JPS6210355B2 - - Google Patents

Info

Publication number
JPS6210355B2
JPS6210355B2 JP12508279A JP12508279A JPS6210355B2 JP S6210355 B2 JPS6210355 B2 JP S6210355B2 JP 12508279 A JP12508279 A JP 12508279A JP 12508279 A JP12508279 A JP 12508279A JP S6210355 B2 JPS6210355 B2 JP S6210355B2
Authority
JP
Japan
Prior art keywords
solution
solution tube
tube
temperature
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12508279A
Other languages
Japanese (ja)
Other versions
JPS5646961A (en
Inventor
Yasuo Koseki
Kenkichi Izumi
Sankichi Takahashi
Takeo Notani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12508279A priority Critical patent/JPS5646961A/en
Publication of JPS5646961A publication Critical patent/JPS5646961A/en
Publication of JPS6210355B2 publication Critical patent/JPS6210355B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は直焚高温再生器に係り、特に吸収式冷
凍機サイクルに使用される直焚高温再生器(以下
単に再生器ということがある。)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct-fired high-temperature regenerator, and more particularly to a direct-fired high-temperature regenerator (hereinafter sometimes simply referred to as a regenerator) used in an absorption refrigerator cycle.

再生器は吸収式冷凍機サイクルにおいて蒸発器
で発生した冷媒蒸気を吸収した希リチウムブロマ
イド(以下LiBrという)溶液を加熱濃縮し、濃
縮LiBr溶液と冷媒蒸気とを得るための装置であ
る。LiBr溶液を吸収液として用いる吸収式冷凍
機サイクルの再生器においては、液温が160℃乃
至それ以上となり、且つ液のLiBr濃度が60乃至
65%迄濃縮されるが、第1図に示すようにLiBr
溶液はLiBr濃度が上記濃度レベルの場合、(図に
はLiBr濃度62%及び65%の例が示されている。)
温度が175℃以上になると急激に金属に対する腐
食速度が増すことが確認されている。
The regenerator is a device that heats and concentrates a dilute lithium bromide (hereinafter referred to as LiBr) solution that has absorbed refrigerant vapor generated in the evaporator in an absorption refrigerator cycle to obtain a concentrated LiBr solution and refrigerant vapor. In the regenerator of an absorption refrigerator cycle that uses LiBr solution as the absorption liquid, the liquid temperature is 160°C or higher, and the LiBr concentration of the liquid is 60°C or higher.
It is concentrated to 65%, but as shown in Figure 1, LiBr
When the LiBr concentration of the solution is at the above concentration level (examples with LiBr concentrations of 62% and 65% are shown in the figure).
It has been confirmed that when the temperature exceeds 175°C, the rate of corrosion of metal increases rapidly.

一般の熱交換器では、熱交換量Qを増大させる
には、下式の如く伝熱面積A、熱貫流率K及び温
度差△Tを大にすることが行なわれる。
In a general heat exchanger, in order to increase the heat exchange amount Q, the heat transfer area A, the heat transmission coefficient K, and the temperature difference ΔT are increased as shown in the following equation.

Q=K・T・△T ……(1) しかしながら再生器では、温度差が大になると
腐食が促進されることから、器内全域で温度差を
15℃以下(液温175℃以下)に抑えつつ熱交換量
を増大させることが行なわれているが、高温の燃
焼ガスを用いる直焚式再生器では、温度差を器内
全域において均一に抑えるのが困難である。これ
まで性能向上と製作コスト低減をめざし、再生器
の小型化等の改良が進められているが、局部腐食
による事故が相ついでおり、ここに数多くの長所
を有する直焚高温再生器の最大の欠点がある。
Q = K T
Efforts have been made to increase the amount of heat exchange while keeping the temperature below 15℃ (liquid temperature below 175℃), but in direct-fired regenerators that use high-temperature combustion gas, it is necessary to keep the temperature difference uniform throughout the entire chamber. It is difficult to Improvements such as miniaturization of regenerators have been progressing with the aim of improving performance and reducing production costs, but accidents due to local corrosion have been occurring one after another. There are drawbacks.

