and flows into the measuring container 2 together with the alumina is discharged from the exhaust port 13 to the outside of the measuring container 2 through the exhaust path 4. Preferably, the exhaust path 4 leads from the upper surface of the metering container 2 into the cover covering the electrolytic cell. The inside of the cover communicates with the suction piping that sucks the gas generated from the electrolytic cell and leads it to the gas processing equipment, so even if the exhaust gas from the metering container is introduced into the cover, no environmental problems will occur. That's because there isn't.

さて本発明の計量装置はその排気口部分に特定
の弁機構が備えられていることを特徴としてい
る。該弁機構は、流動状態の粉粒体上に浮遊し得
るような見掛比重を有すると共に上記排気口に押
し当てられた際にそれを閉塞し得るような上面形
状を有する弁体と、該弁体を該排気口の下側近傍
に上下動可能なように保持するための機構とから
基本的に構成されている。上記の弁体を保持する
ための機構は、計量容器内の流動状態の粉粒体の
上面が上昇して弁体を押し上げた際に弁体の上面
が問違いなく排気口を閉塞し得るような位置に弁
体を保持し得るものである限り、特に限定されな
い。従つて弁体を直接計量容器の内側上面から上
下可能なように懸垂してもよく、また排気口の直
下に穴のあいた皿体を設置してその上に弁体を載
置してもよい。
The metering device of the present invention is characterized in that its exhaust port portion is equipped with a specific valve mechanism. The valve mechanism includes a valve body having an apparent specific gravity that allows it to float on the powder in a fluid state and a top surface shape that can close the exhaust port when pressed against it; It basically consists of a mechanism for holding the valve body near the lower side of the exhaust port so as to be able to move up and down. The mechanism for holding the valve element described above is designed to ensure that when the upper surface of the fluidized powder in the measuring container rises and pushes up the valve element, the upper surface of the valve element can block the exhaust port without fail. There is no particular limitation as long as the valve body can be held in a certain position. Therefore, the valve body may be suspended directly from the inner upper surface of the measuring container so that it can move up and down, or a plate with a hole may be installed directly below the exhaust port and the valve body may be placed on top of it. .

第3〜4図に示された弁機構21は、弁体2
0、弁体が排気口13を閉塞した時弁体を安定に
保持するための弁座23及び弁体を排気口の下側
近傍に上下動し得るように保持する弁体保持枠2
2により構成されている。弁体20の形状は排気
口に押し当てられた際それを閉塞し得るような上
面形状であればよく、特に制限されないが、弁体
の回転を制御するための機構が省略できるよう
に、球形とするのが最も好ましい。弁体20の材
質は、弁体が全体として流動状態のアルミナに浮
遊し得るような見掛比重を有するようにするもの
であればよく、中実体でも中空体でもよい。弁体
20と弁座23との接触を良好にするためには、
弁体の見掛比重は流動状態のアルミナの見掛比重
の1/2以下、好ましくは1/5以下となるようにする
のが 望ましく、このような弁体の具体例としては、中
空のゴム球、表面処理を施した発泡ポリウレタン
の球等があげられる。
The valve mechanism 21 shown in FIGS. 3 and 4 includes a valve body 2
0. A valve seat 23 for stably holding the valve body when the valve body blocks the exhaust port 13, and a valve body holding frame 2 for holding the valve body so as to be able to move up and down near the lower side of the exhaust port.
2. The shape of the valve body 20 is not particularly limited as long as it has a top surface that can close the exhaust port when pressed against it, but it may be spherical so that a mechanism for controlling the rotation of the valve body can be omitted. It is most preferable to The material of the valve body 20 may be any material as long as it has an apparent specific gravity such that the valve body as a whole can float on alumina in a fluid state, and may be a solid body or a hollow body. In order to improve the contact between the valve body 20 and the valve seat 23,
It is desirable that the apparent specific gravity of the valve body be 1/2 or less, preferably 1/5 or less of the apparent specific gravity of alumina in a fluidized state. Specific examples of such a valve body include hollow rubber. Examples include spheres, foamed polyurethane spheres with surface treatment, etc.

弁座23は弁体が排気口13に押し当てられた
際弁体を安定に保持できるように、弁体20の形
状に合わせた形状であることが好ましく、弁体が
球体の場合には、円錐形とするのが良い。弁座2
3の内面の傾斜角は弁体20上に堆積した粉粒体
が弁体20と弁座23との間にかみ込まれるのを
防止できるように、アルミナの安息角以上、特に
約40゜以上とするのが良い。弁座の形状は、第3
図に示すようなものに限定されるものではなく、
また排気口自体を弁体の上面形状に合わせた形状
に構成するならば、特に弁座を設けなくてもよ
い。
The valve seat 23 preferably has a shape that matches the shape of the valve body 20 so that the valve body can be stably held when the valve body is pressed against the exhaust port 13, and when the valve body is spherical, It is best to have a conical shape. Valve seat 2
The angle of inclination of the inner surface of No. 3 is set to be at least the repose angle of alumina, especially about 40° or more, so as to prevent the powder particles accumulated on the valve body 20 from being caught between the valve body 20 and the valve seat 23. It is better to The shape of the valve seat is the third
It is not limited to what is shown in the figure,
Further, if the exhaust port itself is configured to have a shape that matches the top surface shape of the valve body, there is no need to provide a valve seat.

弁体保持枠22は弁体20の落下を防ぎ、弁体
の上下動に支障をきたすことなく、弁体を排気口
の下側近傍に保持するようなものであればよく、
枠体に限定されるものではない、特に弁体を静止
状態で保持した時、弁体が排気口の真下にくるよ
うなものが好ましい。
The valve body holding frame 22 may be of any type as long as it prevents the valve body 20 from falling and holds the valve body near the bottom of the exhaust port without interfering with the vertical movement of the valve body.
It is not limited to the frame body, but it is particularly preferable that the valve body is located directly below the exhaust port when the valve body is held stationary.

第3〜4図においては、金属製の細棒を井桁状
に組んだものを弁体保持枠としている。
In FIGS. 3 and 4, the valve body holding frame is made of thin metal rods arranged in a cross-shaped structure.

次に、かかる弁機構の作動状況について説明す
る。
Next, the operating status of this valve mechanism will be explained.

電磁弁11が開き、気体により流動化されたア
ルミナは流体に近い状態で計量容器2内に導入さ
れる。アルミナの充填量が増加するにつれ、計量
容器2内の流動状態のアルミナの粉面高さは上昇
し、弁体20の高さに達すると、弁体20は流動
状態のアルミナから浮力を受けて上昇し、最終的
に弁座23に密着して排気経路4の排気口13を
閉塞する(弁体は20′の位置)。この結果排気経
路4へのアルミナの侵入は阻止され、精度の高い
計量が可能となる。排気口13が閉塞され、気体
の流入が妨げられ、アルミナの導入が停止する
と、計量容器2内でアルミナと気体との分離が進
行し、アルミナの粉粒は計量容器2内を徐々に沈
降してゆく。これにより、弁体20もわずかに下
降し、排気口13が開かれるが、一旦流動性を失
い静止したアルミナが排気口13から排気経路4
内に侵入する心配はない。
The electromagnetic valve 11 is opened, and the alumina fluidized by the gas is introduced into the measuring container 2 in a state close to a fluid. As the amount of alumina charged increases, the powder level of fluidized alumina in the measuring container 2 rises, and when it reaches the height of the valve body 20, the valve body 20 receives buoyancy from the fluidized alumina. It rises and finally comes into close contact with the valve seat 23 to close the exhaust port 13 of the exhaust path 4 (the valve body is at the position 20'). As a result, alumina is prevented from entering the exhaust path 4, allowing highly accurate measurement. When the exhaust port 13 is blocked, the inflow of gas is blocked, and the introduction of alumina is stopped, separation of alumina and gas progresses within the measuring container 2, and the alumina particles gradually settle inside the measuring container 2. I'm going to go. As a result, the valve body 20 is also slightly lowered and the exhaust port 13 is opened.
There is no need to worry about it getting inside.

本発明装置においてはこのような動作により計
量容器2へのアルミナの充填を終了する。充填終
了後、計量容器2内に充填された一定量のアルミ
ナは適当な排出操作により排出される。
In the apparatus of the present invention, filling of the measuring container 2 with alumina is completed by such an operation. After the filling is completed, a certain amount of alumina filled in the measuring container 2 is discharged by a suitable discharge operation.

排出の機構は特に制限されないが、以下に流動
化機構による排出操作について説明する。
Although the discharge mechanism is not particularly limited, a discharge operation using a fluidization mechanism will be described below.