第2図、第3図は、従来より用いられている高
温再生器を示すものであり、これらの図におい
て、燃料であるガス、灯油等がバーナ10で燃焼
され、高温燃焼ガス20は炉筒11内を水平に直
進し、次いで平滑溶液管12及びフイン付溶液管
13のLiBr溶液21と熱交換した後に煙突15
より再生器1外に排出される。
Figures 2 and 3 show conventionally used high-temperature regenerators. In these figures, fuel such as gas or kerosene is combusted in a burner 10, and high-temperature combustion gas 20 is passed through a furnace tube. 11, and after exchanging heat with the LiBr solution 21 in the smooth solution pipe 12 and the finned solution pipe 13, the chimney 15
is discharged outside the regenerator 1.

一方、LiBr溶液21は再生器1の炉筒部及び
溶液管群部において燃焼ガスと熱交換され、沸騰
濃縮される。
On the other hand, the LiBr solution 21 exchanges heat with the combustion gas in the furnace tube section and solution tube group section of the regenerator 1, and is boiled and concentrated.

溶液管群前方(炉筒11寄り)に伝熱面積が小
の平滑溶液管12を、後方に伝熱面積が大のフイ
ン付溶液管12を配置したのは、熱交換量を極力
均一にするためである。又、整流板14a,14
b,14cを設けたのは、燃焼ガス20が管群端
部30をシヨートパスすることによる熱ロスを防
止するためである。
The smooth solution tube 12 with a small heat transfer area is placed at the front of the solution tube group (near the furnace tube 11), and the finned solution tube 12 with a large heat transfer area is placed at the rear to make the amount of heat exchange as uniform as possible. It's for a reason. In addition, the rectifying plates 14a, 14
b and 14c are provided in order to prevent heat loss caused by the combustion gas 20 passing through the end portion 30 of the tube group.

しかしながら、上記従来公知の再生器において
は、管群端部近傍の溶液管に高温ガスがアタツク
することにより局所腐食が発生することが確認さ
れている。
However, in the conventionally known regenerator described above, it has been confirmed that local corrosion occurs due to the attack of high temperature gas on the solution tubes near the ends of the tube group.

本発明の目的は、上記した従来技術の欠点を解
消し、局所腐食の発生の恐れのない直焚高温再生
器を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a direct-fired high-temperature regenerator that is free from local corrosion.

本発明者らは、局部腐食の主因の1つが、再生
器内における断面方向の熱交換量の不均一にあ
り、特に管群端部近傍の溶液管への高温ガスの局
所的アタツクにあることを実験により確認し、そ
の解消手段として溶液管と整流板を適切に配置す
ることにより、上記本発明の目的を達成したもの
である。
The present inventors have discovered that one of the main causes of local corrosion is the non-uniformity of the amount of heat exchange in the cross-sectional direction within the regenerator, and in particular the local attack of high-temperature gas on the solution tubes near the ends of the tube group. The above object of the present invention has been achieved by confirming this through experiments and appropriately arranging a solution tube and a rectifying plate as a means for solving the problem.

本発明の要旨は、炉筒部及び溶液管群部よりな
る直焚高温再生器において溶液管群部の管群端部
に設けられた整流板と溶液管との間に形成される
縮少ガス流路の直後に空間部を設けることを特徴
とする直焚高温再生器にある。
The gist of the present invention is to provide reduced gas that is formed between the solution tubes and a rectifier plate provided at the end of the solution tube group in a direct-fired high-temperature regenerator consisting of a furnace cylinder section and a solution tube group section. A direct-fired high-temperature regenerator is characterized in that a space is provided immediately after a flow path.

以下、本発明完成に至つた経緯を実験結果に基
いて説明する。
The circumstances leading to the completion of the present invention will be explained below based on experimental results.

第4図は、燃焼ガスの溶液管群部における流動
状態を示すものであり、この図において、燃焼ガ
スは殆んどが管群中央部31を流れ、一部が管群
端部30を流れる。管群端部30を流れるガス
は、溶液管12との接触が少ないため冷却され
ず、高温ガス22のまま流過し、一方管群中央部
31を流れるガスは、溶液管12と接触し、除々
に冷却されて低温ガス23となる。
FIG. 4 shows the flow state of the combustion gas in the solution tube group. In this figure, most of the combustion gas flows through the center section 31 of the tube group, and a portion flows through the end portion 30 of the tube group. . The gas flowing through the end portion 30 of the tube group is not cooled due to little contact with the solution tube 12 and passes through as the high-temperature gas 22, while the gas flowing through the center portion 31 of the tube group is in contact with the solution tube 12. It is gradually cooled down and becomes a low-temperature gas 23.

ところで、管群端部30を流れる高温ガス22
は、整流板14bと溶液管12との間に形成され
る縮少ガス流路で絞られ加速されて、その直後に
配置された伝熱面積大なるフイン付溶液管13a
に直撃し、該フイン付溶液管13aのみが、他の
ものよりも数倍の熱負荷を受ける。このため、フ
イン付溶液管13aの壁温は、175℃をはるかに
越えてしまい、この部分に局所腐食部24が発生
する。この高温ガスアタツクは、整流板14b近
傍の溶液管13a以外に整流板14a,14c近
傍の溶液管12,13でも起るが、その程度は、
溶液管13aの方が他の約2倍と大きい。これ
は、抵抗小の平滑溶液管から抵抗大のフイン付溶
液管に変化する境界においては、平滑溶液管群を
出たガス23はフイン付溶液管群に入る時に急激
に大きな流動抵抗を受け、点線矢印Bよりも抵抗
の少ない実線矢印A方向に多く流れようとし、更
に管群端部30に沿つて流れてきた高温ガス22
も、整流板14bにより加速され、その直後のフ
イン付溶液管13aを直撃し、点線矢印Dの管群
中央部31方向よりも抵抗の小さい実線矢印Cの
管群端部30方向に流れようとするからである。
従つて、フイン付溶液管13aの局部24が高温
ガスアタツクを受け、腐食を発生する。
By the way, the high temperature gas 22 flowing through the tube group end 30
is throttled and accelerated by the reduced gas flow path formed between the rectifier plate 14b and the solution tube 12, and the finned solution tube 13a with a large heat transfer area placed immediately after it is
, and only the finned solution tube 13a receives a heat load several times higher than the others. For this reason, the wall temperature of the finned solution tube 13a far exceeds 175° C., and local corrosion portions 24 occur in this portion. This high-temperature gas attack occurs not only in the solution tube 13a near the rectifier plate 14b but also in the solution tubes 12 and 13 near the rectifier plates 14a and 14c, but the extent of the attack is as follows.
The solution tube 13a is about twice as large as the others. This is because at the boundary where the smooth solution tube with low resistance changes to the finned solution tube with high resistance, the gas 23 exiting the smooth solution tube group suddenly experiences a large flow resistance when entering the finned solution tube group. The high-temperature gas 22 tries to flow more in the direction of the solid arrow A, which has less resistance than the dotted arrow B, and further flows along the end portion 30 of the tube group.
The liquid is also accelerated by the rectifying plate 14b, directly hits the finned solution tube 13a immediately after it, and attempts to flow in the direction of the tube group end 30, indicated by the solid line arrow C, where the resistance is lower than in the direction of the tube group center 31, indicated by the dotted line arrow D. Because it does.
Therefore, the local portion 24 of the finned solution tube 13a is attacked by the high temperature gas, causing corrosion.

このような局部腐食を防止するため、本発明は
溶液管と整流板とを適切に配置し、管群端部30
の高温ガス22を管群中央部31からの低温ガス
で希釈し低温化したものである。
In order to prevent such local corrosion, the present invention appropriately arranges the solution tubes and the rectifying plate, and
The high-temperature gas 22 is diluted with low-temperature gas from the central part 31 of the tube group to lower the temperature.