計量容器2へのアルミナの充填終了後、電磁弁
11を閉じ、電磁弁12を開け、排出用流動化機
構6によりアルミナの排出を行なう。アルミナ排
出開始直後の、アルミナを流動化させた気体は、
既に開いている排出口13より排気される。
After filling the measuring container 2 with alumina, the solenoid valve 11 is closed, the solenoid valve 12 is opened, and the alumina is discharged by the discharge fluidizing mechanism 6. Immediately after the start of alumina discharge, the gas that fluidized the alumina is
The air is exhausted from the exhaust port 13 which is already open.

排出が進行するにつれアルミナの粉面は低下
し、同様に弁体20も弁体保持枠22の位置まで
下降し、排気口13は全開となり、計量容器2内
のアルミナの排出のための流動化には全く支障を
きたさない状態になる。
As the discharge progresses, the alumina powder level decreases, and the valve body 20 similarly descends to the position of the valve body holding frame 22, the exhaust port 13 is fully opened, and the alumina in the measuring container 2 is fluidized for discharge. It will be in a state where there will be no hindrance at all.

計量容器2の下部に設ける排出経路3の入口は
排出用流動化機構6の流動床9よりも高い位置に
設け、アルミナ排出操作終了後も一定量のアルミ
ナが残存するようにするのが好ましい。また、計
量容器2の上部から導入された流動化状態にある
アルミナがそのまま排出経路3から流出する「フ
ラツシング現象」を防ぐために、邪魔板14が設
けられている。邪魔板14の下端と流動床9との
間隔Hbはアルミナの流出に障害とならない程度
の適当な距離とし、残存アルミナの有効高さHc
は3cm以上、好ましくは5cm以上とすることが望
ましい。
It is preferable that the inlet of the discharge path 3 provided at the lower part of the measuring container 2 be provided at a higher position than the fluidized bed 9 of the discharge fluidization mechanism 6 so that a certain amount of alumina remains even after the alumina discharge operation is completed. Further, a baffle plate 14 is provided to prevent a "flushing phenomenon" in which alumina in a fluidized state introduced from the upper part of the measuring container 2 flows out from the discharge path 3 as it is. The distance Hb between the lower end of the baffle plate 14 and the fluidized bed 9 is set to an appropriate distance that does not impede the outflow of alumina, and the effective height Hc of the remaining alumina is
is preferably 3 cm or more, preferably 5 cm or more.

計量容器2の下部の残存アルミナ量、もしくは
残存アルミナの有効高さHcはアルミナの粒度及
び流動化用の圧縮気体の圧力等の変動に応じて変
化するので、計量精度の悪化の要因となる。そこ
でこの計量精度の悪化をできるだけ防止するため
には、計量容器2の断面積を絞ることが有効であ
るが、絞りの度合が大き過ぎるとアルミナの排出
速度の低下につながるので、計量精度と排出速度
の両者を考慮して、適当な断面積とするのが良
い。
The amount of remaining alumina in the lower part of the measuring container 2 or the effective height Hc of the remaining alumina changes depending on the particle size of the alumina, the pressure of the compressed gas for fluidization, etc., and this becomes a factor that deteriorates the measurement accuracy. Therefore, in order to prevent this deterioration of measurement accuracy as much as possible, it is effective to narrow down the cross-sectional area of the weighing container 2, but if the degree of narrowing is too large, it will lead to a decrease in the discharge speed of alumina, so the measurement accuracy and discharge It is best to select an appropriate cross-sectional area, taking into account both speed and speed.

しかしながら、計量容器2の断面積を絞つた場
合においても所要の計量値、即ち計量容器2の必
要容積を得るために、計量容器2の高さHdが高
くなり過ぎて、計量装置の設置場所のスペースの
都合上好ましくない、又はアルミナ排出時アルミ
ナ全体が完全に流動化しにくくなる等の不都合を
生じることがある。この様な場合には、計量容器
2の上部断面積S1を下部断面積S2よりも適当に広
くとつて、高さHdを調整すると良い。なお、計
量容器2の上部と下部の接続部はデツドスペース
を生じないように、適当な傾斜をつけて絞るのが
良い。
However, even when the cross-sectional area of the weighing container 2 is reduced, the height Hd of the weighing container 2 becomes too high in order to obtain the required measured value, that is, the required volume of the weighing container 2. This may be undesirable due to space limitations, or may cause problems such as difficulty in completely fluidizing the alumina as a whole when discharging the alumina. In such a case, the height Hd may be adjusted by making the upper cross-sectional area S1 of the measuring container 2 suitably wider than the lower cross-sectional area S2 . Note that the connecting portion between the upper and lower portions of the measuring container 2 is preferably narrowed with an appropriate slope so as not to create a dead space.