第5図は、本発明の再生器の溶液管群部の部分
図を示すものであり、この図によれば、最後列の
平滑溶液管列と最前列のフイン付溶液管列が引き
込み構造となつており、そこに空間40が形成さ
れている。このような構成にすることにより、整
流板14bで絞られ加速された高温ガス22は、
直後のフイン付溶液管13aを直撃しないばかり
か、空間40があるため、その流動抵抗が急減
し、管群中央部31よりの低温ガス23の空間4
0への流入をも促進し、希釈されて低温化され
る。又、ミクロ的には、空間40に流入した低温
ガス23は、高温ガス22の下部をフイン付溶液
管13a及びこれに続く管群端部30のフイン付
溶液管13に沿つて流れるため、これらの溶液管
が高温ガスと接触しにくくなる。従つて、空間4
0を形成させることによつて、整流板14b直後
のフイン付溶液管13aへの高温ガスのアタツク
が防止できるばかりでなく、後続のフイン付溶液
管13への高温ガスの接触も防止できるという効
果を有する。
FIG. 5 shows a partial diagram of the solution tube group of the regenerator of the present invention. According to this figure, the last row of smooth solution tubes and the front row of finned solution tubes have a retractable structure. A space 40 is formed therein. With this configuration, the high temperature gas 22 throttled and accelerated by the current plate 14b is
Not only does it not directly hit the finned solution tube 13a immediately after, but also because there is a space 40, its flow resistance is rapidly reduced, and the low-temperature gas 23 from the center part 31 of the tube group is
It also promotes the flow to zero, where it is diluted and lowered in temperature. Microscopically, the low-temperature gas 23 that has flowed into the space 40 flows under the high-temperature gas 22 along the finned solution tube 13a and the finned solution tube 13 at the tube group end 30 that follows. This makes it difficult for the solution tube to come into contact with high-temperature gas. Therefore, space 4
By forming 0, it is possible not only to prevent high-temperature gas from attacking the finned solution tube 13a immediately after the rectifying plate 14b, but also to prevent high-temperature gas from coming into contact with the subsequent finned solution tube 13. has.

第6図は、本発明の他の再生器の溶液管群部の
部分図を示すものであり、千鳥型に配列されたフ
イン付溶液管群の最前列のフイン付溶液管13a
が取り除かれ、且つ整流板14bが最後列の平滑
溶液管12の引き込み部に取り付けられている
が、この場合にも第5図の場合と同様の効果が得
られた。
FIG. 6 shows a partial view of the solution tube group section of another regenerator of the present invention, in which the finned solution tubes 13a in the front row of the finned solution tube group arranged in a staggered pattern are shown.
was removed, and the rectifier plate 14b was attached to the lead-in portion of the smoothing solution tube 12 in the last row, but in this case as well, the same effect as in the case of FIG. 5 was obtained.

以上本発明の直焚高温再生器は、整流板と平滑
溶液管により絞られた高温ガス流路の直後に空間
部を有するので、管群端部のフイン付溶液管の腐
食が防止できるという利点を有する。
As described above, the direct-fired high-temperature regenerator of the present invention has the advantage that corrosion of the finned solution tubes at the end of the tube group can be prevented because the space is provided immediately after the high-temperature gas flow path narrowed by the rectifying plate and the smooth solution tube. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLiBr溶液の濃度及び温度と金属の腐
食速度との関係を示すグラフ、第2図は従来の再
生器の縦断面図、第3図は第2図の―線断面
図、第4図は従来の再生器の溶液管群部のガス流
動状態を示す図、第5図及び第6図は本発明の再
生器の溶液管群部のガス流動状態を示す図であ
る。 1…再生器本体、10…バーナ、11…炉筒、
12…平滑溶液管、13,13a…フイン付溶液
管、14a,14b,14c…整流板、15…煙
突、30…管群端部、31…管群中央部、40…
空間。
Fig. 1 is a graph showing the relationship between the concentration and temperature of LiBr solution and the corrosion rate of metal, Fig. 2 is a vertical cross-sectional view of a conventional regenerator, Fig. 3 is a cross-sectional view taken along the - line in Fig. 2, and Fig. 4 is a graph showing the relationship between the concentration and temperature of LiBr solution and the corrosion rate of metal. This figure shows the gas flow state in the solution tube group section of a conventional regenerator, and FIGS. 5 and 6 are diagrams showing the gas flow state in the solution tube group section of the regenerator of the present invention. 1... Regenerator main body, 10... Burner, 11... Furnace cylinder,
12... Smooth solution tube, 13, 13a... Solution tube with fins, 14a, 14b, 14c... Straightening plate, 15... Chimney, 30... Tube group end, 31... Tube group center, 40...
space.