本装置で1回当り計量されるアルミナ量として
1〜30Kgの範囲で選択するのが計量精度上好まし
い。
In terms of measurement accuracy, it is preferable to select the amount of alumina to be measured per time in the range of 1 to 30 kg with this device.

アルミナの排出完了後は、電磁弁12を閉じ、
次の計量時まで待機する。
After completing the discharge of alumina, close the solenoid valve 12,
Wait until the next weighing.

以上詳述したように、本発明の計量装置によれ
ば、粉粒体が排気口から排気経路に侵入すること
なく、粉粒体を精度良く計量することができる。
As described in detail above, according to the measuring device of the present invention, it is possible to accurately weigh the powder and granular material without the powder and granular material entering the exhaust path from the exhaust port.

また、本発明の装置を用いてアルミニウム電解
槽へのアルミナの供給を行うことにより、常に所
定量のアルミナを電解槽に供給することが可能と
なり、アルミニウム電解槽を安定に運転すること
ができる。
Further, by supplying alumina to the aluminum electrolytic cell using the apparatus of the present invention, it becomes possible to always supply a predetermined amount of alumina to the electrolytic cell, and the aluminum electrolytic cell can be stably operated.

なお以上の説明は主としてアルミニウム電解槽
にアルミナを供給するために使用する計量装置に
ついて行なつたが、粉粒体の種類及び供給対象に
応じた適当な設計変更をなすことにより、本発明
の計量装置をアルミナ以外の粉粒体の計量装置と
しても使用し得ることは明らかである。
Although the above explanation was mainly about a measuring device used to supply alumina to an aluminum electrolytic cell, the measuring device of the present invention can be modified by making appropriate design changes depending on the type of powder and the object to be supplied. It is clear that the device can also be used as a metering device for powders other than alumina.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は従来の粉粒体の計量装置を模式的
に示す図であり、第1図は正面断面図、第2図は
第1図のA―A′線の断面図である。第3〜5図
は本発明の粉粒体の計量装置の一例を模式的に示
す図であり、第3図は正面断面図、第4図及び第
5図はそれぞれ第3図のB―B′線及びC―C′線
の断面図である。 図において、1:貯積ホツパー、2:計量容
器、3:排出経路、4:排気経路、5,6:流動
化機構、13:排気口、14:邪魔板、20:弁
体、21:弁機構、22:弁体保持枠、23:弁
座。
1 and 2 are diagrams schematically showing a conventional weighing device for powder and granular materials, with FIG. 1 being a front sectional view and FIG. 2 being a sectional view taken along the line AA' in FIG. 1. 3 to 5 are diagrams schematically showing an example of the measuring device for powder or granular material of the present invention, FIG. 3 is a front sectional view, and FIGS. 4 and 5 are B-B in FIG. 3, respectively. FIG. In the figure, 1: Storage hopper, 2: Measuring container, 3: Discharge route, 4: Exhaust route, 5, 6: Fluidization mechanism, 13: Exhaust port, 14: Baffle plate, 20: Valve body, 21: Valve. Mechanism, 22: Valve body holding frame, 23: Valve seat.

Claims (1)

【特許請求の範囲】 1 上面部に排気口を有する計量容器と、該計量
容器の上部に設けられた、粉粒体を気体により流
動化して該計量容器に導入するための充填機構
と、該計量容器の下部に設けられた、粉粒体を計
量容器から排出するための排出機構とからなる粉
粒体の計量装置において、該排気口の下側近傍
に、流動状態の粉粒体上に浮遊し得るような見掛
比重及び該排気口に押し当てられた際にそれを閉
塞し得るような上面形状を有する弁体が、上下動
し得るように保持されていることを特徴とする粉
粒体の計量装置。 2 特許請求の範囲第1項記載の粉粒体の計量装
置において、該充填機構がエアスライドであるこ
とを特徴とする装置。 3 特許請求の範囲第1項又は第2項記載の粉粒
体の計量装置において、該排出機構が流動化機構
であることを特徴とする装置。 4 特許請求の範囲第1項ないし第3項のいずれ
か1つに記載の粉粒体の計量装置において該弁体
の上面形状が球形であることを特徴とする装置。 5 特許請求の範囲第1項ないし第4項のいずれ
か1つに記載の粉粒体の計量装置において、該弁
体は排気口の下側近傍に設けられた弁体保持枠に
より保持されていることを特徴とする装置。 6 特許請求の範囲第1項ないし第5項のいずれ
か1つに記載の粉粒体の計量装置において、該計
量容器が円筒体であることを特徴とする装置。 7 特許請求の範囲第6項記載の粉粒体の計量装
置において、該充填機構は粉粒体が該計量容器の
円筒体内面に接線方向から導入されるように設け
られていることを特徴とする装置。
[Scope of Claims] 1. A measuring container having an exhaust port on the upper surface, a filling mechanism provided at the upper part of the measuring container for fluidizing powder and granular material with gas and introducing the fluidized material into the measuring container, and In a powder measuring device comprising a discharge mechanism provided at the bottom of the measuring container for discharging the powder and granular material from the measuring container, the powder and granular material in a fluid state is placed near the lower side of the exhaust port. A valve body having an apparent specific gravity that allows it to float and an upper surface shape that can close the exhaust port when pressed against the exhaust port, the powder being held so as to be able to move up and down. Granule weighing device. 2. The measuring device for powder or granular material according to claim 1, wherein the filling mechanism is an air slide. 3. A measuring device for powder or granular material according to claim 1 or 2, characterized in that the discharge mechanism is a fluidization mechanism. 4. A measuring device for powder or granular material according to any one of claims 1 to 3, wherein the valve body has a spherical upper surface shape. 5. In the granular material measuring device according to any one of claims 1 to 4, the valve body is held by a valve body holding frame provided near the lower side of the exhaust port. A device characterized by: 6. The measuring device for powder or granular material according to any one of claims 1 to 5, wherein the measuring container is a cylindrical body. 7. The measuring device for powder and granular material according to claim 6, characterized in that the filling mechanism is provided so that the powder and granular material is introduced into the inner surface of the cylindrical body of the measuring container from a tangential direction. device to do.
JP8322180A 1980-06-19 1980-06-19 Metering device for powder and granule Granted JPS578417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8322180A JPS578417A (en) 1980-06-19 1980-06-19 Metering device for powder and granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8322180A JPS578417A (en) 1980-06-19 1980-06-19 Metering device for powder and granule

Publications (2)

Publication Number Publication Date
JPS578417A JPS578417A (en) 1982-01-16
JPS6210366B2 true JPS6210366B2 (en) 1987-03-05

Family

ID=13796250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8322180A Granted JPS578417A (en) 1980-06-19 1980-06-19 Metering device for powder and granule

Country Status (1)

Country Link
JP (1) JPS578417A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234032A (en) * 1989-03-08 1990-09-17 Snow Brand Milk Prod Co Ltd Measuring sensor for detecting fluid state and measuring method by use of sensor
DE102012224054A1 (en) * 2012-12-20 2014-06-26 Henkel Ag & Co. Kgaa Device for conveying a fuel

Also Published As

Publication number Publication date
JPS578417A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
US3681229A (en) Alumina feeder
CA1175396A (en) Device for accurately controlled feeding of a fine- grained, free-running particulate material
JP3679004B2 (en) Liquid chemical substance delivery system and delivery method
US4930691A (en) Pneumatic dosimeter
JPH048334B2 (en)
SK11782003A3 (en) A method and system for distribution of fluidisable materials
JPS6210314B2 (en)
CN211263064U (en) Novel coal slime water quality on-line monitoring device
KR930009969B1 (en) Process and apparatus for charging a shaft furnace
KR20040004519A (en) Device and method for weighing concrete material
JPS6210366B2 (en)
US3901787A (en) Alumina feeder for electrolytic cells
US20180191044A1 (en) System and method for metal-air anode renovation
US4919303A (en) Method for feeding particulate material
Bruff et al. A silo for ground anthracite
JPS5811833A (en) Measuring device for slurry concentration
EP0094061A2 (en) Apparatus for dissolution of pulp
CN113669066A (en) Real-time productivity monitoring device for submarine cobalt-rich crust mining
JPS59228942A (en) Method and device for measuring quantity of resin increased of movable bent bed ion exchanger
SU1611993A1 (en) Device for feeding alumina into electrolyzer
RU2054163C1 (en) Pneumatic weighing machine for powder material, mainly for weighing amounts of aluminum oxide or aluminum fluoride
JPH07247117A (en) Apparatus for dissolving zinc in acidic electrolyte liquid
JPH0413636Y2 (en)
US11894544B2 (en) System and method for metal-air anode renovation
CA2757002C (en) Method and means for feeding fluidisable materials