Claims (1)

【特許請求の範囲】 1 炉筒部及び溶液管群部よりなる直焚高温再生
器において、溶液管群部の管群端部に設けられた
整流板と溶液管との間に形成される縮小ガス流路
の直後に溶液管を置かず空間部を形成せしめるこ
とを特徴とする直焚高温再生器。 2 整流板を溶液管の管外伝熱面積が大なる方に
変化する地点に設ける特許請求の範囲第1項記載
の直焚高温再生器。 3 整流板を溶液管が平滑溶液管からフイン付溶
液管に変化する地点に設ける特許請求の範囲第2
項記載の直焚高温再生器。
[Scope of Claims] 1. In a direct-fired high-temperature regenerator consisting of a furnace cylinder section and a solution tube group section, a reduction plate formed between the solution tube and a rectifying plate provided at the end of the solution tube group section. A direct-fired high-temperature regenerator characterized by forming a space without placing a solution pipe immediately after a gas flow path. 2. The direct-fired high-temperature regenerator according to claim 1, wherein the rectifying plate is provided at a point where the extra-tube heat transfer area of the solution tube changes to become larger. 3. Claim 2 in which a rectifying plate is provided at the point where the solution tube changes from a smooth solution tube to a finned solution tube.
Direct-fired high-temperature regenerator described in section.
JP12508279A 1979-09-27 1979-09-27 Direct boiling high temperature generator Granted JPS5646961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12508279A JPS5646961A (en) 1979-09-27 1979-09-27 Direct boiling high temperature generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12508279A JPS5646961A (en) 1979-09-27 1979-09-27 Direct boiling high temperature generator

Publications (2)

Publication Number Publication Date
JPS5646961A JPS5646961A (en) 1981-04-28
JPS6210355B2 true JPS6210355B2 (en) 1987-03-05

Family

ID=14901377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12508279A Granted JPS5646961A (en) 1979-09-27 1979-09-27 Direct boiling high temperature generator

Country Status (1)

Country Link
JP (1) JPS5646961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212752A (en) * 1988-06-30 1990-01-17 Toshiba Lighting & Technol Corp Fluorescent lamp
JPH02181352A (en) * 1989-01-06 1990-07-16 Hitachi Ltd Low pressure discharge lamp
JPH0621147U (en) * 1991-01-29 1994-03-18 オスラム・メルコ株式会社 Straight tube fluorescent lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212752A (en) * 1988-06-30 1990-01-17 Toshiba Lighting & Technol Corp Fluorescent lamp
JPH02181352A (en) * 1989-01-06 1990-07-16 Hitachi Ltd Low pressure discharge lamp
JPH0621147U (en) * 1991-01-29 1994-03-18 オスラム・メルコ株式会社 Straight tube fluorescent lamp

Also Published As

Publication number Publication date
JPS5646961A (en) 1981-04-28

Similar Documents

Publication Publication Date Title
JP3390456B2 (en) Absorption chiller / heater and its high temperature regenerator
CN101191666B (en) Gas burner water heater condensing type heat-exchanger rig
JPH07167530A (en) Heat transfer tube for absorber
JPS6210355B2 (en)
CN200989662Y (en) Condensation heat exchanger for gas water heater
KR19990070599A (en) Dual structure heat exchanger for condensing gas boiler
JPH09280691A (en) High temperature reproducer for absorption water cooling and heating machine
CN208967835U (en) Water-cooling wall in low nitrogen water-tube boiler
CN203454079U (en) Novel exhaust-heat boiler
KR100437667B1 (en) condensing Gas boiler using uptrend combustion type for withdraw latent heat
JP4518861B2 (en) Heat transfer tube for falling film evaporator
JPH0213903Y2 (en)
JPS58214738A (en) Combustion device
JP2001165530A (en) Absorbing device
JPS6018766Y2 (en) Direct-fired high-temperature regenerator
JP3616900B2 (en) Cross-flow boiler, cross-flow regenerator, and absorption refrigerator equipped with the regenerator
JPH09189491A (en) Heat exchanger
JPS6018765Y2 (en) Direct-fired high-temperature regenerator
US1950152A (en) Refrigeration
JPS6314271B2 (en)
JP2003314926A (en) Heater in ammonia absorption-type refrigerator
CN103673689A (en) Method and device for recovering heat through flue gas waste heat
CN204535102U (en) A kind of Horizontal energy-saving heat exchanger for hot-blast stove
JPS6248787B2 (en)
JPH058424Y2 (en)